ArCADia-TERMO

Podręcznik użytkownika dla programu ArCADia–TERMO

2015-01-27

1 SPIS TREŚCI

1	Spis treści	2
2	Wprowadzenie	7
3	Zakres merytoryczny	9
	3.1 Wstep	
2	3.2 Zakres merytoryczny obliczeń cieplnych	11
-	2.2 Zakros morytoryczny concern crepniyen	10
-	3.3 L Stosowane definicie	12
	3.3.2 Wymagane przez rozporzadzenie MIIR elementy audytu energetycznego	
-	A Zakres merutoryczny certyfikatu	14
-	3.4 Zakies inclytolyczny certynkatu	
	3.4.2 Wymagania dotyczące formy świadectwa charakterystyki energetycznej	
	3.4.3 Sposób sporządzania i wzór świadectwa charakterystyki energetycznej budynku	
Δ	Onis danuch weiściowych projektu	16
7		
2	4.1 Etap wybor obliczen	1 /
	4.1.1 Zapis i odczyt szabionow przegrod i certyfikatu	23
2	4.2 MENU	
	4.2.1 Zakładka Ogólne	27
	4.2.2 Zakładka Wybór obliczeń	27
2	4.3 Etap dane projektu	
4	4.4 Etap dane o budynku	
5	Opis obliczeń współczynnika przenikania ciepła "U" przegród	
4	5.1 ETAP definicje przegród	
	5.1.1 Drzewko definicji przegród	
	5.1.2 Opis okno właściwości dla przegród typu standardowego	
	5.1.3 Zakładka Warstwy przegrody	
	5.1.4 Baza edytora materiałów	
	5.1.5 Opis okno właściwości dla przegród typu drzwi, okna zewnętrzne i wewnętrzne	55
	5.1.6 Opis okno właściwości dla przegród typu podłoga na gruncie	
	5.1.7 Zakładka parametry dodatkowe	
	5.1.8 Opis okno właściwości dla przegród typu ściana na gruncie	
	5.1.9 Zakładka parametry dodatkowe	
6	Opis obliczeń strat ciepła w pomieszczeniu	7 <i>3</i>
ť	 Etap straty ciepła. obliczenia zapotrzebowania na ciepło pomieszczeń (struktura 74 	budynku)
	6.1.1 Opis drzewka Struktura budynku	74
	6.1.2 Opis okna Właściwości grupy pomieszczeń	75
	6.1.3 Opis okna Właściwości pomieszczenia	78
	6.1.4 Opis zakładek obliczeń strat cieplnych dla normy PN-EN 12831- metoda uproszczona	
	6.1.5 Opis zakładek obliczeń strat cieplnychdla normy PN- EN 12831 metoda szczegółowa	
	6.1.6 Opis okna wyników obliczeń dla normy PN-EN 12831 - metoda Szczegółowa	
7	Opis obliczeń sezonowego zapotrzebowania na ciepło na cele ogrzewania i v	ventylacji

104

Spis	s treśc	i	
7	.1 E	tap strefy cieplne	105
	7.1.1	Drzewko stref cieplnych	106
	7.1.2	Opis okno właściwości strefy	107
	7.1.3	Opis zakladek obliczeń strat i zysków ciepła	108
8	O pis	obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wen	tylacji138
8	.1 E	Etap strefy chłodu	139
	8.1.1	Drzewko stref chłodu	139
	8.1.2	Opis okno właściwości strefy	
	8.1.3	Opis zakladek obliczeń strat i zysków ciepła	
	8.1.4	Opis okna wyników obliczeń	171
9	Wydr	uki obliczeń	173
10	Pra	aca z modułem Audyt	179
1	0.1	Opis elementów modułu Audyt	180
1	0.2	Wprowadzanie danych do okien dialogowych	182
	10.2.1	ETAP Dane ogólne	
	10.2.2	Okno dialogowe System grzewczy	
	10.2.3	ETAP Audyt - Ciepła woda użytkowa	206
	10.2.4	ETAP Ściany, stropy, stropodachy	222
	10.2.5	Okno dialogowe: Okna, drzwi, wentylacja	
	10.2.6	Okna dialogowe: Warianty termomodernizacyjne	
11	Wy	niki obliczeń modułu Audyt	237
1	1.1 R	Caport uproszczony	238
12	Cer	rtyfikat	240
12	2.1	Ogrzewanie i Wentylacja	241
12	2.2	ETap Ciepła woda użytkowa	258
12	2.3	Etap Chłodzenie	278
12	2.4	ETAP Oświetlenie	290
1'	2 5	Ranort certyfikat	300
1.	12.5	Parametry dla hudynku ocenianego	300
	12.5.2	WYNIKI OBLICZEŃ ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIE PIERWOTNA	300
	12.5.3	WYNIKI OBLICZEŃ ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIE KOŃCOWA	
13	EF	EKT EKOLOGICZNY	302
1	3.1	Wstep do Efektu ekologicznego	303
1	3.2	Wybór obliczeń efektu ekologicznego	304
1	33	Efekt ekologiczny dla certyfikatu	305
	13.3.1	OKNO ZUŻYCIE PALIWA	305
	13.3.2	OKNO ALTERNATYWNE ŹRÓDŁO	309
	13.3.3	OKNO EMISJA ZANIECZYSZCZEŃ	
	13.3.4	Obliczenia	
	13.3.5	Raporty i wyniki	
1.	3.4	Efekt ekologiczny dla audytu	318

Podręcznik użytkownika dla programu ArCADia-TERMO

Spis treśc	i	
13.4.1	OKNO ZUŻYCIE PALIWA	
13.4.2	OKNO EMISJA ZANIECZYSZCZEŃ	
13.4.3	Obliczenia	
13.4.4	Raporty i wyniki	
14 EF	EKT EKONOMICZNY	
14.1	Wstęp do Efektu ekonomicznego	
14.2	Wybór obliczeń efektu ekologicznego	
14.3	Efekt ekonomiczny	
14.3.1	OKNO ZUŻYCIE PALIWA	
14.3.2	OKNO ALTERNATYWNE ŹRÓDŁO	
14.3.3	OKNO EFEKT EKONOMICZNY	
14.3.4	RAPORTY I WYNIKI	
15 DC	BÓR GRZEJNIKÓW	
15.1	Wstęp do doboru grzejników	
15.2	Wybór obliczeń doboru grzejników	
15.3	Dobór grzejników	
15.3.1	OPCJE DOBORU ODBIORNIKÓW	
15.3.2	ETAP DOBÓR GRZEJNIKÓW	
15.3.3	RAPORTY RTF Z DOBORU GRZEJNIKÓW	
16 KL	IMATYZACJA	
16.1	Wstęp do klimatyzacji	
16.2	Wybór obliczeń klimatyzacji	
16.3	Wygląd okno obliczeń zysków ciepła pomieszczeń (zyski ciepła)	
16.3.1	Opis drzewkastruktury budynku	
16.3.2	Okno grupy kondygnacji	
16.3.3	Opis okna właściwości pomieszczenia	
16.3.4	Opis zakładek obliczeń zysków ciepła	
16.3.5	Opis okna wyników obliczeń zysków ciepła	
16.3.6	Raporty zysków ciepła	

Wydawca

ArCADiasoft Chudzik sp. j. ul. Sienkiewicza 85/87 90-057 Łódź www.arcadiasoft.pl

Prawa autorskie

Zwracamy Państwu uwagę na to, że stosowane w podręczniku określenia software'owe i hardware'owe oraz nazwy markowe danych firm są prawnie chronione. Program komputerowy oraz podręcznik użytkownika zostały opracowane z najwyższą starannością i przy zachowaniu wszelkich możliwych środków kontrolnych. Pomimo tego nie można całkowicie wykluczyć wystąpienia błędów. Pragniemy w związku z tym zwrócić uwagę na to, że nie możemy udzielić gwarancji, jak również ponosić prawnej odpowiedzialności za wynikłe stąd skutki. Za podanie nam ewentualnych błędów będziemy wdzięczni.

2 WPROWADZENIE

Wprowadzenie

Program **ArCADia-TERMO** jest kompleksowym narzędziem do obliczeń cieplnych budynku, pozwala na obliczenia:

- obliczenie audytu energetycznego,
- obliczenia audytu remontowego,
- projektowanej charakterystyki energetycznej,
- świadectwa charakterystyki energetycznej,
- analizy środowiskowo-ekonomicznej,
- doboru grzejników
- klimatyzacji (zapotrzebowania na moc do doboru urządzeń klimatyzacji)
- efektu ekologicznego,
- efektu ekonomicznego.
- współczynnika przenikania przegród budowlanych,
- określenie rozkładu temperatur w przegrodzie,
- określenie wykresu wykropleń w przegrodzie,
- obliczenie zapotrzebowania na ciepło pomieszczeń,
- obliczenie sezonowego zapotrzebowania na ciepło budynku,
- obliczenie mostków cieplnych,

ArCADia-TERMO ma dodatkowo połączenie z programem architektonicznym **ArCADia – ARCHITEKTURA**, w którym użytkownik może narysować podkład budowlany, a następnie jednym przyciskiem przenieś model cieplny do programu.

Moduł **Audyt** programu **ArCADia** – **TERMO** służy do komputerowego wspomagania wykonywania audytów energetycznych zgodnie z Rozporządzeniem Ministra Infrastruktury z dnia 14 lutego 2008 lub 17.03.2009 roku "w sprawie szczegółowego zakresu i formy audytu energetycznego".

Wydruk raportu obliczeń, dokonanych na podstawie modułu **Audyt**, pozwala na wykorzystanie audytu do realizacji inwestycji finansowanej w trybie Ustawy "o wspieraniu przedsięwzięć termomodernizacyjnych", oraz dla inwestycji termomodernizacyjnych finansowanych z innych źródeł, dla których wymagane jest przygotowanie dokumentacji audytorskiej, wykonanej zgodnie z Rozporządzeniem Ministra Infrastruktury "w sprawie szczegółowego zakresu i formy audytu energetycznego".

Moduł **Certyfikat** programu **ArCADia** – **TERMO** służy do komputerowego wspomagania wykonywania świadectw charakterystyk energetycznych lub projektowanej charakterystyki energetycznej zgodnie z rozporządzeniem Ministra Infrastruktury z dnia 06 listopada 2008 roku lub rozporządzeniem Ministra Infrastruktury i Rozwojy z dnia 3 czerwca 2014 roku "w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość technicznoużytkową oraz sposobu i wzorów świadectw ich charakterystyki energetycznej" oraz warunkami technicznymi WT 2008 i WT 2014.

Wydruk obliczeń dokonanych na podstawie modułu **Certyfikat** stanowi świadectwo charakterystyki energetycznej budynku lub charakterystykę budynku.

Moduł **Analiza środowisko-ekonomiczna** programu **ArCADia – TERMO** służy wykonania, na podstawie rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 06 listopada 2008 roku, w oparciu o projektowaną charaterystyką energetyczną lub audyt lub jako niezależne opracowanie, obliczeń i raportu w zakresie m.in. porównania systemów konwencjonalnych (ogrzewania, wentylacji ciepłej wody użytkowej i chłodzenia) z alternatywnymi lub konwencjonalnych z hybrydowymi.

Moduł **Analiza przegród budowlanych** programu **ArCADia – TERMO** służy wykonania obliczeń współczynnika przenikania ciepła U wszystkich typów przegród oraz analizy rozkałdu temepartut i wykropleń w przegrodzie zgodnie z normą PN-EN ISO 13788.

3 ZAKRES MERYTORYCZNY

3.1 WSTĘP

Podane informacje, opisy algorytmy i zrzuty oraz komentarze zostały wykonane w wersji ArCADia-TERMO 6.0 i dotyczą w przeważającej części metodologii podanej w rozporządzeniu MIiR z dnia 3 czerwca 2014 roku.

Pomoc do programu i wszystkie szczegółowe informacje dotyczące metodologii podanej w rozporządzeniu MI z dnia 6 listopada 2008 r. dostępne są pod adresem: www.intersoft.pl.

3.2 ZAKRES MERYTORYCZNY OBLICZEŃ CIEPLNYCH

Moduł obliczenia cieplne wykonuje obliczenia na podstawie poniższych norm:

Obliczenie współczynnika przenikania przegród U: PN-EN 6946:2008

Obliczenia strat ciepła przez grunt: PN-EN 6946:2008 PN-EN ISO 13370:2008 PN-EN 12831:2006 Rozporządzenie MI z dnia 6 listopada 2008 r. oraz MIiR 3 czerwca 2014 r.

Zapotrzebowanie na ciepło pomieszczenia: PN-B 03406 PN-EN 12831:2006 metoda uproszczona PN-EN 12831:2006 metoda szczegółowa

Sezonowe zapotrzebowanie na ciepło: PN-EN 832:2001 PN-EN ISO 13790:2006 PN-EN ISO 13790:2008 PN-EN 13789:2008

Rocznego zapotrzebowania na oświetlenie: PN-EN 15193:2007

Obliczenia mostków cieplnych: PN-EN ISO 14683:2001 PN-EN ISO 14683:2008 PN-EN 6946:2008 PN-EN 12831:2006

Lista materiałów: PN-EN 6946:2008 PN-EN 12524:2001

Warunki techniczne: WT 2008 WT 2014

3.3 ZAKRES MERYTORYCZNY AUDYTU

Obliczenia w module **Audyt** wykonywane są ściśle z procedurą określoną w Rozporządzeniu Ministra Infrastruktury "w sprawie szczegółowego zakresu i formy audytu energetycznego z dnia 17 marca 2009 roku.

3.3.1 Stosowane definicje

ustawa – ustawa z dnia 18 grudnia 1998 roku "o wspieraniu przedsięwzięć termomodernizacyjnych";

rozporządzenie - Rozporządzenie Ministra Infrastruktury z dnia 14 lutego 2008 roku "w sprawie szczegółowego zakresu i formy audytu energetycznego". Dziennik Ustaw z 2008 r. Nr 33 poz. 195;

usprawnienie termomodernizacyjne - działanie techniczne składające się na przedsięwzięcie termomodernizacyjne w budynku, lokalnej sieci ciepłowniczej i lokalnym źródle ciepła, mające na celu oszczędność energii;

wariant przedsięwzięcia termomodernizacyjnego - zestaw usprawnień termomodernizacyjnych, utworzony przez wykonawcę audytu energetycznego, zwanego dalej "audytorem";

optymalny wariant przedsięwzięcia termomodernizacyjnego - wariant przedsięwzięcia termomodernizacyjnego wybrany zgodnie z algorytmem oceny opłacalności, który spełnia wszystkie warunki i kryteria określone w ustawie, przeznaczony do realizacji.

3.3.2 Wymagane przez rozporządzenie MIiR elementy audytu energetycznego

Elementy modułu audyt oraz wydruki obliczeń zostały przygotowane w taki sposób aby zawierać wszystkie elementy wymagane przez Rozporządzenie.

Audyt energetyczny budynku składa się z następujących części:

• Strony tytułowej, sporządzonej zgodnie z wzorem określonym w tabeli 1 w części 1 w załączniku nr 1 do rozporządzenia.

• Karty audytu energetycznego.

• Wykazu dokumentów i danych źródłowych, z których korzystał audytor, oraz wyszczególnienia wytycznych i uwag inwestora, stanowiących ograniczenia zakresu możliwych usprawnień, w tym w szczególności określenie maksymalnej wielkości środków własnych inwestora, stanowiących możliwy do zadeklarowania udział własny przeznaczony na pokrycie kosztów przedsięwzięcia termomodernizacyjnego;

- Inwentaryzacji techniczno-budowlanej budynku, zawierającej:
 - a) ogólne dane techniczne,
 - b) co najmniej uproszczoną dokumentację techniczną,
- c) opis techniczny podstawowych elementów budynku,
- d) charakterystykę energetyczną budynku,
- e) charakterystykę systemu grzewczego,
- f) charakterystykę instalacji ciepłej wody użytkowej,
- g) charakterystykę systemu wentylacji,
- h) charakterystykę węzła cieplnego lub kotłowni znajdującej się w budynku,
- i) charakterystykę instalacji gazowej, przewodów kominowych, w przypadku gdy mają one wpływ na usprawnienie lub przedsięwzięcie termomodernizacyjne,
- j) charakterystykę instalacji elektrycznej, w przypadku gdy ma ona wpływ na usprawnienie lub przedsięwzięcie termomodernizacyjne;

• Oceny stanu technicznego budynku w zakresie istotnym dla wskazania właściwych usprawnień i przedsięwzięć termomodernizacyjnych.

• Wykazu wskazanych do oceny efektywności i dokonania wyboru usprawnień i przedsięwzięć termomodernizacyjnych.

• Dokumentacji wykonania kolejnych kroków algorytmu służącego wybraniu optymalnego wariantu przedsięwzięcia termomodernizacyjnego, z określeniem kosztów.

Opisu technicznego i niezbędnych szkiców optymalnego wariantu przedsięwzięcia

termomodernizacyjnego, przewidzianego do realizacji.

- Wymagana forma audytu energetycznego
- Audyt energetyczny opracowuje się w języku polskim w formie pisemnej, stosując oznaczenia graficzne i literowe określone w Polskich Normach lub inne objaśnione w legendzie audytu.

• Wszystkie strony (arkusze) poszczególnych części audytu energetycznego oraz załączniki oznacza się kolejną numeracją.

• Audyt energetyczny oprawia się w okładkę formatu A-4, w sposób uniemożliwiający jego zdekompletowanie.

3.4 ZAKRES MERYTORYCZNY CERTYFIKATU

Obliczenia w module **Certyfikat** wykonywane są ściśle z procedurą określoną w rozporządzeniu Ministra Infrastruktury "w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu i wzorów świadectw ich charakterystyki energetycznej z dnia 6 listopada 2008 r. lub z dnia 3 czerwca 2014 r. oraz warunków technicznych WT 2008 i WT 2014.

3.4.1 Stosowane definicje

Ustawa – ustawa z dnia 07 lipca 1994 roku – Prawo Budowlane wraz ze zmianami (m.in. ustawę z dnia 19 września 2007 r. "o zmianie ustawy – Prawo Budowlane");

Rozporządzenie - rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 roku oraz rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 3 czerwca 2008 roku "w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu i wzorów świadectw ich charakterystyki energetycznej".

Przepisy techniczno-budowlane – Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. 75, poz 690, wraz z późniejszymi zmianami) oraz warunki techniczne WT 2008 i WT 2014;

Zapotrzebowanie na nieodnawialną energię pierwotną w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – ilość energii przeliczonej na energię pierwotną i wyrażoną w kWh, dostarczaną przez systemy techniczne dla celów użytkowania energii

Wskaźnik EP - roczne zapotrzebowanie na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową, wyrażone w kWh/($m^2 \cdot rok$);

Wskaźnik EK – roczne zapotrzebowanie energii końcowej na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku albo lokalu mieszkalnym, wyrażone w kWh/ $(m^2 \cdot rok)$;

Wskaźnik EU – w przypadku ogrzewania - energia przenoszona z budynku do jego otoczenia przez przenikanie lub z powietrzem wentylacyjnym (pomniejszona o zyski ciepła), przypadku ciepłej wody użytkowej - energia przenoszona z budynku do jego otoczenia ze ściekami, w przupadku chłodzenia – zyski ciepła pomniejszone o energię przenoszoną z budynku do otoczenia przez przenikanie lub z powietrzem wentylacyjnym.

Wskaźnik E_{CO2} – jednostkowa wielkość emisji CO₂ wyrażona w t CO₂ (m² · rok);

Wskaźnik Uoze – udział odnawialnych źródeł energii w rocznym zapotrzebowaniu energię końcową w %

Instalacja chłodzenia – instalacje i urządzenia obsługujące więcej niż jedno pomieszczenie, dzięki którym następuje kontrolowane obniżenie temperatury lub wilgotności powietrza.

3.4.2 Wymagania dotyczące formy świadectwa charakterystyki energetycznej

Świadectwo charakterystyki energetycznej opracowuje się w dwóch formach: pisemnej i elektronicznej.

Świadectwo charakterystyki energetycznej opracowuje się w języku polskim, stosując oznaczenia graficzne i literowe określone w Polskich Normach dotyczących budownictwa oraz instalacji ogrzewczych, wentylacyjnych, chłodzenia, ciepłej wody użytkowej i oświetlenia w budynkach. Świadectwo charakterystyki energetycznej w formie pisemnej oprawia się w okładkę formatu A-4, w sposób uniemożliwiający jego zdekompletowanie.

Świadectwo charakterystyki energetycznej w formie elektronicznej powinno być tożsame z wersją pisemną i zapisane w wersji tylko do odczytu, uniemożliwiającej edycję.

3.4.3 Sposób sporządzania i wzór świadectwa charakterystyki energetycznej budynku

Świadectwo charakterystyki energetycznej budynku powinno składać się z następujących części:

a) Strony tytułowej zawierającej:

numer świadectwa, rodzaj budynku, przeznaczenie budynku, adres budynku, rok oddania do użytkowania budynku, nazwę metody do obliczenia charakterystyki energetycznej, powierzchnię pomieszczeń o regulowanej temperaturze powietrza, powierzchnię użytkową, datę ważności świadectwa energetycznego, ocenę charakterystyki energetycznej budynku składajacej się z wartości:

- wskaźnika energii użytkowej EU,

- wskaźnika energii końcowej EK,

- wskaźnika energii pierwotnej EP,

jednostkowej wielkości emisji CO₂,

- udziału odnawialnych źródeł energii Uoze,

rodzajów, ilości i jednstostek nośników energii lub energii dla systemów ogrzewczego, przygotowania ciepłej wody użytkowej , chłodzenia i wbudowanej instalacji oświetlenia, daty wystawienia i imienia nazwisko sporządzającego świadectwo.

b) Podstawowych parametrów techniczno -użytkowych budynku zawierających:

liczbę kondygancji budynku, kubaturę budynku i kubaturę budynku o regulowanej temperaturze powietrza, podział powierzchni użytkowej budynku, temperatury wewnętrzne budynku w zalezności od stref ogrzewanych, rodzaje kontrukcji budynku, listę przegród, zawierającą ich nazwy, opis oraz obliczony i wymagany współczynnik przenikania ciepła U, opis i wartości średnich sezonowych sprawności dla wytwarzania, przesyłu i akumualcji ciepła lub chłodu w instalacjach c.o, c.w.u i chłodzenia, opis wentylacji i systemu wbudowanej instalacji oświetlenia, a także cząstkowych i sumarycznych wartości ilości zapotrzebowania na enegię dla wszystkich systemów ogrzewania i wentyalcji, ciepłej wody użytkowej, chłodzenia i oświetlenia.

c) Zaleceń dotyczących przegród i systemów technicznych w budynkach oraz innych uwag dotyczących poprawy charakterystyki energetycznej budynku.

Elementy modułu **Certyfikat** oraz wydruki obliczeń zostały przygotowane w taki sposób aby zawierać wszystkie elementy wymagane przez Rozporządzenie.

4 OPIS DANYCH WEJŚCIOWYCH PROJEKTU

4.1 ETAP WYBÓR OBLICZEŃ

Etap ten służy do wyboru obliczeń wykonywanych w programie.

W dolnej części okna znajdują się 4 przyciski, konieczne do wybrania wersji programu, zgodnej z otrzymaną licencją, rys. 1.

ArCADia- Termo LT- Wersja programu (świadectwo budynków mieszkalnych i lokali bez chłodzenia)ArCADia- Termo STD- Wersja programu (świadectwo dla wszystkich budynków)ArCADia- Termo- Wersja programu (świadectwo i projektowana charakterystyka)ArCADia- Termo PRO- Wersja programu (świadectwo, projektowana charakterystyka i audyt)

Przyciski wersji programu

Okno wyboru obliczeń. Wersja ArCADia-TERMO PRO

А	ArCADia-TERMO 6.0 Licencja dla: WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA - P.Chłosta [L01]	- 8 ×
<u>P</u> lik <u>R</u> aporty Ustawienia P <u>o</u> moc		
DANE WEJŚCIOWE	Wybór obliczeń - Świadectwo charakterystyki energetycznej 2014, WT 2014	
Comparison of the second state of the sec	Vykonaj obliczenia projektowanego obciążenia clepinego pomieszczeń metodą: • pomieszczenie po pomieszczeniu • tylko strefami clepinymi	*****
 Stabiony Stabiony Sciana zew z betonu komórkowego Sciana zew z bał drewnianych gr. 44 Dach z betonu gr. 24em z docieplenie Dach z betonu komórkowego Sciana zew z betonu komórkowego Tome sdresowe 	Wykonaj obliczenia charakterystyki energetycznej •••••••••••••••••••••••••••••	Chis obliczeń Obliczeńowe zapotrzebowanie na ciępło Diecorotrze zapotrzebowanie na ciępło Diecorotrze zapotrzebowanie na ciępło Diecoryfikał
<	AT INT AT INT Image: Compared oblededh	~
WYDRUKI	Lp. Typ Opis	
	Odśwież listę błędów!	
< [1/11] >		🛱 🛱 Zamknij

Okno wyboru obliczeń. Wersja ArCADia-TERMO

Okno wyboru obliczeń. Wersja TERMO STD

A	ArCADia-TERM	10 LT 6.0 Lio	cencja dla: W	EWNĘTRZNA, N	IIEKOMERCY.	INA LICENC.	JA - P.Chłosta [[L01]		-	. 🗇 🗙
<u>Plik R</u> aporty Ustawienia P <u>o</u> moc	828	◆ ₹ /*	₹?								
DANE WEJSCIOWE	Wybór oblicze	rń-Świadec	two charakte	rystyki energety	cznej 2014, V	VT 2014					
Constantiation uzywane Constantiation Constantint Constantiation Constantiati		Wykonaj pomiesz O pr O ty	j obliczenia pro zczeń metodą: omieszczenie p rlko strefami cie	jektowanego obcią po pomieszczeniu eplnymi	ženia cieplnego	0			** *	*	č>
 Stabory Stabory Sciana zew z betonu komórkowego Sciana zew z bali drewnianych gr. 14 Dach z betonu gr. 26m z dociepłenie Dach z betonu gr. 26m z dociepłenie Dach z betonu komórkowego Sciana zew z betonu komórkowego 		Wykonaj śy (wymaga (wymaga (wymaga	j obliczenia cha wiadectwo cha ne m.in. do pozw rojektowana ch ne w projekcie b	rakterystyki energ rakterystyki energ olenia na użytkowan arakterystyka ener udowianym do pozwi	stycznej tycznej e) getyczna Jenia na budowę	0			Opis obliczeń Sezonowe zape budynku Certyfikat	Dutzebowanie na	ciepto ^
C S S S S S S S S S S S S S S S S S S S	Rapot o biedach	<mark>,</mark> A		A . ### .	<u>ት</u>	>					~
	Lp. Typ						Opis				<u>^</u>
	I 1 Blad	Parame	etr "Roczne zapo"	trzebowanie na enero	e użvteczna" w O	orzewanie i wen	tvlacia "Cześć budw	nku". nie został	poorawnie wypełnior		v
< [1/10] >		E\$			12						Zamknij

Okno wyboru obliczeń.Wersja TERMO LT

Dla początkujących użytkowników programu lub nieznającym szczegółowo zakresu norm i rozporządzeń został

udostępniony po kliknieciu na przycisk specjalny, wysuwany, od lewej strony *Panel wyboru obliczeń*, zawierający najczęściej wykorzystanane obliczenia takie jak: Świadectwo charakterystyki energetycznej, *Projektowana charakterystyka energetyczna, Audyt energetyczny, Audyt remontowy, Analiza przegród budowlanych, Analiza środowiskowo-ekonomiczna* oraz moduły *Dobór grzejników* i *Klimatyzacja*. Dzięki temu, program automatycznie zoptymalizuje ustawienia, wybierze tylko niezbędne etapy obliczeń oraz określi normy i rozporządzenia tak, aby cały proces obliczeń przebiegał jak najszybciej. Dodatkowo wyświetlane są informacje jakie obliczenia są dostępne w pełnym lub ograniczonym zakresie, rys. 5.

Znaczniki:

Ì

V

X

- wybrany temat obliczeń jest w pełni dostępny przy posiadanej licencji,
- wybrany temat obliczeń jest w ograniczonej zakresie dostępny przy posiadanej licencji,
 - wybrany temat obliczeń jest dostępny niekomercyjnie tylko przez 30 dni,

Wybór tematu Dostepność					
🔁 Analiza przegród budowlanych	~				
Swiadectwo charakterystyki energetycznej	~				
Projektowana charakterystyka energetyczna	~				
Analiza środowiskowo-ekonomiczna	~				
☐ Audyt energetyczny	· · ·				
Audyt remontowy	· <u>· · · · · · · · · · · · · · · · · · </u>				
 Dobór grzejników	~				
🔆 Klimatyzacja	×				
🗸 Dostępny 🖌 Vostępny nie w pł	ełnym zakresie				
🧹 Dostępny niekomercyjnie przez 30 dni 🗙 Niedostępny - De	mo				
🙎 Ustawienia użytkownika					

Panel wyboru obliczeń

Po wybraniu na Panelu tematu Świadectwo charakterystyki energetycznej nastąpi automatyczne ustawienie norm w menu \rightarrow Ustawienia \rightarrow Opcje \rightarrow Zakładka *Wybór obliczeń*

			0	pcje	
Ogólne	Wybór obliczeń	Certyfikat	Audyt		
Świade	ectwo energetycz	me: Wgro	ozp. Mli	R 2014	
Warun	ki techniczne:	WT 2	014		Parametry WT
Oblicze	eniowe zapotrze	ebowanie PN-FI	na ciepł 1 12831	o pomieszczeń Q	
Metoda		Szcz	egółow	a	
dla pom	ieszczeń:	PN-EI	12831		
Zapotr	zebowanie na c	iepło budy	nku		
Norma:		Wgr	ozp. Mli	R 2014	
Metoda		Szcz	egółow	а	
Straty o dla stre	ciepła od gruntu f cieplnych:	PN-EI	12831		
Zapotr	zebowanie na c	hłód budy	nku		
Norma:		Wgr	ozp. Mli	R 2014	
Wybór o mostkóv	obliczeń w cieplnych:	PN-EI	I ISO 14	683	0
					Zamknij

Okno Opcje. Ustawienia w zakładce *Wybór obliczeń* po wybraniu na Panelu konfiguracyjnym tematu Świadectwo charakterystyki energetycznej

Zależności wyboru norm

NORMA	NORMA (SEZONOWE ZAPOTRZEBOWANIE)
PN-EN 12831	PN-EN 832
Uproszczona	PN-EN ISO 13790
Szczegółowa	
PN-B-03406	PN-B-02025
	Szczegółowa lub Uproszczona

ZALEŻNOŚCI NORMY A OBLICZENIA STRAT PRZEZ GRUNT NORMA NORMA OBL. GRUNTU

Podręcznik użytkownika dla programu ArCADia–TERMO

Opis danych wejściowych projektu

PN-EN 12831	PN EN ISO 13370
	Uproszczona PN-EN 12831
PN-B-03406	PN EN ISO 6946
PN-EN 832	PN EN ISO 13370
	Uproszczona PN-EN 12831
PN-EN ISO 13790	PN EN ISO 13370
	Uproszczona PN-EN 12831
	Rozporządzenie MI

ZALEŻNOŚCI NORMY A OBLICZENIA MOSTKÓW CIEPLNYCH

NORMA	METODA MOSTKÓW CIEPLNYCH			
	Uproszczona	PN EN ISO 14683		
PN-B-03406	TAK	NIE		
PN EN 12831 Uproszczona	TAK	NIE		
PN EN 12831 Szczegółowa	TAK	TAK		
PN-EN 832	TAK	TAK		
PN-EN ISO 13790	TAK	TAK		

Drzewko projektu służy do zarządzania projektami ArCADia-TERMO, w drzewku tym użytkownik może zapisywać, odczytywać gotowe projekty i szablony certyfikatu i przegród. Po lewej stronie znajduje się zielony przycisk umożliwiający wysunięcie się *Panelu wyboru obliczeń*. A poniżej podgląd wskaźniak EP, widoczny po kliknięciu na klawiszy Ctrl + E.

Drzewko projektów i szablonów oraz podgląd wskaźnika EP wg WT 2008 i WT 2014

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis danych wejściowych projektu					
	Nowy projekt (Ctrl + N),				
	Otwórz istniejący projekt (Ctrl + O),				
	Zapisz projekt (Ctrl +S),				
	Zapisz plik projektu jako,				
B .	Otwórz szablon przegród lub certyfikatu,				
	Zapisz szablon,				
?*	Pomoc do programu (F1),				
A	Informacje o programie (wersja i licencje).				

Drzewko podzielone jest na trzy grupy:

- grupa ostatnio używane, służy do wczytywania ostatnio używanych projektów (wczytywanie projektów odbywa się przez dwuklik),

- grupa szablony przegród, służy do wczytywania gotowych szablonów zdefiniowanych przegród do projektu,

- grupa szablony danych adresowych, służy do wczytywania gotowych danych adresowych pochodzących z innych pojektów,

- grupa szablony norm, służy do wczytywania wybranych norm pochodzących zinnych projektów.

Na górnym pasku okna aplikacji zawsze wyświetlone są następujące przyciski:

	Zapisz projekt (Ctrl + S),
Ŷ	Odśwież obliczenia (F5)
C	Podgląd wyników świadectwa
•	Cofnij (Ctrl + Z)
•	Otwórz listę poleceń do cofnięcie
*	Powtórz (Ctrl +Y)
▼	Otwórz listę poleceń do powtórzenia
?	Pomoc kontekstowa (pomoc do bieżacego etapu wykonywania obliczeń)

4.1.1 Zapis i odczyt szablonów przegród i certyfikatu

Program pozwala na stworzenie bazy najczęściej używanych przegród w tym celu po zdefiniowaniu przegród

należy wybrać przycisk i w okienku *Zapisywanie jako* wybrać rozszerzenie *.bbt*. (na liście *Zapisz jako typ*).

Program pozwala na stworzenie bazy najczęściej używanych danych adresowych w tym celu po zdefiniowaniu

okna dane projektu należy wybrać przycisk i w okienku *Zapisywanie jako* wybrać rozszerzenie rozszerzenie.*tad*.

A Zapisywanie jako								
(e) → ↑ (i) C Dokumenty → INTERsoft → ArCADia-TERMO → 6.0 → Szablony ∨ C Przeszukaj: Szablony ✓								
Organizuj 🔻 Nowy fo	lder				::: - 🔞			
🕮 Ostatnie miejsca 🔨 Nazwa		Data modyfikacji	Тур	Rozmiar	^			
📕 Pobrane	a.btt	2014-09-08 17:55	Plik BTT	97 KB				
Pulpit	Dach z betonu gr. 24cm z dociepleniem	2012-01-23 09:30	Plik BTT	6 KB				
	Dach z betonu gr. 29cm z dociepleniem	2012-01-23 09:30	Plik BTT	7 KB				
	Dach z blachy gr. 2cm z dociepleniem gr	2012-01-23 09:30	Plik BTT	8 KB				
Muzuka	Dach z blachy trapezowej gr. 2cm z docie	2012-01-23 09:30	Plik BTT	6 KB				
	📄 Ściana zew z bali drewnianych gr. 14cm z	2012-01-23 09:30	Plik BTT	6 KB				
Pohrapo	📄 Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	6 KB				
Dulpit	📄 Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	7 KB				
Wideo	📄 Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	6 KB				
Dyck lokalov (C)	📄 Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	6 KB				
Bysk lokality (C.)	📄 Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	7 KB				
🖬 Sieć 🗸 🗸	Ściana zew z betonu komórkowego gr. 2	2012-01-23 09:30	Plik BTT	6 KB	~			
Nazwa pliku: Dach	z betonu gr. 29cm z dociepleniem gr. 25cm.btt				~			
Zapisz jako typ: Pliki s	szablonu przegrody (*.btt)				~			
) Ukryj foldery				Zapisz	Anuluj .::			

Okno zapisu szablonów

4.2 MENU

PLIK - pozycja menu Plik zawiera następujące elementy:

Menu Plik

Dodanie do pliku projektu
 Otworzenie z dysku nowego pliku projektu
 Zapis bieżącego pliku projektu lub tą samą nazwą
 Zapisz jako ... - zapis bieżącego pliku projektu z nową lub tą samą nazwą
 Otwórz przykład dostarczony z programem
 Otwórz szablon z danymi adresowymi lub przegrodami lub normami
 zaimportowanie szablonu z danymi adresowymi, przegrodami, normami

EDYCJA - pozycja menu **Edycja** zawiera różne zestawy przycisków, w zależności od aktualnego miejsca w programie:

Edy	cja	
+	Dodaj nową	Ctrl+A
×	Usuń zaznaczoną	Ctrl+D
ħ	Kopiuj	Ctrl+C
Ē	Wklej	Ctrl+V
₽ž	Sortuj	Ctrl+I

Menu Edycja - Definicje przegród

Edy	cja	
۵	Grupa	Ctrl+G
	Kondygnacja	Ctrl+L
Ē	Pomieszczenie	Ctrl+R
	Usuń zaznaczoną	Ctrl+D
Ð	Kopiuj	Ctrl+C
⊁	Wytnij Ctrl + X	Ctrl+X
Ď	Wklej	Ctrl+V
	Sortuj	Ctrl+1

Menu Edycja – Straty ciepła

Edy	/cja			
+	Dodaj strefę	Ctrl+A		
×	Usuń strefę	Ctrl+D		
Æ	Rozmieść pomieszczenia w strefach			
ħ	Kopiuj	Ctrl+C		
≫8	Wytnij Ctrl + X	Ctrl+X		
Ē	Wklej	Ctrl+V		

Menu Edycja - Strefy cieplne

Edy	cja			
+	Dodaj grupę	Ctrl+A		
+	Dodaj system	Ctrl+R		
${\mathfrak G}_{\Phi}$	Dodaj źródło ogrzewania	Ctrl+N		
54	Dodaj źródło wentylacji Ctrl+O			
×	Usuń	Ctrl+D		

Menu Edycja - Ogrzewanie i wentylacja

USTAWIENIA, Opcje - pozycja menu **Ustawienia** zawiera trzy pozycje *Raport o błędach, Menadżer odzyskiwania* i *Opcje*.

Usta	wienia			
₪	Raport o błędach			
Ф	Menadżer odzyskiwania			
¢	Opcje			

Menu Edycja - Ogrzewanie i wentylacja

Pozycji *Raport o blędach*, w postaci tabeli, zawierają listę błędów (w kolorze czerwonym) i listę komunikatów ostrzegawczych (w kolorze szarym).

Błędy – oznaczają najczęściej brak kluczowych danych, bez których wyniki końcowe mogą być obliczone lub są nieprawdziwe.

Komunikaty ostrzegawcze nie powodują zablokowania obliczeń. Jednak wyniki mogą być niewiarygodne Głównym powodem komunikatów ostrzegawczych są wartości danych wejściowych niezgodne z przepisami prawa (normami, rozporządzeniami, metodologią i ustawami).

	Raport o błędach – 🗖 🗙							
Rapo	rt o błędach							
Lp.	Тур	Opis	^					
1	Ostrzeżenie	Przegroda STZ 1 nie jest zaprojektowana prawidłowo. Brak odprowadzenia kondensatu w okresie letnim.						
2	Błąd	Parametr "Całkowite, wewnętrzne zyski ciepła" w zakładce "Zyski wewnętrzne", nie został poprawnie wypełniony!						
3	Błąd	Parametr "Stosunek zysków do strat" w zakładce "Dodatki", nie został poprawnie wypełniony!						
4	Błąd	Parametr "Całkowite, wewnętrzne zyski ciepła" w zakładce "Zyski wewnętrzne", nie został poprawnie wypełniony!						
5	Błąd	Parametr "Stosunek zysków do strat" w zakładce "Dodatki", nie został poprawnie wypełniony!						
6	Błąd	d Parametr "Całkowite, wewnętrzne zyski ciepła" w zakładce "Zyski wewnętrzne", nie został poprawnie wypełniony!						
7	Błąd	d Wynik "Sezonowe zapotrzebowanie na ciepło do ogrzania" w strefie "Część ogrzewana 16" nie został poprawnie obliczony!						
8	Błąd	Parametr "Strumień objętości powietrza infiltracyjnego" w zakładce "Straty przez wentylacje", nie został poprawnie wypełniony!						
9	Błąd	Parametr "Całkowite, wewnętrzne zyski ciepła" w zakładce "Zyski wewnętrzne", nie został poprawnie wypełniony!						
10	Błąd	ąd Wynik "Sezonowe zapotrzebowanie na ciepło do ogrzania" w strefie "Część ogzewana" nie został poprawnie obliczony!						
1		Parametr "Roczne zanotrzehowanie na energie użyteczna" w Oprzewanie i wentylacia "Cześć budyoku" i nie został nonrawnie	×					

Raport o błędach

Zawartość okienka *Opcje* składa się 3 lub więcej kilku zakładek w zależności od włączonych obliczeń początkowych.

			0	pcje			
Ogólne	Wybór obliczeń	Certyfikat	Audyt	Dobór odbiomików			
🖌 Spr	Sprawdzaj aktualizacje automatycznie Sprawdź aktualizacje						
Two	orzenie przegró	ód lustrzan	iych				
🖌 Aut	omatyczny zapi	is kopii zap	basowej	po upływie:	30 min		
Ści	eżka do pliku: C	:\Users\pch	losta\Do	cuments\INTERsoft\	Wybierzlokalizację		
✓ Włą	cz cofanie			llość kroków cofania:	10		
Ukr tem	Ukryj przegrody wewnętrzne gdy różnica temperatur po obu stronach wynosi ΔΘ $\Delta \theta = 4,00$ °C						
🗌 Uży	j domyślnego lo	ogo Firmy					
Ści	eżka do pliku:				Wybierz plik		
					Zamknij		

Zakładki w okienku Opcje

4.2.1 Zakładka Ogólne

Zakładka Ogólne zawiera 6 następujących przycisków:

Sprawdzaj aktualizacje automatycznie - automatyczne powiadomienie o nowej aktualizacji progarmu ArCADia-TERMO.

Tworzenie przegród lustrzanych - automatyczne dodanie przegrody do sąsiadującego pomieszczenia w stapie *Straty ciepła*.

Automatyczny zapis kopii zapasowej po upływie : 30 minut – włączenie tej opcji i podanie czasu zapisu, oznacza, że co podany okres cxasu zostasnie zapisana nowa, kolejna kopia aktualnie otwartego pliku .thb. Dla dużych plików nie zaleca się podawać czasu poniżej 5 minut. Ściezka do pliku oznacza miejsce zapisu kopii zapasowje pliku thb. Zawsze zaleca się zmienić miejsce zapisu dysku na własne na dysku twardym komputera. Nie zaleca się zapisu na pendrive lub zdalnym albo sieciowym dysku, ponieważ dostęp do takiego pliku często może okazać się utrudniony albo niemożliwy. Poza tym nasz katalog na zdalnym lub sieciowym dysku może mieć zablokowane ustawienia pozwalający na zapis lub odczyt danych z tego katalogu.

Ukryj przegrody... - automatyczne ukrycie przegród wewnętrznych w zakładce *Straty przez przenikanie*. *Użyj domyślengo pliku logo Firmy* - automatyczne dodanie logo do programu w etapie *Dane projektu*. Logo to będzie w każdym nowo utworzonym pliku .thb.

			O	pcje		
Ogólne	Wybór obliczeń	Certyfikat	Audyt	Dobór odbiomików		
🖌 Spr	Sprawdzaj aktualizacje automatycznie Sprawdź aktualizacje					
Two	orzenie przegró	od lustrzan	ych			
🖌 Aut	omatyczny zapi	s kopii zap	asowej	j po upływie:	30 min	
Ści	eżka do pliku: C	:\Users\pch	losta\Do	cuments\INTERsoft\	Wybierz lokalizację	
✓ Włą	cz cofanie			llość kroków cofania:	10	
Ukr ten	yj przegrody w nperatur po obu	ewnętrzne stronach	gdy ró: wynosi	Żnica ΔΘ Δθ	= 4,00 °C	
🗌 Uży	j domyślnego lo	ogo Firmy				
Ści	eżka do pliku:				Wybierz plik	
					Zamknij	

Menu: Ustawienia -> Oknieko Opcje - zakładka Ogólne

4.2.2 Zakładka Wybór obliczeń

Zakładka *Wybór obliczeń* zawiera akty prawne jakie można wybrać do obliczeń. Na poniższym rysunku pokazane są domyślne ustawienia dla świadectwa energetycznego wg metodologii z 3 czerwca 2014 r. i WT 2014.

Opcje						
Ogólne	Wybór obliczeń	Certyfikat	Audyt	Dobór odbiomików		
Świad	Świadectwo energetyczne: Wg rozp. MliR 2014					
Warun	ki techniczne:	WT 20	014	Parametry WT		
Oblicz Norma:	eniowe zapotrze	ebowanie PN-El	na ciepł N 12831	ło pomieszczeń Q		
Metoda	:	Szcz	egółowa	a		
Straty of dia porr	ciepła od gruntu nieszczeń:	PN-EI	N 12831			
Zapot	rzebowanie na c	iepło budy	nku			
Norma:		Wgr	ozp. Mli	iR 2014		
Metoda	:	Szcz	egółowa	a		
Straty of dia stre	Straty ciepła od gruntu dla stref cieplnych: PN-EN 12831					
Zapot	rzebowanie na c	hłód budy	nku			
Norma:		Wgr	ozp. Mli	iR 2014		
Wybór obliczeń mostków cieplnych: PN-EN ISO 14683						
				Zamk	nij	

Opcje - zakładka Wybór obliczeń

Dla warunków technicznych WT 2014 uaktywnia się przycisk *Parametery WT*, zawierający współczynniki podane w warunkach technicznych WT 2014, WT 2017 i WT 2021.

Parametry WT		×
od 1 stycznia 2014r.		
Izolacyjność ciepina przegrod	\$	
Rodzaj przegrody i temperatura w pomieszczeniu	Wspołczynnik przenikania ciepła Uc(max), U(max) W/(m²·K)	
Ściany zewnętrzne:		
a) przy ti ≥ 16°C	0,25	
b) przy 8°C ≤ ti < 16°C	0,45	
c) przy ti < 8°C	0,90	
Ściany wewnętrze:		
a) przy ∆ti ≥ 8°C oraz oddzielające pomieszczenia ogrzewane od klatek schodowych i korytarzy	1,00	
b) przy ∆ti < 8°C	-	
c) oddzielające pomieszczenie ogrzewane od nieogrzewanego	0,30	
Ściany przyległe do szczelin dylatacyjnych o szerokości:		
a) do 5 cm, trwale zamkniętych i wypełnionych izolacją cieplną na głębokości co najmniej 20 cm	1,00	
b) powyżej 5 cm, niezależnie od przyjętego sposobu zamkniecia i izolowania szczeliny	0,70	
Ściany nieogrzewanych kondygnacji podziemnych	-	
Dachy, stropodachy i stropy pod nieogrzewanymi poddaszami lub nad przejazdami:		
a) przy ti ≥ 16°C	0,20	
b) przy 8°C ≤ ti < 16°C	0,30	
c) przy ti < 8°C	0,70	
Podłogi na gruncie:		
a) przy ti ≥ 16°C	0,30	
b) przy 8°C ≤ ti < 16°C	1,20	
c) przy ti < 8°C	1,50	
	Anuluj OK	

Okienko Parametry WT. Izolacyjność cieplna przegród.

P	arametry WT 🛛 🗕 🗖 🗙					
od 1 stycznia 2014r.						
Maksymalne wartości EP na potrzeby ogrzewar	ia, wentylacji oraz przygotowania ciepłej wody użytkowej 💲					
Cząstkowe maksymalne wartości wskaźnika EPH+M Rodzaj budynku: potrzeby ogrzewania, wentylacji oraz przygotowania c wody użytkowej [kWh/(m³-rok)]						
Budynek mieszkalny:						
a) jednorodzinny	120					
b) wielorodzinny	105					
Budynek zamieszkania zbiorowego	95					
Budynek użyteczności publicznej:						
a) opieki zdrowotnej	390					
b) pozostałe	65					
Budynek gospodarczy, magazynowy i produkcyjny	110					
	Anuluj OK					

Okienko Parametry WT. Max. wartości EP H+W

Opcje - zakładka Wybór obliczeń w
g WT 2014. Przycisk Parametry WT, maksymalne wartości E
P $_{\rm L}$ – na potrzeby oświetlenia

Opcje								
Ogólne Wybór obliczeń	Certyfikat	Audyt	Dobór odbiomików					
✓ Podgląd wyników Obliczenia BREEA	w świadect	wa						
				Zamknij				

Opcje - zakładka Certyfikat. Obliczenia BREEAM

	Opcje								
Ogólne Wybór obliczeń Certyfikat Audyt Dobór odbiomików									
Wybór sposobu naliczania premii termomodernizacyjnej: Wg Rozp. MI z dnia 17.03.2009 r.									
						Zamknij			

Opcje - zakładka Audyt

			0	pcje	
Ogólne	Wybór obliczeń	Certyfikat	Audyt	Dobór odbiorników	
Ogrze	ewanie grzejnikow	/e			Jstawienia domyślne
Ogrze	ewanie podłogow	9		L	Jstawienia domyślne
Ogrze	ewanie powietrzn	e		L	Jstawienia domyślne
Ogrze	ewanie innego typ	u		L	Jstawienia domyślne
					Dobierz grzejniki w projekcie
					Zamknij

Opcje - zakładka Dobór grzejników

Ustawienia dom	yślne grz	ejników	×				
Wczytane katalogi producentów grzejników:			Katalog				
Domyślny typoszereg grzejników:	in Ventil Compact						
Domyślne ustawienia zblokowanych wymiarów:		Oblicz					
Domyślne dodatki:			Oblicz				
Nr kondygnacji na której znajduje się źródło ciepła	a: 0						
Temperatura zasilania obiegu grzewczego tz:	90,0	°C					
Temperatura powrotu obiegu grzewczego tp:	70,0	°C					
Współczynnik dopasowania L/H:	1,5						
Nie uwzględniaj dodatków, gdy w pomieszczeniach фrh > 0							
		Anuluj	ОК				

Ustawienia domyślne grzejników

Dodatek na usytuowanie grzejników

Dodatek na uwzględniający obudowę grzejników

Dodatek na uwzględniający sposób podłączenia grzejników

Dodatek uwzględniający o	ochłodzenie wody 🛛 🗙
Kondygnacja budynku, licząc od poziomu zasilania:	7
	Anuluj OK

Dodatek na uwzględniający ochłodzenie wody

POMOC - pozycja menu *Pomoc* zawiera dwie pozycje *Pomoc F1* oraz *O programie*.

O programie ArCAD	Dia-TERMO PRO 6.1
	Laureat XX Edycji Konkursu "Teraz Polska"
ArCADia-TERMO PRO 6.1	
Wersja: 6.1.1149	INTERsoft [•]
Release (32 bit) 5501	GENERALNY DYSTRYBUTOR ArCADiasoft
	Copyright © 2014 ArCADiasoft Chudzik sp.j.
Licencja dla ArCADia-TERMO LT Test - ArCADia-TERMO PRO 6 [L01]	
ArCADia-TERMO STD Test - ArCADia-TERMO PRO 6 [L01]	
ArCADia-TERMO Test - ArCADia-TERMO PRO 6 [L01]	
ArCADia-TERMO PRO	
Test - ArCADia-TERMO PRO 6 [L01]	
Efekt ekologiczny WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA -	P.Chłosta [L01]
Efekt ekonomiczny WEWNETRZNA, NIEKOMERCYJNA LICENCJA -	P.Chłosta (L01)
Dobór grzejników WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA -	P.Chłosta [L01]
Klimatyzacja WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA -	P.Chłosta [L01]
	Zamknij

Okienko O programie

4.3 ETAP DANE PROJEKTU

Etap ten służy do definiowania danych adresowych itp. niezbędnych w raportach RTF do wypełnienia stron tytułowych, oraz ogólnych charakterystyk budynku. Użytkownik może tu definiować listę projektantów, współautorów, sprawdzających adres i dane firmy wykonującej projekt np. w audycie.

A" ArCADi	a-TERMO PRO (5.0 Licencja dla: Tes	t - ArCADi	a-TERMO P	PRO 6	[L01]	- 02.			-		×
Plik Ustawienia Pomoc	8 🕫 🖪 🕈	h, ₹ /* ₹ ?										
DANE WEJŚCIOWE	Dane projektu	-Świadectwo charał	kterystyki e	energetycz	nej 201	14, W1	T 2014					
□ □	OPIS PROJEKTU Miejscowość:	Łódź		Nr pro	ojektu:		1	DANE JEDNOSTI Logo:	OPRACC	OWUJĄCEJ		0
B003_Karuzela_F PSM Namysłów ' Projektowana cł PSM Brzeg 1.thb	wersją projektu: 1 Opis: Budynek dwufunkcyjny z częścią usługową i mieszkalną						WYŁĄCZNY DYSTRYBUTOR ArCADia					
Przegrody	Data opracowania:	16 stycznia 2014 🔻					0	Nazwa:	INTER	lsoft		
Dach z beto	DANE BUDYNKU Nazwa:	Kamienica z częścia mieszkalno-usługową						REGON: Adres:	472347809			
∎t Dach z blacl ∎t Ściana zew ∎t Ściana zew	Adres: Adres:	ul. Sienkiewicza			Nr:	85/87	,	Adres: Nr:	ul. Sie 85/87	enkiewicza		
Sciana zew Ściana zew	Miejscowość: Województwo:	Łódź łódzkie			Kod:	90-05	57	Miejscowość: Kod:	Łódź 90-05	7		
150,35 kWh/(m²rok)	DANE INWESTOR	A						Województwo:	łódzi	kie		
200 400 800 1000 > 1000 ↑	Nazwa:	INTERsoft						Telefon: Fax:	+48 43 +48 43	2 6891111 2 6891100		
Wybór obliczeń Dane projektu	Adres:	ul. Sienkiewicza			Nr:	85/87	,	Dane osobowe	projek	tantów		
Dane o budynku	Miejscowość: Województwo:	Łódź łódzkie			Kod:	90-05	57	Adam Nowak		2		+
	Telefon:	+48 42 6891111			Fax:	+48 4	2 6891100					×
CERTYFIKAT	Raport o bledach											
WYDRUKI	Lp. Typ Odśwież listę	błędów!					Opis					
< [2/10] >	Ð	D		E	=		Ł	[à	[à		Zami	knij

Okno Dane projektu

projektantów	¥
projektantów	
współautorów	
sprawdzających	
autorów opracowania	

Lista: projektantów, współautorów, sprawdzających i autorów opracowania

Podręcznik użytkownika dla programu ArCADia-TERMO

		Baza danych oso	bowych				x
Znajdź Szukaj: 🗐						Wyczyść	
Wyniki wyszukiwania aktualnie niedostępne.							
+┽×≫ҧ▣♬♬	Lp.	Nazwisko		Imię	Nr uprawnier	i	+
Projektanci	1	Mikołajczyk	Marcin		119/78/WMŁ	*	
							_
							Πh.
							Ē
							\$
Przywróć domyślne wartości Wybór wersji ba	zy da	nych: 6.0			Anuluj	ок	

Okno bazy projektantów, współautorów, sprawdzających i autorów opracowania

4.4 ETAP DANE O BUDYNKU

Okno to służy do definiowania podstawowych parametrów budynku takich jak: przeznaczenie, lokalizacji, strefa klimatyczna, powierzchnia, kubatura, rok budowy, osłonięcie od wiatru, itp. Dane te będą potrzebne do dalszych obliczeń zarówno strat w pomieszczeniach, sezonowego zapotrzebowania na ciepło jak i audytu i świadectwa charakterystyki energetycznej.

Okno Dane o budynku

Wybór przeznaczenia budynku i typu wybiera automatycznie wzór raportu świadectwa charakterystyki energetycznej, jeśli użytkownik będzie chciał zmienić wzór wystarczy wybrać odpowiednią wartość w polu wzór raportu.

Dane Geometryczne Budynku:

POWIERZCHNIA ZABUDOWY $[m^2]$ -pole wypełniane automatycznie na podstawie danych przeniesionych z ArCADia-ARCHITEKTURA lubwyliczane z sumy wstawionych w definicji podłogi na gruncie wartości A_g (pole podłogi po obrysie zewnętrznym),

LICZBA KONDYGNACJI - pole wypełniane automatycznie na podstawie danych przeniesionych z ArCADia-ARCHITEKTURA lubwyliczane z sumy wstawionych kondygnacji w strukturze budynku (jeśli wykonujemy obliczenia bez struktury budynku wówczas wartość tą wpisujemy ręcznie).

Dane Klimatyczne:

Program pozwala na dwa sposoby wyboru stref klimatycznych, stacji aktynometrycznych i meteorologicznych. Pierwszy polega na wyborze w polach *Stacja meteorologiczna, Stacja aktynometryczna, Stacja klimatyczna* odpowiednich miast. Jednak jest to sposób niezalecany, ponieważ może prowadzić do wyboru stacji z różnych
Opis danych wejściowych projektu

miast. Drugi sposób polega na wyborze z mapy Polski odpowiedniej miejscowości. Mapka włączana jest

przyciskiem

Mapa wyboru stacji meteorologicznych i aktynometrycznych

STACJA METEOROLOGICZNA, - PRZYCISK BAZA - użytkownik w oknie *Edytor baz meteorologicznych* wprowadzić własne dane, dotyczące temperatury, ilości dni grzewczych, średniej ilości opadów oraz wilgotności dla każdego miesiąca

Edytor Daz meteorologicznych Nowa stacja												
Stacja meteorologiczna: Łódź - Lublinek Wyniki dla miesiąca							Łódź -	Lublinek				Dodaj
Miesiąc	I	II	III	IV	V	VI	VII	VIII	IX	х	XI	XII
Temperatura[°C]	-1,00	-1,00	3,30	7,60	13,50	16,60	17,50	17,90	12,90	6,60	3,80	0,70
Ilość dni grzewczych	31	28	31	30	31	30	31	31	30	31	30	3
Wilgotność[%]	88	83	79	75	70	75	73	73	79	84	89	9
Średnia ilość opadów[mm]	33,50	32,10	37,80	34,20	56,90	63,10	83,30	59,30	47,70	33,90	44,60	43,7
Średnia roczna te	emperatur	a zewnęt	trzna			Roc	zna ampl	ituda tem	peratury			
8,20 °C						9,50	°C					
Obliczeniowa tem	nperatura	zewnętr:	zna									
- 20,00 °C												
Strefa klimatyczn	a					Stac	ja aktync	metryczi	na:			
ш						Łódź	- Lublin	ek				Edycja
) - ului		014

Dane meteorologiczne

Opis danych wejściowych projektu

PRZYCISK BAZA – użytkownik ma dostęp do danych aktynometrycznych natężenia promieniownai słonczengo w W/m² dla wybranej stacji aktynometrycznej

			E	Edytor baz	aktynometr	ycznych			×
Stacja al	Stacja aktynometryczna: Lódź - Lublinek 🗘 Kowa stacja								
Nachyle	enie do poziom	nu 0° Nachyle	nie do poziomu 3	80° Nachylen	ie do poziomu 45	5° Nachylenie	do poziomu 60°	Nachylenie d	o poziomu 90°
Kierun	ek/Miesiąc	Północ	Płn Wsch.	Wschód	Płd Wsch.	Południe	Płd Zach.	Zachód	Płn Zach.
	I	27962	27962	27962	27962	27962	27962	27962	27962
	II	31503	31503	31503	31503	31503	31503	31503	31503
	III	73137	73137	73137	73137	73137	73137	73137	73137
	IV	99324	99324	99324	99324	99324	99324	99324	99324
	V	155522	155522	155522	155522	155522	155522	155522	155522
	VI	150700	150700	150700	150700	150700	150700	150700	150700
	VII	146603	146603	146603	146603	146603	146603	146603	146603
	VIII	124786	124786	124786	124786	124786	124786	124786	124786
	IX	76655	76655	76655	76655	76655	76655	76655	76655
	Х	51570	51570	51570	51570	51570	51570	51570	51570
	XI	22963	22963	22963	22963	22963	22963	22963	22963
	XII	17769	17769	17769	17769	17769	17769	17769	17769
1									
Przy	wróć domyśli	n e wartości					Anul	luj	ОК

Dane aktynometryczne

PRZYCISK BAZA – użytkownik ma dostęp do danych klimatycznych dla wybranej stacji aktynometrycznej (natężenie promieniowania słonecznego w W/m² podane dla każdej godziny)

				Edytor ba	azy stacji klim	atycznych				x
Stacja aktynometryczna: Łódź - Lublinek Miesiąc Styczeń Dzień miesiąca 1 									Dodaj	
ISH / DBT	Nachyle	enie do poziomu 0°	Nachylenie do	poziomu 30°	Nachylenie do poz	ziomu 45° Nac	nylenie do poziomu	60° Nachylen	ie do poziomu 90°	
Kierunek/G	odzina	N	NE	E	SE	S	SW	W	NW	^
1		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
2		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
3		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
4		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
5		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
6		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
7		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
8		1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	
9		26,700	26,700	26,700	26,700	26,700	26,700	26,700	26,700	
10		47,700	47,700	47,700	47,700	47,700	47,700	47,700	47,700	
11		61,800	61,800	62,600	65,000	65,500	63,900	61,800	61,800	
12		64,100	64,100	64,100	66,600	67,800	66,800	64,300	64,100	
13		54,700	54,700	54,700	54,700	54,700	54,700	54,700	54,700	
14		36,100	36,100	36,100	36,100	36,100	36,100	36,100	36,100	
15		12,800	12,800	12,800	12,800	12,800	12,800	12,800	12,800	~
Przywróć	cdomyś	Ine wartości						Anuluj	ок	

Dane klimatyczne

PRZYCISK OBRÓT – użytkownik w oknie tym może obrócić wstawione przegrody o dowolny kąt, co 45 °, co powoduje inne zyski od nasłonecznienia.

Opis danych wejściowych projektu

Oknienko Obrót budynku

KROTNOŚĆ WYMIAN POWIETRZA DLA CAŁEGO BUDYNKU n50 [1/h] - pole do edycji przez

użytkownika, wartość wstawiamy na podstawie zrobionej próby szczelności lub korzystamy z podpowiedzi, w której współczynnik uzależniony jest od typu budynku i szczelności stolarki okiennej. Wartość jest niezbędna w przypadku gdy w budynku mamy wentylację mechaniczną lub wykonujemy obliczenia audytu.

Krotność wymian powietrza dla całego budynku 🛛 🗙								
		n50 [1/h]						
	Stopień szcze u	Stopień szczelności obudowy budynku (jakość uszczelek okiennych)						
Konstrukcja	Wysoki (wysoka jakość uszczelek w oknach i drzwiach)	Średni (okna z podwójnym oszkleniem, uszczelki standardowe)	Niski (pojedynczo oszklone okna, bez uszczelek)					
Domy jednorodzinne	3	7	11					
Inne budynki	1	3	6					
	I	Anuluj	ок					

Oknienko Krotność wymian powietrza n50 dla całego budynku

KŁÓDKA - pozwala użytkownikowi zablokować każde pole liczbowe, tak aby program (i użytkownik) nie mógł zmienić wprowadzonej wartości. Po zablokowaniu pola liczbowego wartość jest podkreślona. Aby odblokować pole do edycji należy kliknąć zamkniętą kłódkę.

💶 – pole liczbowe podczas edycji

 $n_{50} = 2,70 \frac{1}{10}$ = zablokowane pole liczbowe podczas edycji

 n_{50} : 2.70 $\frac{1}{h}$ - podkreślenie oznacza zablokowane pole liczbowe

5 OPIS OBLICZEŃ WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA, "U" PRZEGRÓD

5.1 ETAP DEFINICJE PRZEGRÓD

Etap ten służy definiowania przegród i obliczeń współczynnika U. Okno podzielone jest na cztery części: - drzewko po lewej stronie służące wstawiania nowych przegród do projektu,

- środkowa część służy do definiowania nazwy, typu, symbolu, sposobu obliczeń, współczynników R_{si}, R_{se}, ΔU , poszczególnych warstw materiału, poprawek do współczynnika przenikania ciepła U_c, takich jak dodatki na pustki powietrzne, łączniki mechaniczne, stropodach odwrócony oraz wstawiania dodatkowych, innych parametrów przegrody,

- obszar po prawej stronie służy do podglądu wyników obliczeń szerokości, oporu R_c i współczynnika U (U_c) przegrody, a także do sprawdzenia wykresu wykropleń i temperatury.

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO) 6 [L01] - help 🛛 🗕 🗖 🗙
Plik Edycja Ustawienia	😬 🌣 🖻 🐟 🔻 🅕 🔻 ?	
OBLICZENIA CIEPLNE	Definicje przegród - Świadectwo charakterystyki energetycznej 2014, WT	2014
★ X Th	Właściwości przegrody Typ: Ściana zewnętrzna Mostek ciepłny przegrody Nazwa: SZ 55 $\Sigma \Psi_{kL}^{*0} \otimes \frac{W}{K}$ Oblicz Symbol: SZ 55 Zdefiniowane warstwy Opory ciepłne: R ₁₈ =0,04 $\frac{W}{M}$ O Poprawki do współ, przenikania Uc Woj nómy: Poprawki do współ, przenikania Uc Woj nómy: Poład $\frac{W}{M}$	
STW 1	Warstwy przegrody	
	Lp. Materiał d A K [m] [W/m+K] [m=K/W]	+ Wyniki obliczeń
	Strona zewnętrzna Tynk lub gładź	X Grubość: d = 0,55 m
	1 cementowo-wapienna 0,010 0,820 0,012	P -4.44 m ² K
	2 70-040 FASADA 0,150 0,040 3,750	Calkowity opor.
Definicje przegród Straty ciepła	3 Mur z cegły ceramicznej 0,380 0,770 0,494	Całkowity współczynnik U _C =0,27 w m ² K przenikania:
Strefy ciepine	4 Tynk lub gladź cementowo-wapienna 0,010 0,820 0,012	μ.
	Strona wewnętrzna	Ð
		-* -
CERTYFIKAT		Wykres temperatury i wykropienia
C PODGLAD PROJEKTU	Banot o biedach	
H WYDRUKI	Lp. Typ Opi	s
	Odśwież listę błędów!	
< [4/14] >		🛋 🔂 🔂 🔂 🖴 Zamknij

Okno Definicje przegród

Obliczenia po	oprawek do współ	. przenikania ciepła wg PN-EN ISO 6946 💌				
Pustki powietrzne	Łączniki mechaniczne	Stropodach odwrócony				
Poz Cyrł pow	iom 2 Iulacja ietrza	Pustki powietrzne - szczeliny i wnęki				
Lokalizacja puste Wybór warstwy Płyta styropia r Opór warstwy z	Lokalizacja pustek w przegrodzie $\Delta U'' = 0.04 \frac{W}{m^2 \cdot K}$ Tablice Wybór warstwy przegrody zawierającej pustkę powietrzną Płyta styropianowa EPS 70-040 FASADA Opór warstwy zawierającej szczelinę R ₁ = 3,75 $\frac{m^2 \cdot K}{W}$					
Całkowity opór o Poprawki na pus ΔUg=ΔU" (<mark>R</mark> τ	tki powietrzne $\left(\frac{1}{m^2 \cdot K}\right) = 0 \frac{W}{m^2 \cdot K}$	$h = 4,44 \frac{H + K}{W}$				
		Anuluj OK				

Okno Pustki powietrzne

Obliczenia poprawek do współ. przenikania ciepła wg PN-EN ISO 6946 🛛 🗙
Pustki powietrzne Łączniki mechaniczne Stropodach odwrócony
$d_{0} = 0.15 \text{ m} d_{1} = 0.15 \text{ m}$ $\alpha = 0.80 \qquad \qquad$
Wybór rodzaju łącznika Łącznik przebija izolację
Wybór warstwy izolacji Płyta styropianowa EPS 70-040 FASADA
Catkowity opór cieplny komponentu $R_{T,T} = 4,44 \frac{m^2 \cdot K}{W}$ Pole przekroju jednego łącznika $A_T = 0,0000503 m^2$ Współczynnik łącznika $\lambda_T = 50,00 \frac{W}{m_s K}$
Dodatek na punktowe mostki cieplne
$\Delta U_r = \alpha \frac{\lambda_f A_f n_f}{d_0} \left(\frac{R_1}{R_{T,h}} \right)^2 = 0.04 \frac{W}{m^2 \cdot K} $
Anuluj OK

Okno Łączniki mechaniczne

Stropodach odwrócony

5.1.1 Drzewko definicji przegród

Drzewko przegród

Drzewko definiowania przegród służy do wstawiania nowych przegród do projektu. Zaznaczenie dowolnej przegrody na drzewku przenosi nas do okna, w którym możemy podejrzeć lub zdefiniować jej parametry.

5.1.2 Opis okno właściwości dla przegród typu standardowego

Do przegród typu standardowego zaliczamy: ścianę zewnętrzną, ścianę wewnętrzną, dach, strop wewnętrzny, strop nad przejazdem. Wszystkie te przegrody charakteryzują się tym, że nie wymagają dodatkowych danych do obliczeń współczynnika U jak i strat cieplnych.

Ściana łukowa pozwala na dodawanie do niej okien i drzwi o dowolnej orientacji stron świata.

Właśo Typ:	ciwości przegrody Ściana zewnęt va: \$7.55	rzna		Mo Σ	stek cieplnyp ψ _{kk} =0 ₩/Κ	orzegrody Oblicz	
Symbol: SZ 55 Sposób obliczeń: Zdefiniowane warstwy Opory cieplne Poprawki do ws						pół. przenikania Ud	;
R	se=0,04 <u>m²K</u> 1 R _{si} =0,13	6	Wg اک	g normy: PN-EN U ₀ =0 <u>W</u> m ² K	N 12831 Tablice		
Lp.	Materiał		d [m]		λ [W/m·K]	R [m²K/W]	+
	Strona zewnętrzna						
1	Tynk lub gładź cementowo-wapienna		C	,010	0,820	0,012	×
2	Płyta styropianowa EPS 70-040 FASADA		C	,150	0,040	3,750	Ť
3	Mur z cegły ceramicznej pełnej		C	,380	0,770	0,494	ŧ
4	Tynk lub gładź cementowo-wapienna		C	,010	0,820	0,012	Π'n
	Strona wewnętrzna						Ē
							=*

Właściwości przegród

efin	icje przegród - Świadec	two ch	arakterys	tyki energety	/cznej 2014, V	VT 2014		
Właś	ciwości przegrody							
Typ:	Dach		Mo	stek cieplny pr	zegrody			
Nazv	va: Dach		Σ	$\Psi_{KK} = 0 \frac{W}{K}$	Oblicz			
Symt	oot D1							1
Spos	ób obliczeń: Obliczenia prze niejednorodnej	grody					La B	The state
Op	ory clepine		Pop	rawki do wspć	di. przenikania U	с		
Wyc	inek A Wycinek B	W	۵۱ م	J ₀ =0 <u>W</u> m ² K	Oblicz			
Lp.	Materiał		a [m]	[W/m-K]	[m ² K/W]	+	Wyniki obliczeń	11200
	Strona zewnętrzna					×	0-1-14	d = 0.21 m
1	Sosna i świerk w poprzek włókien		0,020	0,160	0,125	+	Grubosc.	g = 0,2111
2	Słabo wentylowane warstwy powietrzne		0,040		0,150	×	ciepla:	R _T =3,19 W
3	Filce, maty i płyty z welny mineralnej 80		0,150	0,045	3,333	+	ciepła:	R _T =4,30 W
4	Płyta gipsowo-kartonowa		0,015	0,230	0,065	1	Całkowity opór:	R _T =3,75 W
	Strona wewnętrzna					×	Całkowity współczynnik	U_==0.32-W
						Πh	przenikania:	°C m2K
						ß		
Dług	ość wycinka L _a = 0,80 m		R _{TR} =3,71	m ² K				
	-						wykres temperatury	

Właściwości przegrody niejednorodnej

TYP – pole to służy do wybierania jednego z 11 typów przegród: ściany zewnętrznej, ściany wewnętrznej, ściany na gruncie, podłogi na gruncie, stropu nad przejazdem, stropu wewnętrznego, dachu, okna zewnętrznego, okna wewnętrznego, drzwi zewnętrznych, drzwi wewnętrznych,

NAZWA– pole służące do nadawania nazwy przegrodom, nazwy będą później wyświetlane w tabelkach w pomieszczeniach i strefach,

SYMBOL – pole służące do definiowania symbolu przegrody, który będzie później widoczny w drzewku definicji przegród i raportach,

SPOSÓB OBLICZEŃ – pole to służy do wyboru jednego z dwóch sposobów obliczeń współczynnika U:

WARIANT A - ZDEFINIOWANE WARSTWY

W tym wariancie użytkownik musi wstawić poszczególne warstwy przegrody ze zdefiniowanym współczynnikiem λ i szerokością każdej warstwy. Na tej podstawie program wylicza współczynnik przenikania U.

WSPÓŁCZYNNIK MOTSKÓW CIEPLNYCH – pole to służy do wyboru wspólczynika typu mostka cieplnego. Program automatycznie określa długość liniową mosta (gdy obwód jest odcinkiem lub prostokątem) informując

o tym użytkownika przy pomocy ikony

yp: lazw	Ściana zewnęt /a: Ściana zewnęt	trzna trzna	łukowa ^{– Μα} łukowa ^Σ	ostek cieplny p $\Psi_{KK}^{L} = 0 \frac{W}{K}$	Oblicz		
Symbol: SZŁ 1							
Opory cieplne Poprawki do współ. przenikania Uc $R_{se}=0.04 \frac{m^2K}{W}$ $R_{si}=0.13 \frac{m^2K}{W}$ $Wg normy:$ PN-EN ISO 6946 $\Delta U_0=0 \frac{W}{m^2K}$ Oblicz							
Lp.	Materiał		d [m]	λ [W/m·K]	R [m²K/W]	Ч	
	Strona zewnętrzna						
1	Tynk lub gładź cementowo-wapienna		0,010	0,820	0,012		
	Płyta styropianowa EPS		0.150	0,040	3,750	1	
2	70-040 FASADA		0,200				
2 3	70-040 FASADA Mur z cegły ceramicznej pełnej		0,380	0,770	0,494	1	
2 3 4	70-040 FASADA Mur z cegły ceramicznej pełnej Tynk lub gładź cementowo-wapienna		0,380	0,770	0, 494 0,012	Ч П	

Właściwości przegród. Zdefiniowane warstwy

OPORY CIEPLNE R_{si}– pole do wstawiania wartości oporów przejmowania ciepła na wewnętrznej powierzchni. Program domyślnie wstawia wartość na podstawie typu przegrody wg poniższej tabelki (przycisk **i** włącza podpowiedź):

Typ przegrody	Kierunek	Rsi
Ściana zewnętrzna	poziomy	0,13
Ściana wewnętrzna	poziomy	0,13
Ściana na gruncie	poziomy	0,13
Strop wewnętrzny	góra	0,10
Dach	góra	0,10
Strop nad przejazdem	dół	0,17
Podłoga na gruncie	dół	0,17

Współczynnik Rsi

OPORY CIEPLNE R_{se} – pole do wstawiania wartości oporów przejmowania ciepła na zewnętrznej powierzchni. Program domyślnie wstawia wartość na podstawie typu przegrody wg poniższej tabelki (przycisk włącza podpowiedź):

Typ przegrody	Kierunek	Rse
Ściana zewnętrzna	poziomy	0,04
Ściana wewnętrzna	poziomy	0,13
Ściana na gruncie	poziomy	0,04
Strop wewnętrzny	góra	0,10
Dach	góra	0,04
Strop nad przejazdem	dół	0,04
Podłoga na gruncie	dół	0,17

Współczynnik Rse

MOSTEK CIEPLNY PRZEGRODY $\Sigma \Psi_k \cdot l_k [W/m \cdot K]$ – pole to służy do definiowania globalnie mostków cieplnych dla wybranych przegród, użytkownik może wpisać własną wartość lub obliczyć ją na podstawie katalogu mostków cieplnych otwieranego przyciskiem O^{DHCZ} . Wartości wpisane w tym polu przejdą automatycznie do wszystkich przegród tego typu wpisanych w stratach przez przenikanie.

				×				
Kod	Typ mostka	Symbol	Ψk [W/m*K]	L k [m]		+	and a state	
49M	Nadproże, podokiennik, ościeżnica w środku/ściana z izolacją zewnętrzną	 W7	0,35	2H+2W		×		
						T ↓		H
						Π'n		
						Ē		
			Σ	Ψ _k ·L _k = 1	K		Anuluj	ОК

Okno wyboru mostków cieplnych

KOD - pole służące do podglądu kodu mostka cieplnego, wartość ta pokazywana jest w raportach RTF.

TYP MOSTKA – pole służące do zdefiniowania typu mostka, użytkownik może wpisać własny model lub skorzystać z bazy uruchamianej przyciskiem ….

				Baz	a mostkóv	v					-	. 🗆 🗙
Znajdź Szukaj: 🗵 Wyniki wyszukiwania aktualnie niedostępne.				Wyczyść	Wymia © Ze O Ca O We	ary wnętrzne e kowicie we wnętrzne i	wnętrzne (Di			Wygląd mostka	+ ×
++╡×≫ҧ҇҇҄Ӷ҄Ӷ	Lp.	Nazwa	Kod	Symbol	Ψe [W/(m-K)]	Ψоі [W/(m⋅K)]	Ψi [W/(m+K)]	Automa ny wyr	itycz niar	+		
PN-EN ISO 14683:2001 Połączenia dachu ze ścianą : Połączenia płyty bałkonowej Połączenia płyty bałkonowej	1	Naroże zewnętrzne ściany z izolacją zewnętrzną	17M	C1	-0,050	0,150	0,150	н		×		
Połączenia ściany zewnętrzy Połączenia ściany zewnętrzy	2	Naroże zewnętrzne ściany z izolacją w środku	18M	C2	-0,100	0,100	0,100	н		יח D	Opis	
Otwory okienne i drzwiowe Otwory okienne i drzwiowe	3	Naroże zewnętrzne ściany z izolacją wewnętrzną	19M	C3	-0,200	0,000	0,000	н		\$		
wg ITB	4	Naroże zewnętrzne ściany lekka	20M	C4	-0,150	0,050	0,050	н				
Adproža okienne Podokienniki Podokienniki	5	Naroże wewnętrzne ściany z izolacją zewnętrzną	21M	C5	0,000	-0,200	-0,200	н				
Wieńce PN-EN ISO 14683:2008 Połaczenia dachu ze ściana :	6	Naroże wewnętrzne ściany z izolacją w środku	22M	C6	0,100	-0,150	-0,150	н				
Połączenia płyty balkonowej Połączenia stropu ze ściana	7	Naroże wewnętrzne ściany z izolacją wewnętrzną	23M	C7	0,150	-0,050	-0,050	н				
Połączenia ściany zewnętrzu Połączenia ścian zewnętrzu	8	Naroże wewnętrzne ściany lekka	24M	C8	0,050	-0,150	-0,150	н				
Otwory okienne i drzwiowe Otwory okienne i drzwiowe S												
Przywróć domyślne wartości Wybór wersji I	oazy o	danych: 6.0									Anuluj	ок

Okno bazy danych mostków cieplnych

SYMBOL – pole służące do podglądu symbolu mostka cieplnego z normy lub z katalogu mostków.

 $WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA LINIOWEGO MOSTKA CIEPŁNEGO <math>\Psi_k$ [$W/m\cdot K$] – pole służące do wstawiania liniowego współczynnika mostka cieplnego, użytkownik może ręcznie wstawić wartość lub skorzystać z wartości domyślnej proponowanej przez program. Jeżeli użytkownik nie poda w tym okienku

długości mostka, to program automatycznie go obliczy, informuja o tym przy pomocy ikony 👖

DŁUGOŚĆ LINIOWEGO MOSTKA CIEPLNEGO I_K [m] – pole służące do wstawiania długości liniowego mostka cieplnego. Użytkownik włączając przycisk … może automatycznie zdefiniować, że dany typ mostka ma pobierać z przegrody wartość Wysokości H, Szerokości W, Grubości D, Obwodu P, Pola A, Mix przegrody (H+W) lub wybrać inne i wstawić własna wartość.

Funkcja ta jest bardzo przydatna dla przegród stolarki okiennej i drzwiowej (wówczas wstawiamy aby program wyliczył długość mostka na podstawie obwodu przegrody i nie musimy już tego robić w strukturze budynku i strefach cieplnych). W przypadku ścian funkcja ta jest przydatna np. gdy mamy ścianę przy gruncie wówczas możemy powiedzieć aby program automatycznie wstawił mostek z zakresu GF 1- 13 i definiujemy aby z

przegród pobrał szerokość W (przydatne jest też to dla płyt balkonowych i połączenia ściany z dachem lub stropem).

WSPÓŁCZYNNIK MOSTKÓW CIEPLNYCH ΔU_o - pole do wstawiania wartości dodatków na mostki cieplne, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem ^{Oblicz}

Podpowiedzi dla normy PN-EN 12831 (wyświetlana w przypadku wybrania norm PN EN 12831, PN EN 832 i PN EN ISO 13790)

Wybierz wartość dodatku ma mostki cieplne								
Dotyczy pionowych elementów budynku								
Liczba stropów	Liczba	ΔU						
przecinających izolację	przecinanych ścian	kubatura przestrzeni ≤ 100 m³	kubatura przestrzeni > 100 m³					
	0	0,05	0					
0	1	0,10	0					
	2	0,15	0,05					
	0	0,20	0,10					
1	1	0,25	0,15					
	2	0,30	0,20					
	0	0,25	0,15					
2	1	0,30	0,20					
	2	0,35	0,25					

Podpowiedź dotycząca pionowych elementów budynku

Wybierz wartość dodatku ma mostki cieplne 🛛 🗙									
Dotyczy poziomych elementów budynku									
Element budynku 🛛 🛛 🛛 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠 🗠									
Lekka p	0								
	Liczba boków	1	0,05						
Ciężka podłoga	będących w kontakcie ze środowiskiem	2	0,10						
(beton itd.)		3	0,15						
	zewnętrznym	4	0,20						

Podpowiedź dotycząca poziomych elementów budynku

Wybierz wartość dodatku ma mostki cieplne							
Dotyczy otworów							
Powierzchnia elementu budynku [m²]	ΔU						
0 - 2	0,50						
>2 - 4	0,40						
>4 - 9	0,30						
>9 - 20	0,20						
>20	0,10						
1							

5.1.3 Zakładka Warstwy przegrody

Tabelka warstwy przegrody służy do wstawiania poszczególnych warstw definiowanych przegród. Możliwe są dwa sposoby wprowadzania danych albo ręcznie wpisując dane (nazwa, szerokość d, współczynnik λ , opór R), albo poprzez przycisk … włączyć okno bazy materiałów. W tabelce *Warstw przegrody* numer *L.p.* 1 odpowiada warstwie zewnętrznej przegrody natomiast każdy numer 1+ n warstwie bliżej obszaru wewnętrznego.

	Warstwy przegrody				
Lp.	Materiał	d [m]	λ [W/m·K]	R [m²K/W]	+
	Strona zewnętrzna				~
1	Tynk lub gładź cementowo-wapienna	 0,010	0,820	0,012	î
2	Mur z cegły kratówki	 0,380	0,560	0,679	Ť
3	Tynk lub gładź cementowo-wapienna	 0,010	0,820	0,012	ŧ
	Strona wewnętrzna				
					ጥ
					D
					=*

Tabelka warstw przegrody

L.p. – kolejny numer warstwy,

MATERIAL – pole służące do wpisywania nazwy użytego materiału, użytkownik może poprzez przycisk … wybrać gotowy materiał z przypisanymi parametrami,

d [m] - pole służące do wpisywania szerokości warstwy, wartości należy wpisywać w metrach,

 λ [*W*/*m*²·*K*] - pole służące do wpisywania obliczeniowego współczynnika przewodzenia ciepła, w przypadku wybrania materiału z bazy programu wartość wypełniana automatycznie,

R [$m^2 \cdot K/W$] - pole służące do wpisywania obliczeniowego oporu cieplnego warstwy. Program automatycznie wyliczy wartość na podstawie danych z kolumn $\lambda i d$ z wzoru: $R = \frac{d}{2}$,

Kalkulator obliczeń	warstwy powietrza	słobo wentylowanej	wg normy	PN-EN 6946:2008

Kalkulator obliczeń warstwy słobo wentylowanej

Użytkownik musi podać pole powierzchni A_v otworów w ścianie przeznaczonych do wentylacji przegrody. Opis funkcjonalności przycisków tabelki:

D

wklej warstwę przegrody

5.1.4 Baza edytora materiałów

Okno włączane poprzez przycisk … w kolumnie *Nazwa*tabelki *Warstw przegrody*. Zatwierdzenie danych odbywa się poprzez wciśnięcia przycisku *OK*. W przypadku, kiedy chcemy przywrócić domyślną bazę programu

musimy wcisnąć przycisk

		Edytor materiałóv	v			-		×
Znajdź Szukaj: 🔄 Wyniki wyszukiwania aktualnie niedostępne.		Wycz	Materiały O wilgotne O średnio - 1	- wilgotne				
+++×>% h 🖻 🗊 🗊 🍫	Lp.	Nazwa	ρ [kg/m³]	λ [W/(m·K)]	Ср [J/(kg·K)]	δ [kg/(m·s·Pa)]	+
Materiały i wyroby budowlane PN-EN 6946	1	Pustak ceramiczny K065-W	1100,000	0,335	880,000	2,50E-011		×
	2	Pustak ceramiczny K065-2W	1000,000	0,342	880,000	2,50E-011		~
Materiały termoizolacyjne	3	Pustak ceramiczny K065-J	1000,000	0,290	880,000	2,50E-011		Ph
materiały murowo-ścienne	4	Pustak ceramiczny SZ	1000,000	0,460	880,000	2,50E-011		
Materiały wykończeniowe	5	Pustak ceramiczny U	960,000	0,440	880,000	2,50E-011		D
Styropiany wg PN B 20132	6	Pustak ceramiczny MAX	1100,000	0,430	880,000	2,50E-011		-
Stropy	7	Pustak ceramiczny UNI	960,000	0,430	880,000	2,50E-011		\mathcal{F}
Pokrycia dachowe Materiały i wyroby budowlane PN-EN	8	Pustak ceramiczny M-44 i M-44-15/30	1000,000	0,325	880,000	2,50E-011		μ
🖃 🗝 Producenci	9	Cegła pełna zwykła	1800,000	0,780	880,000	2,86E-011		
Xella	10	Cegła klinkierowa	1900,000	1,050	880,000	2,86E-011		
Cerpol	11	Cegła wappiask. pełna 1.9-1NF	1900,000	1,000	880,000	2,86E-011		
Wienerberger	12	Cegła wappiask. drążona 1.5-2NFD	1500,000	0,800	880,000	2,67E-011		
ECOTHERM	13	Cegła wappiask. drążona 1.45-3NFD	1450,000	0,800	880,000	3,64E-011		
Aerogels Polska	14	Cegła wappiask. 1.9-łupana	1900,000	1,000	880,000	2,86E-011		
SCHWENK	15	Beton komórkowy 0.5	500,000	0,250	1000,000	3,33E-011		
	16	Beton komórkowy 0.6	600,000	0,300	1000,000	2,86E-011		
	17	Beton komórkowy 0.7	700,000	0,350	1000,000	2,22E-011		
	18	Beton komórkowy YTONG 0.35	350.000	0.095	1000.000	4.00E-011	× 1	
Przywróć domyślne wartości Wybór wersji ba	izy da	nych: 6.0			Anuluj		ок	

Okno edycji materiałów

SZUKAJ – pole służące do wpisywania słów pozwalających na szybkie znalezienie materiału bez konieczności otwierania katalogów, przycisk wyczyść służy do czyszczenia listy słów wpisywanych w polu szukaj (program pamięta wpisywane teksty, więc wystarczy wpisać pierwszą literę a pokaże nam wtedy listę słów, które pasują do wpisanej wartości).

WYNIKI WYSZUKIWANIA – pole służące do wyboru z listy materiałów, które w nazwie mają tekst wpisany w polu *Szukaj*.

GRUPA MATERIAŁY – pola te służą do wybierania współczynników materiałów ρ , λ , Cp, δ w zależności od warunków średnio-wilgotnych lub wilgotnych. Zaznaczenie jednego z dwóch wariantów zmieni nam parametry powyższych współczynników wyświetlanych w tabelce.

DRZEWKO KATALOGÓW MATERIAŁÓW

Drzewko służy do przeglądania i edytowania bazy materiałów zapisanych w programie. Użytkownik może dodawać własne materiały, grupować, a także dowolnie edytować nazwy i parametry wstawionych. Baza zawiera materiały producentów, wg normy PN-EN ISO 6946, PN-EN 12524, PN B 20132.

Drzewko katalogów materiałów

╋	dodawanie nowego folderu,
↓	dodawanie folderu poniżej istniejącego,
×	usuwanie folderu,
Ø	zmiana bazy z normowej na stropy,
	Export bazy danych do pliku
	Import bazy danych z pliku
D	Wklej pozycje
D	Kopiuj pozycje
%	Wytnij pozycje

TABELKA BAZY MATERIAŁÓW

Tabelka ta służy do wybierania materiału, edycji, a także do wpisywania modyfikacji zapisanych parametrów. Składa się z kolumn:

L.p. – liczba porządkowa,

NAZWA – kolumna służące do podglądu i wpisania nazwy materiału, która będzie później widoczna w dalszych oknach obliczeń i raportów,

 ρ [kg/m³] – kolumna opisująca gęstość materiału, wartość wykorzystywana później do obliczeń współczynnika pojemności cieplnej C w normach PN EN 832, PN EN ISO 13790 i dla Certyfikatu energetycznego.

 λ [*W/m²·K*] – kolumna opisująca współczynnika przewodzenia ciepła materiału, wartość wykorzystywana później do obliczeń współczynnika przenikania U w normie PN EN ISO 6946.

Cp [*J/kg·K*] – kolumna opisująca ciepło właściwe materiału, wartość wykorzystywana później do obliczeń współczynnika pojemności cieplnej C w normach PN EN 832, PN EN ISO 13790 i dla Certyfikatu energetycznego.

 $\delta[kg/m \cdot s \cdot Pa]$ – kolumna opisująca współczynnik dyfuzji pary wodnej materiału, wartość wykorzystywana później do obliczeń wykresu wykropleń pary wodnej.

Lp.	Nazwa	ρ [kg/m³]	λ [W/(m⋅K)]	Ср [J/(kg·K)]	μ
1	Beton o średniej gęstości 1800	1800,000	1,150	1000,000	70.671
2	Beton o średniej gęstości 2000	2000,000	1,350	1000,000	70.671
3	Beton o średniej gęstości 2200	2200,000	1,650	1000,000	82.305
4	Beton o wysokiej gęstości 2400	2400,000	2,000	1000,000	94.340
5	Beton zbrojony z 1% stali	2300,000	2,300	1000,000	94.340
6	Beton zbrojony z 2% stali	2400,000	2,500	1000,000	94.340

Tabela bazy materiałów

SPOSÓB OBLICZEŃ - Zdefiniowany całkowity współczynnik przenikania

Użytkownik wpisuje własny współczynnik U przegrody bez definiowania poszczególnych warstw, dodatkowo można skorzystać z podpowiedzi, w których znajdują wartości poszczególnych współczynników w zależności od typu przegrody i przeznaczenia budynku.

Sposób obliczeń: Zdefiniowany całk współczynnik prze	owity enikania	
Współczynnik przenikania	Poprawki do współ. pr	rzenikania Uc
$U = 0.30 \frac{W}{m^2 K}$ Tablic	e Wg normy: PN-EN ISO (5946
Grubość	$\Delta U_0 = 0 \frac{1}{m^2 K}$	Oblicz
d = 0,30 m		

Właściwości przegród wariant B

NARZUCONY WSPÓŁCZYNNIK PRZENIKANIA U – pole służące do definiowania współczynnika przenikania U przegrody, użytkownik może skorzystać z podpowiedzi otwieranej przyciskiem Tablice.

Izolacyjność cieplna przegród i podłóg na gruncie.							
Ściany, dachy, stropodachy, stropy i podłogi na gruncie							
Rodzaj przegrody i temperatura w pomieszczeniu	Wspołczynnik przenikania ciepła Uc(max) [W/(m²·K)]	^					
Ściany zewnętrzne:							
a) przy ti ≥ 16°C	0,25						
b) przy 8°C ≤ ti < 16°C	0,45						
c) przy ti < 8°C	0,90						
Ściany wewnętrze:							
a) przy ∆ti ≥ 8°C oraz oddzielające pomieszczenia ogrzewane od klatek schodowych i korytarzy	1,00						
b) przy ∆ti < 8°C	bez wymagań						
c) oddzielające pomieszczenie ogrzewane od nieogrzewanego	0,30						
Ściany przyległe do szczelin dylatacyjnych o szerokości:							
a) do 5 cm, trwale zamkniętych i wypełnionych izolacją cieplną na głębokości co najmniej 20 cm	1,00						
 b) powyżej 5 cm, niezależnie od przyjętego sposobu zamkniecia i izolowania szczeliny 	0,70						
Ściany nieogrzewanych kondygnacji podziemnych	bez wymagań						
Dachy, stropodachy i stropy pod nieogrzewanymi poddaszami lub nad przejazdami:							
a) przy ti ≥ 16°C	0,20						
b) przy 8°C ≤ ti < 16°C	0,30						
c) przy ti < 8°C	0,70						
Podłogi na gruncie:							
a) przy ti ≥ 16°C	0,30						
b) przy 8°C ≤ ti < 16°C	1,20	~					
Anult	j OK						

Maksymalne wartości współczynników przenikania ciepła Uc przegród (ściany, dachy, stropodachy, stropy i podłogi na gruncie)

Izolacyjność cieplna przegród i podłóg n	a gruncie. ×
Okna, drzwi balkonowe i drzwi zewnętrzne	
Rodzaj przegrody i temperatura w pomieszczeniu	Wspołczynnik przenikania ciepła U(max) [W/(m²·K)]
Okna (z wyjątkiem okien połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne:	
a) przy ti ≥ 16°C	1,30
b) przy ti < 16°C	1,80
Okna połaciowe:	
a) przy ti ≥ 16°C	1,50
b) przy ti < 16°C	1,80
Okna w ścianach wewnętrznych:	
a) przy ∆ti ≥ 8°C	1,50
b) przy ∆ti < 8°C	bez wymagań
c) oddzielające pomieszczenie ogrzewane od nieogrzewanego	1,50
Drzwi w przegrodach zewnętrznych lub w przegrodach między pomieszczeniami ogrzewanymi i nieogrzewanymi	1,70
Okna i drzwi zewnętrzne w przegrodach zewnętrznych pomieszczeń nieogrzewanych	bez wymagań
Anuli	j OK

Maksymalne wartości współczynników przenikania ciepła U okien, drzwi balkonowych i drzwi zewnętrznych

lzolacyjność c	ieplna przegr	ód i podłóg n	a gruncie.	×	
Współczynnik U przegród wg no	orm PN 74/B-0340	4		~	
Okna zewnętrzne albo połaciowe pod kątem do poziomu					
	>60°				
	Rozstaw szyb		Materiał		
Liczba warstw	mm	Drewno	Metal lub żelbet		
 oszklenie pojedyncze 	-	4,5	5,0		
	20	2,4	2,6		
 oszklenie podwójne 	10	2,5	2,8		
	5	2,8	3,1		
 okno podwójne z pojed. oszkleniem 	100-150	2,4	2,6		
 okno podwójne (3 warstwy szkła pojedyncze i podwójne) 	75 i 100	1,6	1,8		
	≤60°				
 oszklenie pojedyncze 	-	4,5	5,0		
 oszklenie podwójne 	10	2,6	2,9		
 oszklenie pojedyncze 	5	2,9	3,2		
 okno podwójne (3 warstwy szkła pojedyncze i podwójne) 	75-100	1,7	1,9		
	Okna wewnę	trzne			
 oszklenie pojedyncze 	-	3,0	3,3		
 oszklenie podwójne 	10	1,9	2,1		
- okno podwójne (oszklenie pojed.)	100-150	1,8	2,0		
	Drzwi zewnę	trzne			
- pojedyncze nieocieplone	-	2,5	5,0		
 balkonowe pojedyncze z oszkleniem poiedynczym 	-	4,5	-	v	
		Anulu	j OK		

Podpowiedź współczynniki U przegród wg norm PN 74/B-0304

*WSPÓŁCZYNIK MOSTKÓW CIEPLNYCH ΔU*_o– pole do wstawiania wartości dodatków na mostki cieplne, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice

Podpowiedzi dla normy PN-EN 12831 (wyświetlana w przypadku wybrania norm PN-EN 12831, PN-EN 832 i PN-EN ISO 13790)

Wybi	erz wartość dod	atku ma mostki d	cieplne ×			
Dotyczy pionowych elementów budynku						
Liczba stropów	Liczba	L	70			
przecinających izolację	przecinanych ścian	kubatura przestrzeni ≤ 100 m³	kubatura przestrzeni > 100 m ³			
	0	0,05	0			
0	1	0,10	0			
	2	0,15	0,05			
	0	0,20	0,10			
1	1	0,25	0,15			
	2	0,30	0,20			
	0	0,25	0,15			
2	1	0,30	0,20			
	2	0,35	0,25			

Podpowiedź dotyczy pionowych elementów budynku

Wybi	erz wartość dod	atku ma mostki (cieplne ×
Dotyczy poziomycł	n elementów budyn	ku	
	Element budynku		ΔU
Lekkap	odłoga (drewno, m	etal itd.)	0
	iężka podłoga (beton itd.) Łiczba boków będących w kontakcie ze środowiskiem zewnętrznym	1	0,05
Ciężka podłoga (beton itd.)		2	0,10
		3	0,15
		4	0,20

Podpowiedź dotyczy poziomych elementów budynku

Wybierz wartość dodatku ma	a mostki cieplne 🛛 🗙
Dotyczy otworów	v
Powierzchnia elementu budynku [m²]	ΔU
0 - 2	0,50
>2 - 4	0,40
>4 - 9	0,30
>9 - 20	0,20
>20	0,10

Podpowiedź dotyczy otworów

5.1.5 Opis okno właściwości dla przegród typu drzwi, okna zewnętrzne i wewnętrzne

W skład tej grupy wchodzą przegrody typu drzwi zewnętrzne, drzwi wewnętrzne, okna zewnętrzne i okna wewnętrzne. Wszystkie te przegrody charakteryzują się tym, że można im przypisać tylko współczynnik U i dodatkowe parametry niezbędne do obliczeń zysków od nasłonecznienia.

TYP – pole to służy do wybierania jednego z 11 typów przegród: ściany zewnętrznej, ściany wewnętrznej, ściany na gruncie, podłogi na gruncie, stropu nad przejazdem, stropu wewnętrznego, dachu, okna zewnętrznego, okna wewnętrznego, drzwi zewnętrznych, drzwi wewnętrznych,

NAZWA– pole służące do nadawania nazwy przegrodom, nazwy będą później wyświetlane w tabelkach w pomieszczeniach i strefach,

SYMBOL – pole służące do definiowania symbolu przegrody, który będzie później widoczny w drzewku definicji przegród i raportach,

SPOSÓB OBLICZEŃ – pole to służy do wyboru jednego z dwóch sposobów obliczeń współczynnika U, dla tych typów przegród dostępny jest wariant *ZDEFINIOWANE OSZKLENIE PRZEGRODY* oraz wariant *ZDEFINIOWANE CAŁKOWITY WSPÓŁCZYNNIK PRZENIKANIA*.

Właściwości prz	egrody	
Тур:	Okno zewnętrzne	Mostek cieplny przegrody ΣΨ _{kk} =0,90 W/K Oblicz
Nazwa: Symbol: Sposób obliczeń: Współczynnik U = 1,20 $\frac{W}{m^2 K}$ Współczynnik urządzenia prz F = 1,00 Udział pola pow całkowitej	OKIO ZEWIĘU ZIE OZ 1 Zdefiniowany całkowity współczynnik przenikania przenikania Tablice korekcyjny ze względu na teciwsłoneczne Tablice wierzchni przeszklonej do	Poprawki do współ. przenikania Uc Wg normy: PN-EN ISO 6946 $\Delta U_0 = 0 \frac{W}{m^2 K}$ Oblicz Emisyjność powierzchniowa $\varepsilon = 0,80$
Współczynnik j promieniowan g _n = 0,75	przepuszczalności ia słonecznego szyby Tablice	
Długość W: = 1,0	00 m Wysokość H: = 2,00 m	Pole powierzchni A: = 2,00 m ²

Właściwości przegród okien i drzwi - metoda Uproszczona obliczania mostków

-Właściwości prz	zegrody		
Тур:	Okno zewnętrzne	Mostek cieplny przegrody	
Nazwa:	Okno zewnętrzne	ΣΨ _k t= T K	Oblicz
Symbol:	OZ 100 x 150		
Sposób obliczeń:	Zdefiniowany całkowity współczynnik przenikania		
Współczynnik	przenikania	Poprawki do współ. przen	ikania Uc
$U = 1,40 \frac{W}{m^2 K}$	Tablice	Wg normy: PN-EN ISO 6946	011
Współczynnik urządzenia prz Ruchome u	korekcyjny ze względu na zeciwsłoneczne rządzenia przeciwsłoneczne	$\Delta U_0 = 0 \frac{1}{m^2 K}$ Emisyjność powierzchniow $\varepsilon = 0.80$	Oblicz wa
f _c = 0,45	Tablice	c -,	
Udział pola po całkowitej C = 0,70	wierzchni przeszklonej do —		
Współczynnik promieniowar	przepuszczalności na słonecznego szyby		
g _{gi} =0,70	Tablice		
Przegroda z	zadanymi wymiarami		
Długość W: = 1,	00 m Wysokość H: = 1,50 m	Pole powierzchni A: = 1,50 m ²	

Pełny zestaw właściwości przegród okien i drzwi, norma PN EN 13790:2008

Właściwości prz	earody		
masciwosci piz	egrouy		
Тур:	Okno zewnętrzne	Wspołczynnik akumulacji	
Nazwa:	Okno zewnętrzne	∆z _i = 0 h	Tablice
Symbol:	OZ 100 x 150	Mostek cieplny przegrody	_
Sposób obliczeń:	Zdefiniowany całkowity współczynnik przenikania	$\Sigma \Psi_{kk} = \prod_{K} \frac{1}{K}$	Oblicz
Współczynnik	aściwości przegrodyWspółczynnik akumulacji $\Delta z_i = 0$ hTablice $\Delta z_i = 0$,45Tablice $\Delta z_i = 0,45$ Tablice $\Delta z_i = 0,45$ Tablice $\Delta z_i = 0,45$ Tablice $\Delta z_i = 0,70$ Współczynnik przepuszczalności $z = 0,70$ Tablice $\Delta z_i = 0,70$ Tablice $z = $		
U = 1,40 W/m ² K	Tablice	Wg normy: PN-EN ISO 6946	
Współczynnik	korekcyjny ze względu na	$\Delta U_0 = 0 \frac{W}{m^2 K}$	Oblicz
urządzenia prz	eciwsłoneczne	Wysokość parapetu	
Ruchome u	rządzenia przeciwsłoneczne		
f _c = 0,45	Tablice	H _p = 0,00 m	
Klasa przegrod	dy	Emisyjność powierzchniow	va
1	Tablice	ε = 0,80	
Udział pola pov	wierzchni przeszklonej do	Współczynnik przepuszcza	alności
całkowitej			
C = 0,70		b = 0,09	Oblicz
Współczynnik promieniowan	przepuszczalności ia słonecznego szyby		
g _{gl} =0,70	Tablice		
 Przegroda z 	zadanymi wymiarami		
Długość W: = 1,	00 m Wysokość H: = 1,50 m	Pole powierzchni A: = 1,50 m ²	

Pełny zestaw właściwości przegrody okno, WT 2014

Właściwości prz	egrody		
Тур:	Drzwi zewnętrzne	Współczynnik akumula	acji
Nazwa:	Drzwi zewnętrzne 100x200	<u>∧</u> z _i = 0 h	Tablice
Symbol:	DZ 100x200	Mostek cieplny przegr	ody
Sposób obliczeń:	Zdefiniowany całkowity współczynnik przenikania	$\Sigma \Psi_{K_{K}} = 0 \frac{W}{K}$	Oblicz
Współczynnik j	orzenikania	Poprawki do współ. pr	zenikania Uc
$U = 2,60 \frac{W}{m^2 K}$	Tablice	Wg normy: PN-EN ISO 6	946
Klasa przegrod	ly .	$\Delta U_0 = 0 \frac{VV}{m^2 K}$	Oblicz
1	Tablice		

Pełny zestaw właściwości przegrody drzwi, WT2014

NARZUCONY WSPÓŁCZYNNIK PRZENIKANIA U – pole służące do definiowania współczynnika przenikania U przegrody, użytkownik może skorzystać z podpowiedzi otwieranej przyciskiem **Tablice**.

WSPÓŁCZYNIK MOSTKÓW CIEPLNYCH ΔU_o – pole do wstawiania wartości dodatków na mostki cieplne, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem ^{Oblicz}

WYSOKOŚC PARAPETU H_p - pole do wstawiania odległości między podłogą, a powierzchnią parapetu.

WSPÓŁCZYNIK PRZEPUSZCZALNOŚCI PROMIENIOWANIA SŁONECZNEGO SZYBY g_{\perp} *lub TR*- pole do wstawiania wartości współczynnika przepuszczalności promieniowania słonecznego, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice. Wartość potrzebna do obliczeń zysków ciepła. (dla normy PN-EN ISO 13790 i PN 832 oznaczeniem tego współczynnika jest symbol g_{\perp} , dla normy PN B 02025 oznaczenie TR).

Podpowiedź współczynnik przepuszczalności promieniowania słonecznego

UDZIAŁ POLA POWIERZCHNI PRZESZKLONEJ DO CAŁKOWITEJ F_F *lub* C– pole do wstawiania wartości współczynnika ramy, program domyślnie dla okien wstawia 0,7 dla drzwi 0. Wartość potrzebna do obliczeń zysków ciepła. (pole to występuje tylko dla norm PN-EN ISO 13790 i PN 832).

WSPÓŁCZYNNIK KOREKCYJNY ZE WZGLĘDU NA URZĄDZENIA PRZECIWSŁONECZNE fc pole do wstawiania wartości współczynnika, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice. W świadectwie energetycznym $g_{gl+sh} = f_c * g_{gl}$. Dla sezonu grzewczego wartości graniczne użycia

urządzeń przeciwsłonecznych wynosi 500 W/m^2 , ale dla sezonu chłodniczego 300 W/m^2 (wartości godzinowe). Wartość potrzebna do obliczeń zysków ciepła.

	Współczynnik korek	cyjny ze wzglęc	lu na urządzenia	a przeciwsłoneo	zne ×	
	Lp. Typ zasłon	Właściwoś	ci optyczne	Współczynnik korekcyjny redukcji promieniowania fc		
Lp.		Współczynnik absorpcji	Współczynnik przepuszczalnoś ci	Osłona wewnętrzna	Osłona zewnętrzna	
		0,1	0,05	0,25	0,10	
1	1 Białe zaluzje o lamelach nastawnych		0,1	0,30	0,15	
			0,3	0,45	0,35	
		0,1	0,5	0,65	0,55	
2	Zasłony białe		0,7	0,80	0,75	
				0,9	0,95	0,95
			0,1	0,42	0,17	
3	Tkaniny kolorowe	0,3	0,3	0,57	0,37	
			0,5	0,77	0,57	
4	Tkaniny z powłoką aluminiową	0,2	0,05	0,20	0,08	
				Anuluj	ОК	

Podpowiedź współczynnik korekcji ze względu na urządzenia przeciwsłoneczne

EMISYJNOŚĆ POWIERZCHNIOWA e– pole do wstawiania wartości współczynnika ramy, program domyślnie dla okien wstawia 0,8. Wartość potrzebna do obliczeń zysków ciepła w przypadku wybrania obliczeń z chłodzeniem.

WSPÓŁCZYNNIK PRZENIKALNOŚCI ENERGII CAŁKOWITEJ OKNA g_c , g- pole do edycji przez użytkownika, program wylicza wartośc domyślna na podstawie wzoru $g_c = F_{sh,gl} \cdot g_{\perp}$. Wartość wykorzystywana jest w projektowanej charakterystyce energetycznej budynku do sprawdzenia warunku min zasłonięcia przegrody przezroczystej przed słońcem wg WT 2008. Według WT 2014 $g = f \cdot g_n$.

MOSTEK CIEPLNY PRZEGRODY $\Sigma \Psi_k \cdot l_k [W/m \cdot K]$ – pole to służy do definiowania globalnie mostków cieplnych dla wybranych przegród, użytkownik może wpisać własną wartość lub obliczyć ją na podstawie katalogu mostków cieplnych otwieranego przyciskiem O^{DHCZ} . Wartości wpisane w tym polu przejdą automatycznie do wszystkich przegród tego typu wpisanych w stratach przez przenikanie.

GRUPA PRZEGRODY Z ZADANYMI WYMIARAMI – zaznaczenie pola powoduje włączenie automatycznego wstawiania wymiarów przegrody (H - wysokości, W- długości) po wstawieniu do struktury budynku lub stref.

Właściwości prz	egrody					
Тур:	Okno zewnętrzne	Mo	stel	k cieplny przegrody		
Nazwa:	Okno zewnętrzne	Σ	Ψ _k ι=	Oblic	z	
Symbol:	0Z 1					
Sposób obliczeń:	Zdefiniowane oszklenie przegrody					
Współ. p	rzenikania ciepła oszklenia Ug=	3,300		Pow.oszklenia[m²] Ag=	1,000	
Współ. przeni	ikania ciepła ramy okiennej Uf=	2,800		Pow. ramy okiennej[m²] Af=	0,200	
Współ. linie	owego przenikania mostka Ψg=	0,000		Dł. liniowego mostka[m] Lg=	0,000	
urządzenia prz F _ sh. g1 ,00 Udział pola pov całkowitej C = 0,83 Współczynnik promieniowan g _n = 0,75	reciwsłoneczne Tablice wierzchni przeszklonej do przepuszczalności ia słonecznego szyby Tablice	ε	= 0,	80		
Przegroda z	zadanymi wymiarami					
Długość W: = 1,	00 m Wysokość H: = 2,00 r	n Pole	pov	vierzchni A: = 2,00 m ²		

Właściwości przegród okien i drzwi wariant A norma PN-EN 13790:2009

Obliczenia przenikania ciepła dla zdefiniowanego oszklenia przegrody wykonujemy wg normy PN- EN ISO 10077-1 wzór :

$$U_{ok} = \frac{U_g \cdot A_g + U_f \cdot A_f + \Psi_g \cdot l_g}{A_g + A_f}$$

*WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA OSZKLENIA U*_g [*W*/ m^2 ·*K*] – pole do wstawienia własnej wartości przez użytkownika lub skorzystania z podpowiedzi uruchamianej przyciskiem ….

	Oszklenie			Współczynnik przenikania ciepła dla różnych typów przestrzeni gazowej¹ Ug				a różnych Ug
Тур	Szkło	Emisyjn ość normaln a	Wymiary mm	Powietr ze	Argon	Krypton	SF6 ²	Ksenon
			4-6-4	3,3	3,0	2,8	3,0	2,6
	Szkło		4-8-4	3,1	2,9	2,7	3,1	2,6
	niepowlekane(zw	0,89	4-12-4	2,8	2,7	2,6	3,1	2,6
	ykłe szkło)		4-16-4	2,7	2,6	2,6	3,1	2,6
			4-20-4	2,7	2,6	2,6	3,1	2,6
			4-6-4	2,7	2,3	1,9	2,3	1,6
			4-8-4	2,4	2,1	1,7	2,4	1,6
	Jedna szyba powlekana	≤0,2	4-12-4	2,0	1,8	1,6	2,4	1,6
	porronana		4-16-4	1,8	1,6	1,6	2,5	1,6
		4-20-4	1,8	1,7	1,6	2,5	1,7	
		≤0,15	4-6-4	2,6	2,3	1,8	2,2	1,5
			4-8-4	2,3	2,0	1,6	2,3	1,4
Oszklenie podwójne	Jedna szyba powlekana		4-12-4	1,9	1,6	1,5	2,3	1,5
			4-16-4	1,7	1,5	1,5	2,4	1,5
			4-20-4	1,7	1,5	1,5	2,4	1,5
			4-6-4	2,6	2,2	1,7	2,1	1,4
			4-8-4	2,2	1,9	1,4	2,2	1,3
	powlekana	≤0,1	4-12-4	1,8	1,5	1,3	2,3	1,3
			4-16-4	1,6	1,4	1,3	2,3	1,4
			4-20-4	1,6	1,4	1,4	2,3	1,4
			4-6-4	2,5	2,1	1,5	2,0	1,2
	ledge ends		4-8-4	2,1	1,7	1,3	2,1	1,1
	powlekana	≤0,05	4-12-4	1,7	1,3	1,1	2,1	1,2
			4-16-4	1,4	1,2	1,2	2,2	1,2
			4-20-4	1,5	1,2	1,2	2,2	1,2
	Szkło		4-6-4-6-4	2,3	2,1	1,8	1,9	1,7
	niepowlekane(zw	0,89	4-8-4-8-4	2,1	1,9	1,7	1,9	1,6
	ykłe szkło)		4-12-4-12-4	1,9	1,8	1,6	2,0	1,6
			4-6-4-6-4	1,8	1,5	1,1	1,3	0,9

Podpowiedź współczynnik przenikania ciepła oszklenia U_g

WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA RAMY OKIENNEJ U_f [*W*/(*m*²·*K*)] – pole do wstawienia własnej wartości przez użytkownika lub skorzystania z podpowiedzi uruchamianej przyciskiem ….

Podpowiedź współczynnik przenikania ciepła ramy U_f wg PN-EN ISO 10077-1

Współczynnik przenikania ciepła ramy Uf				
Wg danych producentów	*			
Rodzaj i materiał ramy	Uf			
PCV (profil trzykomorowy)	1,50-1,65			
Drewno (profil jednogramowy klejony)	1,90-2,00			
PCV (profil zwykły)	2,15-2,30			
Aluminium (profil z przekładką termiczną)	2,60-3,10			
Anuluj	ОК			

Podpowiedź współczynnik przenikania ciepła ramy Uf wg danych producentów

LINIOWY WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA MOSTKA Ψ *g* [*W*/(*m*·*K*)] – pole do wstawienia własnej wartości przez użytkownika lub skorzystania z podpowiedzi uruchamianej przyciskiem ….

Liniowy współczynnik przenikania ciepła mostka Ψg						
Ramki dystansowe z alı	uminium i stali					
Liniowy współczynnik przenikania ciepła dla różnych typów oszklenia Ψg						
Typ Ramy	Oszklenie podwójne lub potrójne, szkło niepowlekane napełnione powietrzem lub gazem gazem					
Drewniana lub PVC	0,06 0,08					
Metalowa z przekładką cieplną	0,08	0,11				
Metalowa bez przekładki cieplnej	0,02 0,05					
¹ Jedna szyba powiekana do oszklenia podwójnego. ² Dwie szyby powiekane do oszklenia potrójnego.						
Anuluj						

Liniowy współczynnik przenikania ciepła mostka Ψ_g ramy dystansowej z aluminium i stali

Liniowy współczynnik przenikania ciepła mostka Ψg				
Ramki z ulepszonymi w	łaściwościami cieplnymi	v		
Wartości liniowego współczynnika przenikania ciepła dla różnych typó oszklenia o ulepszonych właściwościach cieplnych Ψg				
Typ Ramy	Oszklenie podwójne lub potrójne, szkło niepowlekane napełnione powietrzem lub gazem	Oszklenie podwójne¹ lub potrójne², szkło niskoemisyjne napełnione powietrzem lub gazem		
Drewniana lub PVC	0,05	0,06		
Metalowa z przekładką cieplną	0,06	0,08		
Metalowa bez przekładki cieplnej	0,01 0,04			
¹ Jedna szyba powlekana do oszklenia podwójnego.				
Anuluj OK				

Liniowy współczynnik przenikania ciepła mostka Ψ_g ramy z ulepszonymi właściwościami cieplnymi

POWIERZCHNIA OSZKLENIA $A_g[m^2]$ – pole do wstawienia własnej wartości przez użytkownika.

POWIERZCHNIA RAMY OKIENNEJ $A_f[m^2]$ – pole do wstawienia własnej wartości przez użytkownika.

DŁUGOŚĆ LINIOWEGO MOSTKA L₈ [m] – pole do wstawienia własnej wartości przez użytkownika, w przypadku okna należy podać obwód szyby.

UDZIAŁ POLA POWIERZCHNI PRZESZKLONEJ DO CAŁKOWITEJ C– pole do wstawiania wartości współczynnika ramy, program domyślnie wylicza wartość na podstawie wprowadzonych powierzchni A_g i A_f.

WSPÓLCZYNNIK KOREKCYJNY ZE WZGLĘDU NA URZĄDZENIA PRZECIWSŁONECZNE F_{sh,gl} - pole do wstawiania wartości współczynnika, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice . Wartość potrzebna do obliczeń zysków ciepła.

EMISYJNOŚĆ POWIERZCHNIOWA ε – pole do wstawiania wartości współczynnika ramy, program domyślnie dla okien wstawia 0,8. Wartość potrzebna do obliczeń zysków ciepła w przypadku wybrania obliczeń z chłodzeniem.

WSPÓŁCZYNNIK PRZENIKALNOŚCI ENERGII CAŁKOWITEJ OKNA g_c – pole do edycji przez użytkownika, program wylicza wartośc domyślna na podstawie wzoru $gc = F_{sh,gl} \cdot g_{\perp}$. Wartość wykorzystywana jest w Projektowanej Charakterystyce Energetycznej Budynku do sprawdzenia warunku min zasłonięcia przegrody przezroczystej przed słońcem wg WT 2008. Według WT 2014 $g = f \cdot g_n$.

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń współczynnika przenikania ciepła "U" przegród

MOSTEK CIEPLNY PRZEGRODY $\Sigma \Psi_k \cdot l_k [W/m^2 \cdot K]$ pole to służy do definiowania globalnie mostków cieplnych dla wybranych przegród, użytkownik może wpisać własną wartość lub obliczyć ją na podstawie katalogu mostków cieplnych otwieranego przyciskiem \circ Wartości wpisane w tym polu przejdą automatycznie do wszystkich przegród tego typu wpisanych w stratach przez przenikanie.

GRUPA PRZEGRODY Z ZADANYMI WYMIARAMI – zaznaczenie pola powoduje włączenie automatycznego wstawiania wymiarów przegrody (H - wysokości, W- długości) po wstawieniu do struktury budynku lub stref.

5.1.6 Opis okno właściwości dla przegród typu podłoga na gruncie

W skład tej grupy wchodzą przegrody typu podłoga na gruncie. Użytkownik ma możliwość wstawienia poszczególnych warstw przegrody i wpisanie parametrów charakteryzujących podłogi na gruncie dla normy gruntowej PN-EN 12831 są to: P, A_g , B', dla normy gruntowej PN-EN ISO 13370 P, A_g , B', λ , W, R_W , R_N , Z, dla normy PN-EN ISO 6946 R_{GR} .

TYP – pole to służy do wybierania jednego z 13 typów przegród: ściany zewnętrznej, ściany wewnętrznej, ściany na gruncie, podłogi na gruncie, stropu nad przejazdem, stropu wewnętrznego, stropu zewnętrznego dachu, okna zewnętrznego, okna połaciowego "okna wewnętrznego, drzwi zewnętrznych, drzwi wewnętrznych,

NAZWA – pole służące do nadawania nazwy przegrodom, nazwy będą później wyświetlane w tabelkach w pomieszczeniach i strefach,

SYMBOL – pole służące do definiowania symbolu przegrody, który będzie później widoczny w drzewku definicji przegród i raportach,

SPOSÓB OBLICZEŃ – pole to służy do wyboru jednego z dwóch sposobów obliczeń współczynnika U.

Właściwości przegrody typu podłoga na gruncie

OPORY CIEPLNE R_{si} – pole do wstawiania wartości oporów przejmowania ciepła na wewnętrznej powierzchni. Program domyślnie wstawia wartość na

podstawie typu przegrody wg poniższej tabelki (przycisk 👔 włącza nam podpowiedź):

Typ przegrody	Kierunek	Rsi
Ściana zewnętrzna	poziomy	0,13
Ściana wewnętrzna	poziomy	0,13
Ściana na gruncie	poziomy	0,13
Strop wewnętrzny	góra	0,10
Dach	góra	0,10
Strop nad przejazdem	dół	0,17
Podłoga na gruncie	dół	0,17

Tabela nr współczynnik R_{SI}

OPORY CIEPLNE Rse – pole do wstawiania wartości oporów przejmowania ciepła na zewnętrznej powierzchni. Program domyślnie wstawia wartość na podstawie typu przegrody wg poniższej tabelki (przycisk włącza nam podpowiedź): A

Typ przegrody	Kierunek	Rse
Ściana zewnętrzna	poziomy	0,04
Ściana wewnętrzna	poziomy	0,13
Ściana na gruncie	poziomy	0,04
Strop wewnętrzny	góra	0,10
Dach	góra	0,04
Strop nad przejazdem	dół	0,04
Podłoga na gruncie	dół	0,17

Tabela nr współczynnik Rse

 $WSPÓŁCZYNIK MOSTKÓW CIEPLNYCH \Delta U_{\theta}$ – pole do wstawiania wartości dodatków na mostki cieplne,

użytkownik może skorzystać z podpowiedzi włączanej przyciskiem (tabelki, patrz rozdział 2.1.2)

ZAKŁADKA WARSTWY PRZEGRODY

Tabelka warstwy przegrody służy do wstawiania poszczególnych warstw definiowanych przegród. Możliwe są dwa sposoby wprowadzania danych albo ręcznie wpisując dane (nazwa, szerokość d, współczynnik λ , opór R), albo poprzez przycisk … właczyć okno bazy materiałów. W tabelce Warstw przegrody numer L.p.: wartość 1 odpowiada warstwie zewnetrznej przegrody natomiast każdy numer 1+ n warstwie bliżej obszaru wewnętrznego.

	Warstwy przegrody					
Lp.	.p. Materiał		d [m]	λ [W/m-K]	R [m²K/W]	+
	Strona zewnętrzna					~
1	Sosna i świerk w poprzek włókien		0,020	0,160	0,125	<u> </u>
2	Słabo wentylowane warstwy powietrzne		0,040		0,150	Ť
3	Filce, maty i płyty z wełny mineralnej 80		0,150	0,045	3,333	ŧ
4	Płyta gipsowo-kartonowa		0,015	0,230	0,065	D h
	Strona wewnętrzna					
						D
						=*

Tabelka warstw przegrody

L.p. – kolejny numer warstwy,

MATERIAL – pole służące do wpisywania nazwy użytego materiału, użytkownik może poprzez przycisk … wybrać gotowy materiał z przypisanymi parametrami,

d [m] - pole służące do wpisywania szerokości warstwy, wartości należy wpisywać w metrach,

 λ [*W*/*m*²·*K*] - pole służące do wpisywania obliczeniowego współczynnika przewodzenia ciepła, w przypadku wybrania materiału z bazy programu wartość wypełniana automatycznie,

R $[m^2 \cdot K/W]$ - pole służące do wpisywania obliczeniowego oporu cieplnego warstwy. Program automatycznie wyliczy wartość na podstawie danych z kolumn $\lambda i d$ z wzoru: $R = \frac{d}{2}$,

Opis funkcjonalności przycisków tabelki:

dodawanie nowych warstw do przegrody,

usuwanie warstw z przegrody,

przesuwanie do góry warstwy przegrody (przesuwanie warstwy bliżej strony zewnętrznej przegrody),

przesuwanie do dołu warstwy przegrody (przesuwanie warstwy bliżej strony wewnętrznej przegrody),

h kopiuj warstwę

wklej warstwę

kalkulator do obliczeń warstw słabowentylowanych

5.1.7 Zakładka parametry dodatkowe

Wariant A dla wybranej normy gruntowej PN-EN ISO 13370

W przypadku wybrania tej normy podłogę w całym budynku stanowi całość (nie ma podziału na strefy). Do obliczeń współczynnika przenikania oprócz oporów poszczególnych warstw potrzebne dodatkowe parametry. Współczynnik przenikania dla podłogi na gruncie wyliczany jest z wzoru uzależnionego od rodzaju podłogi i izolacji krawędziowej.

Dla płyty podłogowej na gruncie z izolacja na całej powierzchni lub bez izolacji:

$$U = \frac{2 \cdot \lambda}{\pi \cdot B' + d_t} \ln\left(\frac{\pi \cdot B'}{d_t} + 1\right)$$

Dla płyty podłogowej na gruncie z pionową izolacją krawędziową bez izolacji podłogi:

$$U = \frac{2 \cdot \lambda}{\pi \cdot B' + d_t} \ln\left(\frac{\pi \cdot B'}{d_t} + 1\right) - \frac{\frac{2 \cdot \lambda}{\pi} \left[\ln\left(\frac{2 \cdot D}{d_t} + 1\right) - \ln\left(\frac{2 \cdot D}{d_t + d'} + 1\right) \right]}{B'}$$

Dla płyty podłogowej na gruncie z poziomą izolacją krawędziową bez izolacji podłogi:

$$U = \frac{2 \cdot \lambda}{\pi \cdot B' + d_t} \ln\left(\frac{\pi \cdot B'}{d_t} + 1\right) - \frac{\frac{2 \cdot \lambda}{\pi} \left[\ln\left(\frac{D}{d_t} + 1\right) - \ln\left(\frac{D}{d_t + d'} + 1\right)\right]}{B'}$$

Dla płyty podłogowej na gruncie z pionową izolacją krawędziową z izolacją podłogi:

$$U = \frac{\lambda}{0,457 \cdot B' + d_t} - \frac{\frac{2 \cdot \lambda}{\pi} \left[ln \left(\frac{2 \cdot D}{d_t} + 1 \right) - ln \left(\frac{2 \cdot D}{d_t + d'} + 1 \right) \right]}{B'}$$

Dla płyty podłogowej na gruncie z poziomą izolacją krawędziową z izolacją podłogi:

$$U = \frac{\lambda}{0.457 \cdot B' + d_t} - \frac{\frac{2 \cdot \lambda}{\pi} \left[ln \left(\frac{D}{d_t} + 1 \right) - ln \left(\frac{D}{d_t + d'} + 1 \right) \right]}{B'}$$

Dla płyty podłogowej pod gruntem z podłogą nieizolowaną:

$$U = \frac{A \cdot \frac{2 \cdot \lambda}{\pi \cdot B' + d_t + 0.5 \cdot z} ln\left(\frac{\pi \cdot B'}{d_t + 0.5 \cdot z} + 1\right) + z \cdot P \cdot \frac{2 \cdot \lambda}{\pi \cdot z} \left(1 + \frac{0.5 \cdot d_t}{d_t + z}\right) ln\left(\frac{z}{d_w} + 1\right)}{A + z \cdot P}$$

Dla płyty podłogowej pod gruntem z podłogą izolowaną:

Zakładka dodatkowe parametry dla normy PN EN ISO 13370 Płyta na gruncie

TYP PODŁOGI – pole służące do wyboru typu podłogi, użytkownik ma do wyboru dwa rodzaje na podstawie, których wykonane będą obliczenia 1. *Płyta na gruncie*, 2. *Płyta poniżej gruntu*.

OBWÓD P [m] – pole służące do wpisania zewnętrznego obwodu płyty podłogowej, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

POWIERZCHNIAA_g $[m^2]$ – pole służące do wpisania pola powierzchni podłogi, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

PARAMETR CHARAKTERYSTYCZNTB'[m] – pole służące do wpisania parametru charakterystycznego podłogi, program domyślnie wylicza wartość na podstawie wzoru: $B' = \frac{2 \cdot A_g}{p}$

GRUBOŚĆ ŚCIANY ZEWNĘTRZNEJ W [m] – pole służące do wstawiania wartości grubości ściany zewnętrznej. Wartość ta potrzebna jest do wyliczeń współczynnika przenikania ciepła U podłogi (do wyliczenia współczynnika d_t), w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

TYP IZOLACJI KRAWĘDZIOWEJ – pole służące do wybory typu izolacji krawędziowej, użytkownik ma do wyboru następujące wartości: 1.*bez izolacji*, 2.*izolowana na całej powierzchni*, 3.*pionowa izolacja krawędziowa z izolacją*, 4.*pionowa izolacja krawędziowa bez izolacji*, 5. *pozioma izolacja krawędziowa z izolacją*, 6.*pozioma izolacja krawędziowa bez izolacji*.

WSPÓŁCZYNNIK PRZEWODNOŚCI CIEPLNEJ GRUNTU λ [W/ m·K] – pole służące do wpisania współczynnika przewodności gruntu, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice

Opór cieplny gruntu przylegającego do ściany 💦 본				
Kategoria Opis Przewodność cieplna A W/m·K				
	1	Glina lub ił	1,50	
	2	Piasek lub żwir	2,00	
	3	Lita skała	3,50	

Podpowiedź opór cieplny gruntu

OPÓR CIEPLNY IZOLACJI KRAWĘDZIOWEJR_N $[m^2 \cdot K/W]$ – pole służące do wpisania oporu cieplnego izolacji krawędziowej, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice

	Opór cieplny izolacji krawędziowej 🛛 🗙			
Typ izolacji: Płyta z wełny mineralnej				
Grubošć Rn mm m²K/W				
	20	0,45		
	30	0,70		
40 0,95				
50 1,25				
	80	2,05		
	100	2,55		
	120	3,05		
150 3,80				
160 4,10				
	200	5,10		

Podpowiedź opór cieplny izolacji krawędziowej

ZAGŁĘBIENIE Z [m] – pole służące do wpisania zagłębienia lub szerokości izolacji krawędziowej

Warstwy przegrody	Dodatkowe parametry
Płyta podłogowa	
Typ podłogi: Płyta poniżej	gruntu
Obwód:	P = 135,01 m
Powierzchnia:	A _g = 691,54 m ²
Parametr charakterystyczny:	$B' = \frac{2^*A_g}{P} = 10,24 \text{ m}$
Grubość ściany zewnętrznej:	W = 0,40 m
Współczynnik przewodności o	tieplnej gruntu: $\lambda = 2,00 \frac{W}{m K}$ Tablice
Opór cieplny warstw ściany:	R _W =0,30 <u>m²k</u>
Zagłębienie podłogi w gruncie:	Z = 1,00 m

Zakładka dodatkowe parametry dla normy PN EN ISO 13370. Płyta poniżej gruntu

TYP PODŁOGI – pole służące do wyboru typu podłogi, użytkownik ma do wyboru dwa rodzaje na podstawie, których wykonane będą obliczenia 1.*Płyta na gruncie*, 2.*Płyta poniżej gruntu*.

OBWÓD P [m] – pole służące do wpisania zewnętrznego obwodu płyty podłogowej, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

POWIERZCHNIA A_g [m^2] – pole służące do wpisania pola powierzchni podłogi, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

PARAMETR CHARAKTERYSTYCZNTB'[*m*] – pole służące do wpisania parametru charakterystycznego podłogi, program domyślnie wylicza wartość na podstawie wzoru: $B' = \frac{2 \cdot A_g}{2}$

GRUBOŚĆ ŚCIANY ZEWNĘTRZNEJ W [m] – pole służące do wstawiania wartości grubości ściany zewnętrznej. Wartość ta potrzebna jest do wyliczeń współczynnika przenikania ciepła U podłogi (do wyliczenia

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń współczynnika przenikania ciepła "U" przegród

współczynnika d_t), w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

 $WSPÓŁCZYNNIK PRZEWODNOŚCI CIEPLNEJ GRUNTU <math>\lambda [W/m \cdot K]$ – pole służące do wpisania współczynnika przewodności gruntu, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem

Opór cieplny gruntu przylegającego do ściany				
Kategoria	Opis	Przewodność cieplna ∧ W/m·K		
1	Glina lub ił	1,50		
2	Piasek lub żwir	2,00		
3	Lita skała	3,50		

Podpowiedź opór cieplny gruntu

OPÓR CIEPLNY WARSTWY ŚCIENNEJR $[m^2 \cdot K / W]$ – pole służące do wpisania oporu cieplnego ściany na gruncie.

ZAGŁĘBIENIE Z [m] – pole służące do wpisania zagłębienia podłogi pod gruntem.

Wariant B dla wybranej normy gruntowej PN- EN 12831

W przypadku wybrania tej normy podłogę w całym budynku stanowi całość (nie ma podziału na strefy). Do obliczeń współczynnika przenikania oprócz oporów poszczególnych warstw potrzebne dodatkowe parametry. Współczynnik przenikania dla podłogi na gruncie wyliczany jest z metody uproszczonej, w której należy podać obwód podłogi, powierzchnię, współczynnik U wstawionych warstw i na tej podstawie z tabel wstawiany jest ekwiwalentny współczynnik przenikania ciepła. Norma ta może być wykorzystywana przy obliczeniach strat w pomieszczeniach (parametru niezbędnego do doboru grzejników), a także do określenia świadectwa charakterystyki energetycznej budynku/lokalu.

Zakładka dodatkowe parametry dla normy PN-EN 12831 Płyta na gruncie

TYP PODŁOGI – pole służące do wyboru typu podłogi, użytkownik ma do wyboru dwa rodzaje na podstawie, których wykonane będą obliczenia 1. *Płyta na gruncie*, 2. *Płyta poniżej gruntu*.

OBWÓD P [m] – pole służące do wpisania zewnętrznego obwodu płyty podłogowej, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

POWIERZCHNIA $A_g [m^2]$ – pole służące do wpisania pola powierzchni podłogi, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

PARAMETR CHARAKTERYSTYCZNY B'[m] – pole służące do wpisania parametru charakterystycznego podłogi, program domyślnie wylicza wartość na podstawie wzoru: $B' = \frac{2 \cdot A_g}{p}$

	Płyta podłogowa na gruncie					
р,			Uequiv,bf [W/m ² K	[]		
Б [m]	Bez izolacji	U _{podlogi} = 2,0[W/m ² K]	U _{podłogi} = 1,0[W/m ² K]	U _{podlogi} = 0,5[W/m ² K]	U _{podłogi} = 0,25[W/m ² K]	
2	1,3	0,77	0,55	0,33	0,17	
4	0,88	0,59	0,45	0,30	0,17	
6	0,68	0,48	0,38	0,27	0,17	
8	0,55	0,41	0,33	0,25	0,16	
10	0,47	0,36	0,30	0,23	0,15	
12	0,41	0,32	0,27	0,21	0,14	
14	0,37	0,29	0,24	0,19	0,14	
16	0,33	0,26	0,22	0,18	0,13	
18	0,31	0,24	0,21	0,17	0,12	
20	0,28	0,22	0,19	0,16	0,12	

Na podstawie poniższej tabeli wstawiane są dane do programu

Tabela	płvt	podłogowycł	ı na	gruncie
1 ao cia	pije	poulogonjei	1 110	Signere

Warstwy przegro	ody	Dodatkowe parametry	
Płyta podłogowa			
Typ podłogi: Płyta por	niżej gruntu		
Obwód:	P = 135,01 m	1	
Powierzchnia:	A _g = 691,54 m	12	
Parametr charakterystycz	any: B' = $\frac{2*A_g}{P}$ = 10	0,24 m	
Zagłębienie w gruncie:	Z = 0 m		A BAR AN

Zakładka dodatkowe parametry dla normy PN-EN 12831 Płyta poniżej gruntu

TYP PODŁOGI – pole służące do wyboru typu podłogi, użytkownik ma do wyboru dwa rodzaje na podstawie, których wykonane będą obliczenia 1.*Płyta na gruncie*, 2.*Płyta poniżej gruntu*.

OBWÓD P [m] – pole służące do wpisania zewnętrznego obwodu płyty podłogowej, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

POWIERZCHNIA $A_g [m^2]$ – pole służące do wpisania pola powierzchni podłogi, w przypadku pobrania danych z podkładu budowlanego ArCADia wówczas wartość ta wypełniana jest automatycznie przez program.

ZAGŁĘBIENIE Z [m] – pole służące do wpisania zagłębienia podłogi pod gruntem.

Na	nodstawie	noniższej	tabeli	wstawiane	sa dane	do	nrogramii	
1 vu	pousiume	pomizszej	uuoon	wotu wiune	Sų dune	uu	programa	

	Podłoga podziemia zagłębionego w gruncie z = 1,5 m								
р,	D, Uequiv, bf [W/m ² K]								
Б [m]	Bez izolacji	U _{podlogi} = 2,0[W/m ² K]	U _{podlogi} = 1,0[W/m ² K]	U _{podlogi} = 0,5[W/m ² K]	U _{podłogi} = 0,25[W/m ² K]				
2	0,86	0,58	0,44	0,28	0,16				
4	0,64	0,48	0,38	0,26	0,16				
6	0,52	0,40	0,33	0,25	0,15				
8	0,44	0,35	0,29	0,23	0,15				
10	0,38	0,31	0,26	0,21	0,14				
12	0,34	0,28	0,24	0,19	0,14				
14	0,30	0,25	0,22	0,18	0,13				
16	0,28	0,23	0,20	0,17	0,12				
18	0,25	0,22	0,19	0,16	0,12				
20	0,24	0,20	0,18	0,15	0,11				

Tabela podług podziemnych zagłębionych w gruncie

Podłoga podziemia zagłębionego w gruncie z = 3,0 m								
р,	U _{equiv,bf} [W/m ² K]							
Б [m]	Bez izolacji	U _{podłogi} = 2,0[W/m ² K]	U _{podłogi} = 1,0[W/m ² K]	U _{podłogi} = 0,5[W/m ² K]	$U_{podlogi} = 0,25[W/m^2K]$			
2	0,63	0,46	0,35	0,24	0,14			
4	0,51	0,40	0,33	0,24	0,14			
6	0,43	0,35	0,29	0,22	0,14			
8	0,37	0,31	0,26	0,21	0,14			
10	0,32	0,27	0,24	0,19	0,13			
12	0,29	0,25	0,22	0,18	0,13			
14	0,26	0,23	0,20	0,17	0,12			
16	0,24	0,21	0,19	0,16	0,12			
18	0,22	0,20	0,18	0,15	0,11			
20	0,21	0,18	0,16	0,14	0,11			

Tabela podług podziemnych zagłębionych w gruncie

5.1.8 Opis okno właściwości dla przegród typu ściana na gruncie

W skład tej grupy wchodzi przegroda typu ściana na gruncie. Użytkownik ma możliwość wstawienia poszczególnych warstw przegrody i wpisanie parametrów charakteryzujących ściany na gruncie dla normy gruntowej PN-EN 12831 są to Z, dla normy gruntowej PN-EN ISO 13370 Z, R_F, λ , dla normy PN EN ISO 6946 R_{GR}.

TYP – pole to służy do wybierania jednego z 11 typów przegród: ściany zewnętrznej, ściany wewnętrznej, ściany na gruncie, podłogi na gruncie, stropu nad przejazdem, stropu wewnętrznego, dachu, okna zewnętrznego, okna wewnętrznego, drzwi zewnętrznych, drzwi wewnętrznych,

NAZWA – pole służące do nadawania nazwy przegrodom, nazwy będą później wyświetlane w tabelkach w pomieszczeniach i strefach,

SYMBOL – pole służące do definiowania symbolu przegrody, który będzie później widoczny w drzewku definicji przegród i raportach,

SPOSÓB OBLICZEŃ – pole to służy do wyboru jednego z trzech sposobów obliczeń współczynnika U.

Właś	ciwości prz	egrody						
Тур:		Ściana na grun	cie	Mo	Mostek cieplny przegrody			
Nazv	va:	Ściana na grun	cie	Σι	$\Psi_{kk} = 0 \frac{W}{K}$	ОЫ	icz	
Sym	bol:	SG 1						
Spos	Sposób obliczeń: Zdefiniowane warstwy							
Ор	ory cieplne			Pop	orawki do wsj	pół. przenikania	UC	
R	$=0 \frac{m^2 K}{M}$	R_=0,13	3 <u>m² K</u>	Wg	normy: PN-EN	I ISO 6946		
	se vv	51	vv		J_ =0 <u>W</u>	Ob	icz	
					-0 m²K			
	Warstwo	v przegrody		odatko	we parametr			
		,		ouurre	we paramen	y		
			4		2	D		
Lp.		Materiał	d [m]]	λ [W/m⋅K]	R [m²K/W]	+	
Lp.	Strona zew	Materiał nętrzna	d [m]]	λ [W/m·K]	R [m²K/W]	+	
Lp.	Strona zew Beton zbroj	Materiał nętrzna jony z 1% stali	d [m]] 0,200	λ [W/m·K] 2,300	R [m²K/W] 0,0	+ 87 ×	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna jony z 1% stali nętrzna	d [m]	0,200	λ [W/m·K] 2,300	R [m²K/W] 0,0	+ 87 1	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna iony z 1% stali wnętrzna	d [m]	0,200	λ [W/m·K] 2,300	R [m²K/W] 0,0	+ 87 × 1	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna iony z 1% stali inętrzna	d [m]	0,200	λ [W/m-K] 2,300	R [m ² K/W] 0,0	+ 87 ↑ ↓	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna iony z 1% stali inętrzna	d [m]	0,200	λ [W/m⊀] 2,300	R [m³K/W] 0,0	+ × * +	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna iony z 1% stali wnętrzna	d [m]	0,200	λ [W/m+ζ] 2,300	R [m≆K/W] 0,0	+ × ↑ ↓ ∿	
Lp.	Strona zew Beton zbroj Strona wew	Materiał nętrzna iony z 1% stali nętrzna	d [m]	0,200	λ [W/m+ζ] 2,300	R [m¥K/W] 0,0	+ × ↑ ↓ ∿	
Lp. 1	Strona zew Beton zbroj Strona wew	Materiał nętrzna ony z 1% stal nętrzna	d [m]	0,200	λ [W/m+ζ] 2,300	R [m¥;/W] 0,0	+ 87 1 1	
Lp. 1	Strona zew Beton zbroj Strona wew	Materiał nętrzna ony z 1% stał nętrzna	d [m]	0,200	λ [W/m+ζ] 2,300	R [m¥;/W] 0,0	+ 87 ↑ ↓ □ =*	

Właściwości przegrody typu Ściana na gruncie

włącza nam podpowiedź):

OPORY CIEPLNE R_{si} – pole do wstawiania wartości oporów przejmowania ciepła na wewnętrznej powierzchni. Program domyślnie wstawia wartość na

podstawie typu przegrody wg poniższej tabelki (przycisk

Typ przegrody Kierunek R_{si} Ściana zewnętrzna poziomy 0,13 Ściana wewnętrzna 0,13 poziomy Ściana na gruncie 0.13 poziomy Strop wewnetrzny 0,10 góra Dach góra 0,10 Strop nad przejazdem dół 0,17 0,17 Podłoga na gruncie dół

Tabela nr współczynnik RsI

OPORY CIEPLNE R_{se} – pole do wstawiania wartości oporów przejmowania ciepła na zewnętrznej powierzchni. Program domyślnie wstawia wartość na podstawie typu przegrody wg poniższej tabelki (przycisk włącza nam podpowiedź):

Typ przegrody	Kierunek	Rse
Ściana zewnętrzna	poziomy	0,04
Ściana wewnętrzna	poziomy	0,13
Ściana na gruncie	poziomy	0,04
Strop wewnętrzny	góra	0,10
Dach	góra	0,04
Strop nad przejazdem	dół	0,04
Podłoga na gruncie	dół	0,17

Tabela nr współczynnik Rse

WSPÓŁCZYNIK MOSTKÓW CIEPLNYCH ΔU₀- pole do wstawiania wartości dodatków na mostki cieplne,

użytkownik może skorzystać z podpowiedzi włączanej przyciskiem (tabelki patrz rozdział 2.1.2, rysunki nr 65)

ZAKŁADKA WARSTWY PRZEGRODY

Tabelka warstwy przegrody służy do wstawiania poszczególnych warstw definiowanych przegród. Możliwe są dwa sposoby wprowadzania danych albo ręcznie wpisując dane (nazwa, szerokość d, współczynnik λ , opór R), albo poprzez przycisk … włączyć okno bazy materiałów. W tabelce *Warstw przegrody* numer *L.p.* 1 odpowiada warstwie zewnętrznej przegrody natomiast każdy numer 1+ n warstwie bliżej obszaru wewnętrznego.

	Warstwy przegrody				
Lp.	Materiał	d [m]	λ [W/m-K]	R [m²K/W]	+
	Strona zewnętrzna				~
1	Płyta styropianowa EPS 80-036 FASADA	 0,000	0,036	0,00	o Û
2	Beton zbrojony z 1% stali	 0,200	2,300	0,08	7 T
	<u>Strona wewnętrzna</u>	 			- •
					D
					=*

Tabelka warstw przegrody

L.p. – kolejny numer warstwy,

MATERIAL – pole służące do wpisywania nazwy użytego materiału, użytkownik może poprzez przycisk … wybrać gotowy materiał z przypisanymi parametrami,

d [m] - pole służące do wpisywania szerokości warstwy, wartości należy wpisywać w metrach,

 λ [*W*/*m*²·*K*] - pole służące do wpisywania obliczeniowego współczynnika przewodzenia ciepła, w przypadku wybrania materiału z bazy programu wartość wypełniana automatycznie,

R $[m^2 \cdot K/W]$ - pole służące do wpisywania obliczeniowego oporu cieplnego warstwy. Program automatycznie wyliczy wartość na podstawie danych z kolumn $\lambda i d$ z wzoru: $R = \frac{d}{2}$,

Opis funkcjonalności przycisków tabelki:

dodawanie nowych warstw do przegrody,

usuwanie warstw z przegrody,

przesuwanie do góry warstwy przegrody (przesuwanie warstwy bliżej strony zewnętrznej przegrody),

przesuwanie do dołu warstwy przegrody (przesuwanie warstwy bliżej strony wewnętrznej przegrody),

wklej warstwę

5.1.9 Zakładka parametry dodatkowe

Wariant A dla wybranej normy gruntowej PN-EN ISO 13370

Do obliczeń współczynnika przenikania oprócz oporów poszczególnych warstw potrzebne dodatkowe parametry z , R_F , λ_r . Współczynnik przenikania dla ściany na gruncie wyliczany jest z wzoru:

$$d_w = \lambda \cdot (R_{si} + R_W + R_{se})$$

$$d_t = w + \lambda \cdot (R_{si} + R_F + R_{se})$$
$$U_{bw} = \frac{2 \cdot \lambda}{\pi \cdot z} \left(1 + \frac{0.5 \cdot d_t}{d_t + z}\right) ln \left(\frac{z}{d_w} + 1\right)$$

Stacjonarny współczynnik sprzężenia cieplnego $L_{\rm s}$ dla podziemia wyliczamy z wzoru:

 $\mathbf{L}_{\mathrm{s}} = \mathbf{z} \cdot \mathbf{P} \cdot U_{bw}$

Warstwy przegrody	Dodatkowe pa	arametry
Współczynnik przewodności cieplnej gruntu:	$\lambda = 0 \frac{W}{m K}$	Tablice
Opór cieplny konstrukcji podłogi:	$R_F = 0 \frac{m^2 K}{W}$	
Zagłębienie ściany pod gruntem:	Z = 0 m	

Zakładka dodatkowe parametry dla normy PN EN ISO 13370 Ściana na gruncie

WSPÓŁCZYNNIK PRZEWODNOŚCI CIEPLNEJ GRUNTU & [W/m·K] – pole służące do wpisania współczynnika przewodności gruntu, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice

Opór cieplny gruntu przylegającego do ściany						
Kategoria	Opis	Przewodność cieplna ∧ W/m∙K				
1	Glina lub ił	1,50				
2	Piasek lub żwir	2,00				
3	Lita skała	3,50				
3	Lita skała	3,50				

Podpowiedź opór cieplny gruntu

OPÓR CIEPLNY IZOLACJI KRAWĘDZIOWEJ $R_F [m^2 \cdot K / W]$ – pole służące do wpisania oporu cieplnego podłogi stykającej się z ścianą na gruncie, w przypadku pobrania danych z ArCADia ARCH. program automatycznie wypełnia to pole. Wartość ta będzie potrzebna do wyliczeń strat ciepła przez grunt.

ZAGŁĘBIENIE Z [m] – pole służące do wpisania zagłębienia lub szerokości izolacji krawędziowej.

Wariant B dla wybranej normy gruntowej PN-EN 12831

Do obliczeń współczynnika przenikania oprócz oporów poszczególnych warstw potrzebne dodatkowe parametry. Współczynnik przenikania dla ściany na gruncie wyliczany jest z metody uproszczonej, w której należy podać zagłębienie ściany na gruncie, współczynnik U wstawionych warstw i na tej podstawie z tabel wstawiany jest ekwiwalentny współczynnik przenikania ciepła. Norma ta może być wykorzystywana przy obliczeniach strat w pomieszczeniach (parametru niezbędnego do doboru grzejników), a także do określenia świadectwa charakterystyki energetycznej budynku/lokalu.

Warstwy przegrody		Dodatkowe parametry	
Zagłębienie ściany pod gruntem:	z	= 0 m	

Zakładka dodatkowe parametry dla normy PN-EN 12831 Ściana na gruncie

ZAGŁĘBIENIE Z [m] – pole służące do wpisania zagłębienia lub szerokości izolacji krawędziowej, na podstawie tej wartości oraz współczynnika U warstw ściany z poniższej tabelki wstawiany jest współczynnik ekwiwalentny $U_{equiv,bw}$ dla ściany na gruncie.

Ściana na gruncie								
U ściany	U _{equiv,bw} [W/m ² K]							
$[W/m^2 \cdot K]$	z = 0,0 m	z = 1,0 m	z = 2,0 m	z = 3,0 m				
0,0	0,00	0,00	0,00	0,00				
0,50	0,44	0,39	0,35	0,32				
0,75	0,63	0,54	0,48	0,43				
1,00	0,81	0,68	0,59	0,53				
1,25	0,98	0,81	0,69	0,61				
1,50	1,14	0,92	0,78	0,68				
1,75	1,28	1,02	0,85	0,74				
2,00	1,42	1,11	0,92	0,79				
2,25	1,55	1,19	0,98	0,84				
2,50	1,67	1,27	1,04	0,88				
2,75	1,78	1,34	1,09	0,92				
3,00	1,89	1,41	1,13	0,96				
6 OPIS OBLICZEŃ STRAT CIEPŁA W POMIESZCZENIU

6.1 ETAP STRATY CIEPŁA. OBLICZENIA ZAPOTRZEBOWANIA NA CIEPŁO POMIESZCZEŃ (STRUKTURA BUDYNKU)

Etap ten służy do obliczeń zapotrzebowania na ciepło pomieszczeń. Dane te potrzebne są do doboru odbiorników systemu grzewczego (grzejników) i doboru kotła w systemie grzewczym. Program pozwala na obliczenia normami PN-B 03406, PN-EN 12831 metodą uproszczoną i szczegółową. Dodatkowo w przypadku wczytania podkładu z programu ArCADia - ARCHITEKTURA. obliczone moce cieplne i temperatury są automatycznie przenoszone do tabelek pomieszczeń (należy w programie ArCADiA- ARCHITEKRURA. W oknie pomieszczenia pod przyciskiem *Wybór opisu pomieszczeń* wybrać odpowiednie pola do wyświetlania *Temperatura*, *Moc grzewcza*). Okno struktury budynku składa się z czterech części:

- Drzewka struktury budynku,
- Okna właściwości pomieszczenia,
- Zakładek obliczeń strat cieplnych,
- Panelu wyników obliczeń

ArcaDia	TERMO PRO 6.0 Licencja	dla: Test - Ai	rCADia-TER	MO PRO	6 [L01] - 10	0. Certyfikat	t domek wielo	rodzinny	- 🗆 ×
Plik Edycja Ustawienia	El 🌮 🔯 📩 🔻 🏞	▼ ?	ustuki opora	atucznaj	2014 WT 2	014			
	Właściwości nomieszczenia	io charaktery	stykreneig	rycznej	2014, 1112	014	Wyniki obliczej	ó	
	Nazwa: Kuchn	ia M1	H _{T, ie} = 9,32 W/K	Φ _{V, i} =:	384,15 W				
0.4 Łazienk 0.2 Kuchnia	Przeznaczenie: Wybie	rz typ pomiesz	$H_{T, iue} = 0 \frac{W}{K}$	Φ _{RH, i}	=61,74 W				
📻 0. Pokoj M1	Przedrostek	Numer		Stre	fa cieplna		H _{T. ij} = 10,18 W/K	Ф _{НL, 1}	1320,41 W
0.7 Przedpc	0.	Nr= 2		Stref	a O2		⊔ - 236 W	<u> </u>	- 128 32 W
0.6 Kuchnia	Długość	Szerokość		Tem	peratura zima		T, ig X,00 K	♥HL,A [*]	m ²
🔜 🛃 0.5 Pokój M	L = <u>1</u> m	W = <u> m</u>		θ _{i,H} =	20,00 °C	Tablice	H _{V.1} =9,60 W/K	Φ _{HL, V}	=45,83 Wm3
0.0 Klatka s 1. Kondygnacja 2	Powierzchnia A _f = 10,29 m ² Podział	Wysokość H = 2,80 m		Kuba V = 2	atura 18,81 m ³		⊕ _{T, i} =874,52 V	ν Φ _{i, i} =1	258,67 W
1.9 Pokój M	Straty przez przenikanie Straty p	rzez grunt Strat;	ez grunt Straty przez wentylację Dodatki						
1.13 Łazieni 1.12 Kuchni	Lp. Przegroda	r [sz	n t.] Orientacja	H W [m] [m]	A Aobl [m²] [m²]	Mostki	U [W/m²K] fij	Pokój/Temp. H [ºC] [W	it ot + /KJ [W]
🚽 🚅 1.10 Klatka :	1 🗱 Ściana zewnętrzna		W	2,56 2,62	7,34 7,3	4 0,00	0,29 -	-20,00	2,14 85,46
🖃 🛶 📷 M2	2 🗰 Ściana zewnętrzna		s	2,56 5,29	14,81 12,7	7 0,00	0,29 -	-20,00	8,72 148,78 ×
C Definicie przegród	3 🗱 L. Okno zewnętrzne	1	s	1,70 1,20	2,04 -	0,00	1,70 -	-20,00	8,47 138,72
Straty ciepła	4 🛄 Śdana wewnętrzna		E	2,56 2,43	6,80 6,8	0,00	1,48 0,30	8,00 3	8,01 120,50
Strefy clepine	5 diana wewnętrzna		N	2,56 2,49	6,96 4,9	1 0,00	2,55 0,00	20,00 0	,00 0,00
DANE WEJŚCIOWE	6 🖭 🖵 Drzwi wewnętrzne	1	N	2,05 1,00	2,05 -	0,00	2,60 0,00	20,00	0,00 0,00
OBLICZENIA CIEPLNE	7 🛄 Ściana wewnętrzna		N	2,56 2,62	7,32 7,3	2 0,00	2,55 -0,10	24,001	1,87 -74,74
CERTYFIKAT	8 🛏 Strop wewnętrzny		-	0,00 0,00	10,29 10,2	9 0,00	1,76 0,50	0,00 9	9,04 361,53
Q PODGLĄD PROJEKTU	Raport o blędach								
🖶 WYDRUKI	Lp. Typ					Opis			,
	1 Ostrzeżenie Param	etr "Współczynni	ik przenikania Uo	" w przegro	dzie "STW 1", p	oowinien znajdo	wać się w przedziałe	e od 0,00 do 0,25!	
< (5/12) >	B B B	R	毘		E	1 1	. [].	G, E	Zamknij

Okno struktury budynku - obliczeń strat ciepła w pomieszczeniu wg normy PN-EN 12831 - metoda uproszczona

6.1.1 Opis drzewka Struktura budynku

Drzewko to pozwala na dowolne grupowanie pomieszczeń zarówno na poziomie kondygnacji jak i budynku. Użytkownik poprzez zaznaczanie, a następnie przesuwanie pomieszczenia może dowolnie zmieniać grupę lub kondygnację wybranego pomieszczenia. Grupy znajdujące się w hierarchii nad kondygnacją można traktować, jako grupowanie pionowe (np. podział budynku na klatki schodowe). Grupy znajdujące się w hierarchii poniżej kondygnacji można traktować, jako grupowanie poziome na kondygnacji (np. mieszkania lub pomieszczenia z danej grupy funkcyjnej). W przypadku pierwszej grupy (np. klatka schodowa A) skasowanie kondygnacji nie powoduje usunięcia jej z projektu, a jedynie z danej grupy. W celu usunięcia kondygnacji z projektu musi być ona skasowana z wszystkich grup (w przedstawionym poniżej przypadku z grup klatka schodowa A, klatka schodowa B). Dodanie nowej kondygnacji do projektu widoczne jest w wszystkich grupach pionowych. W przypadku pobrania danych z ArCADia - ARCHITEKTURA. drzewko wypełniane jest automatycznie pomieszczeniami i kondygnacjami. Zaznaczenie pomieszczenia przenosi nas do okna jego parametrów, które wyświetlają się po prawej stronie.

Drzewo Struktury budynku

	Dizewo Struktury budyliku
+	dodawanie nowych kondygnacji do projektu,
R –	dodawanie nowych grup do projektu,
-	dodawanie nowych pomieszczeń do projektu,
Ph	kopiowanie wstawionych pomieszczeń wraz z ich przegrodami i parametrami,
×	usuwania wstawionych w projekcie kondygnacji, grup, pomieszczeń
D	wklejanie skopiowanych pomieszczeń,
₽Ž	sortowanie alfabetyczne pomieszczeń wg przedrostka, numeru i nazwy pomieszczenia
7	praca grupowa, wczytywanie struktury budynku wykonanje w innym pliku projektu .th lub .thb
\$	zmiana widoku kondygnacje/grupy
	oznaczenie graficzne pomieszczenia ogrzewanego,
	oznaczenie graficzne pomieszczenia nieogrzewanego,
	oznaczenie graficzne kondygnacji,
Ŷ	oznaczenie graficzne grupy,

6.1.2 Opis okna Właściwości grupy pomieszczeń

W oknie tym użytkownik może zdefiniować globalne parametry dla pomieszczeń należących do danej grupy takie jak: przedrostek, wysokość w świetle, wysokość kondygnacji, współczynnik nagrzewania, współczynnik osłonięcia, współczynnik poprawkowy, typ wentylacji, krotność wymian, temperatura powietrza nawiewanego, sprawność odzysku instalacji, system wentylacji. Zasada działania jest następujące jeśli wypełnimy poniższe parametry i zaznaczymy je 🗹 wówczas wszystkie nowe pomieszczenia dodawane do tej grupy będą miały wpisane parametry, jeśli w grupie są już pomieszczenia, a my chcemy zmienić w nich jakiś parametr wciskamy przycisk

Właściwości kondygnacji Nazwa kondygnacji Parter	Nume	r kondygnacji Ir = 0	Przedrostek pomieszczeń
Opis E			Wysokość kondygnacji Î ✔ H _{w Świetle} =3,16 m Î ✔ H _{kondygnacji} =3,50 m
Współczynnik nagrzewania f _{RH} =18,00 ^W /m² Tablice Współczynnik osłonięcia e = 0,05 Tablice Współczynnik poprawkowy ε = 1,00 Tablice	✓ Typ wentylacji: brak ✓ Krotność wymian: n = 2,00 $\frac{1}{h}$ Tablice Temperatura powietrza wentylacyjnego θ _u = 20,00 °C Sprawność instalacji odzysku η = 0 % %	System wentyl Wybrany system Zes Przypisz do Nieprzypisane	iacyjny wentylacji: Brak tawienie systemów o strefy cieplnej
Wstaw powyższe dane do wszystkich gru	p tej kondygnacji: Zastosuj		

Okno właściwości grupy pomieszczeń nieogrzewanych

NAZWA GRUPY – pole do edycji przez użytkownika,

PRZEDROSTEK POMIESZCZEŃ – pole do edycji przez użytkownika, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość.

WYSOKOŚĆ W ŚWIETLE – pole do edycji przez użytkownika, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość. Program automatycznie dla nowo wstawianych przegrody typu ściana wewnętrzna pobierze wysokość z tego pola.

WYSOKOŚĆ KONDYGNACJI – pole do edycji przez użytkownika, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość. Program automatycznie dla nowo wstawianych przegrody typu ściana zewnętrzna pobierze wysokość z tego pola.

WSPÓŁCZYNNIK NAGRZEWANIA f_{RH} [*W*/*m*²]- pole do edycji przez użytkownika, jeśli zaznaczymy \checkmark wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do dodatków. Użytkownik może skorzystać z podpowiedzi odpalanej przyciskiem Tablice.

WSPÓŁCZYNNIK OSŁONIĘCIA e- pole do edycji przez użytkownika, jeśli zaznaczymy v wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do dodatków. Użytkownik może skorzystać z podpowiedzi odpalanej przyciskiem Tablice.

WSPÓŁCZYNNIK POPRAWKOWY ε- pole do edycji przez użytkownika, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do dodatków. Użytkownik może skorzystać z podpowiedzi odpalanej przyciskiem ^{Tablice}.

TYP WENTYLACJI - użytkownik wybiera jeden z typów wentylacji jaki ma mieć grupa do wyboru jest grawitacja, mechaniczna, nawiewna, wywiewna, z odzyskiem, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do strat przez przenikanie.

KROTNOŚĆ WYMIAN n [1/h]- pole do edycji przez użytkownika, jeśli zaznaczymy ✓ wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do strat przez przenikanie. Użytkownik może skorzystać z podpowiedzi odpalanej przyciskiem Tablice.

TEMPERATURA POWIETRZA WENTYLACYJNEGO θ_u [\mathcal{C}]- pole do edycji przez użytkownika, do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do strat przez przenikanie, w przypadku kiedy będzie w nim zaznaczona wentylacja nawiewna lub mechaniczna.

SPRAWNOŚĆ INSTALACJI ODZYSKU η [%]- pole do edycji przez użytkownika, do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość do strat przez przenikanie, w przypadku kiedy będzie w nim zaznaczona wentylacja z odzyskiem.

SYSTEM WENTYLACJI – funkcja ta przydatna jest dla osób, które chcą policzyć moc nagrzewnic, w polu Wybrane systemy wentylacji użytkownik wybiera stworzony przez siebie system dla danej grupy, na tej podstawie program sumuje strumienie powietrza i w oknie Zestawienie systemów i dla każdego systemu który ma wentylację mechaniczną można policzyć moc nagrzewnicy wstępnej i wtórnej.

Zestawienie systemów wentylacji w projekcie									×
Lp.	Nazwa systemu	Vnaw [m³/h]	Vwyw [m³/h]	Vmin [m³/h]	Vinf [m³/h]	n [%]	Dobór nag [kV	rzewnicy /]	+
1	System nr 1	0,000	0,000	83,435	0,000	0,000		0,000	~
2	System nr 2	0,000	0,000	83,435	0,000	0,000		0,000	\sim
									Π'n
									Ē
					Raport	1	Anuluj	ОК	

Okno zestawienie systemów wentylacji w projekcie

KOLUMNA NAZWA SYSTEMU – pole do edycji przez użytkownika, określamy w nim nazwę systemu wentylacji,

KOLUMNA STRUMIEŃ POWIETRZA NAWIEWANEGO V_{naw} [m^3/h] – pole wyliczane przez program automatycznie,

KOLUMNA STRUMIEŃ POWIETRZA WYWIEWANEGO V_{wyw} [m^3/h] – pole wyliczane przez program automatycznie,

KOLUMNA STRUMIEŃ POWIETRZA WENTYLACJI GRAWITACYJNEJ V_o [m³/h] – pole wyliczane przez program automatycznie,

KOLUMNA STRUMIEŃ POWIETRZA INFILTRUJĄCEGO $V_{inf} [m^3/h]$ – pole wyliczane przez program automatycznie,

KOLUMNA SPRAWNOŚĆ SYSTEMU ODZYSKU [%] – pole wyliczane przez program automatycznie,

KOLUMNA DOBÓR NAGRZEWNICY [KW] – pole wyliczane przez program automatycznie, przyciskiem ••• otwierane jest nowe okno doboru nagrzewnic tylko w przypadki kiedy zdefiniowany jest strumień powietrza nawiewanego.

Okno doboru nagrzewnic

6.1.3 Opis okna Właściwości pomieszczenia

W oknie tym wpisujemy podstawowe dane o pomieszczeniu odnośnie przeznaczenie pomieszczenia, temperatury, nazwy, typ ogrzewanego czy nie, numeracji, geometrii, powierzchni i kubatury i przynależności do stref cieplnych.

Właściwości pomieszczenia									
Nazwa:	Sale lekcyjne								
Ogrzewane:	Tak								
Przeznaczenie:	Sala lekcyjna								
Przedrostek	Numer	Strefa cieplna							
0	Nr= 1	Strefa O2							
Długość	Szerokość	Temperatura zimą							
L = 26,53 m	W = 6,43 m	θ _{i,H} =20,00 °C Tablice							
Powierzchnia	Wysokość	Kubatura							
A _f = 170,42 m ² Po	odział H = 3,16 m	V = 538,54 m ³							

Okno - Właściwości pomieszczenia ogrzewanego

NAZWA – pole służące do ręcznego wpisywania nazwy pomieszczenia, program na podstawie wybranego przeznaczenia pomieszczenia wstawia domyślną wartość. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przenosi nazwę wpisaną w architekturze.

TYP – użytkownik w polu wybiera jeden z dwóch wariantów typu pomieszczenia: 1. Ogrzewane, 2. Nieogrzewane. W przypadku wyboru pierwszego typu w oknie włącza się zakładki służące do definiowania start ciepła w pomieszczeniu. Wybór drugiego wariantu wyłącza zakładki strat ciepła, a użytkownik może jedynie zdefiniować albo współczynnik b_u (dla normy PN- EN 12831), albo temperaturę pomieszczenia nieogrzewanego (dla normy PN B 03406).

PRZEZNACZENIE – pole służące do wyboru przeznaczenia pomieszczenia na tej podstawie do programu zostanie dodana nazwa pomieszczenia i domyślna temperatura pomieszczenia.

PRZEDROSTEK – pole służące do wpisywania przedrostku przed numerem pomieszczenia, wartość ta wyświetlana będzie w *drzewku struktury projektu* i *raportach*.W przypadku pobrania danych z ArCADia ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze przedrostek do projektu. W pole to można wpisać dowolną liczbę, znak lub literę.

NUMER - pole służące do wpisywania numeru pomieszczenia, wartość ta wyświetlana będzie w *drzewku struktury projektu* i *raportach*. Wstawione nowe pomieszczenie otrzymuje automatycznie o jeden większy numer. Użytkownik może dowolnie zmieniać numerację. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisany w architekturze numer do projektu. W pole to można wpisać dowolną liczbę całkowitą.

TEMPERATURA θ_u *lub t* [°*C*] – pole służące do wpisywania temperatury wewnętrznej pomieszczenia, program wstawia domyślne wartości na podstawie wartości wybranych w *przeznaczenia*, użytkownik może dodatkowo skorzystać z podpowiedzi otwieranej przyciskiem Tablice ... W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisaną w architekturze temperatury do projektu.

Temperatura pomieszcz	enia	×
Przeznaczenie lub sposób wykorzystania pomieszczenia	Przykład pomieszczenia	θ int,i [°C]
- nieprzeznaczone na pobyt łudzi, - przemysłowe podczas działania ogrzewania dyżurnego	magazyny bez stałej obsługi, garaże indywidualne, hale postojowe, akumulatornie, maszynownie i szyby dźwigów osobowych	5
 w których nie występują zyski ciepła, a jednorazowy pobyt ludzi znajdujących się w ruchu i okryciach zewnętrznych nie przekracza 1h 	klatki schodowe w budynkach mieszkalnych	8
 w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., przekraczające 25 W/m3 	hale sprężarek, pompownie, kuźnie, hartownie, wydziały obróbki cieplnej	8
 w których nie występują zyski ciepła, przeznaczone do stałego pobytu ludzi, znajdujących się w okryciach zewnętrznych lub wykonywujących pracę fizyczną o wydatku energetycznym powyżej 300 W 	magazyny i składy wymagające stałej obsługi, hole wejściowe, poczekalnie przy salach widowiskowych bez szatni, kościoły	12
- w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., wynoszące od 10 do 25 W/m3	hale pracy fizycznej o wydatku energetycznym powyżej 300 W, hale formierni, maszynownie chłodni, ładownie akumulatorów, hale targowe, sklepy rybne i mięsne	12
 w których nie występują zyski ciepła, przeznaczone na pobyt ludzi: W okryciach zewnętrznych w pozycji siedzącej i stojącej, Bez okryć zewnętrznych znajdujących się w ruchu lub wykonujących pracę fizyczną o wydatku energetycznym do 300 W, w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., nieprzekraczające 10 W/m2 	sale widowiskowe bez szatni, ustępy publiczne, szatnie okryć zewnętrznych, hale produkcyjne, sale gimnastyczne, kuchnie indywidualne wyposażone w palenisko węglowe	16
- przeznaczone na stały pobyt ludzi bez okryć zewnętrznych niewykonujących w sposób ciągły pracy fizycznej - kotłownie i węzły cieplne	Pokoje mieszkalne, przedpokoje, kuchnie indywidualne wyposażone w paleniska gazowe lub elektryczne, pokoje biurowe, sale posiedzeń, muzea i galerie sztuki z szatniami, audytoria	20
- przeznaczone do rozbierania	Łazienki, rozbieralnie-szatnie, umywalnie, natryskownie, hale pływalni	24
- przeznaczone na pobyt bez odzieży	Gabinety lekarskie z rozbieraniem pacjentów, sale niemowląt i sale dziecięce w żłobkach, sale operacyjne	24

Podpowiedź temperatur pomieszczeń

DŁUGOŚĆ L [m] –pole służące do definiowania długości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

SZEROKOŚĆW [m] –pole służące do definiowania szerokości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

POWIERZCHNIA POMIESZCZENIA $A_f[m^2]$ – pole służące do wpisywani pola powierzchni pomieszczenia, w przypadku wpisania wartości w polach *L* i *W* program automatycznie wyliczy wartość. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisaną w architekturze powierzchnię pomieszczenia. Wartość ta wykorzystywana jest do sumowania powierzchni stref cieplnych, a także całkowitej powierzchni pomieszczeń o regulowanej temperaturze i powierzchni netto budynku.

WYSOKOŚĆ POMIESZCZENIA H [m] – pole służące do wpisywania wysokości pomieszczenia, program dla nowo utworzonego pomieszczenia przenosi wartość wstawioną w oknie kondygnacji w polu *wysokość kondygnacji*. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze wysokość pomieszczenia. Wartość ta wykorzystywana jest do obliczeń *kubatury pomieszczenia V*, a także domyślnie wstawiana do wysokości przegrody w tym pomieszczeniu.

KUBATURA POMIESZCZENIA V [m³] – pole służące do wpisywania kubatury pomieszczenia. Program automatycznie wylicza tą wartość na podstawie *powierzchni pomieszczenia A* i jego *wysokości H*. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisaną w architekturze kubaturę pomieszczenia. Wartość ta wykorzystywana jest do obliczeń wentylacji pomieszczenia, a także do sumowania kubatury stref i budynku.

STREFA CIEPLNA – pole służące do ręcznego wyboru do jakiej strefy cieplnej ma należeć pomieszczenie. Użytkownik na etapie wstawiania pomieszczeń może przypisać je do danej strefy, może też zrobić to później w oknie strefy cieplne. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przydzieli pomieszczenia do odpowiednich stref cieplnych na podstawie temperatury pomieszczenia.

Straty ciepła - Świadectwo charakterystyki energetycznej 2014, WT 2014									
Właściwości pomiesz	czenia								
Nazwa:	Garaż nieogrzewany								
Ogrzewane:	Nie								
Sposób obliczeń nom	Wsp. zmniejszenia temp.								
nieogrzewanego:	zmniejszenia temperatury	b _u = 0,94 Tablice							
Przedrostek	Numer	Strefa cieplna							
Ē	Nr= 🖻	Pomieszczenia pom.							
Długość	Szerokość								
L = 3,50 m	W = 2,70 m								
Powierzchnia	Wysokość	Kubatura							
A = 9,45 m ² Po	dział H = 2,55 m	V = 24,10 m ³							

Okno właściwości pomieszczenia nieogrzewanego. Zdefiniowany współczynnik zmniejszenia temperatury.

- Wł	aściwości pomieszcze	nia											Nyn	iki oblicz	eń				
Na	azwa: Ko	tłownia											- I-	=0 <u>W</u>		θ	=7.22	°C	
0	Ogrzewane: Nie						1	ND,ue K Gu H,= C											
Sp nie	Sposób obliczeń pom. nieogrzewanego: wg PN-EN ISO 13789						Strefa cieplna Strefa NO1			- + +	$H_{D,iu} = 52,04 \frac{VV}{K}$ $b_{tr} = 0,43$ $H_{-} = 10.81 \frac{W}{K}$								
	Przedrostek Numer -1 nr = 1					$H_{V,iu} = 0 \frac{W}{K}$													
	Długość	Szer	okość	5								÷	H _{V,u}	e =28,37 -	W K				
	L = 8,93 m	VV =	6,43 r	n									4	=39,18 -	W				
	Powierzchnia A _f = 57,34 m ² Podzi	Wyse ał H = 3	okość 2,91 m					Kubatur / = 166	ma ,87 m ³			H	'ue H _{iu}	=52,04 -	K K				
Stra	ty przez przenikanie Stra	aty przez grun	Strat	ty na	went	ylacj	Dodat	ki											_
Lq	p. Przegrod	da	n [szt.]	•)	H [m]	W [m]	A [m²]	Aobl [m²]	Mos	tki	U [W/m	²K]	fij	Pokój/Te [ºC]	emp.	Ht [W/K]	Фt [W]	+
1	1 Strop nad piwnicą		-	-		8,93	6,43	57,42	57,42	6,11		0,80		-	20,00		52,04	-416,3 6	T el
2	2 Ściana wewnętrzna_pi	iwnica	-	w		2,91	8,93	25,99	25,99	7,58		1,04		-	0,67		23,03	261,0 5	X
																			+

Okno właściwości pomieszczenia nieogrzewanego. Obliczenia wg PN-EN ISO 13789.

Strat	y przez przenikanie	Straty przez grunt	Straty p	orzez wentylacj	ę Dodatki							
Lp.		Przegroda		P [m]	Ag [m²]	B' [m]	Z [m]	Uk [W/m²K]	Uequiv [W/m²K]	Ak [m²]	Ak*Uequiv [W/K]	+
1	PG 1-Podłoga	na gruncie		27,11	82,60	6,09		1,11	0,39	57,34	22,28	
2	SG 1-Ściana n	a gruncie		0,00			2,91	0,92	0,50	63,41	31,90	ጥ
												Đ
fg1	=1,45 🚺 fg2 =	=0,14 🕕 Gw =1	1,00 🚺									

Okno właściwości pomieszczenia nieogrzewanego. Zakładka Straty przez grunt.

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki
Typ wentylacji: graw	vitacyjna		
Krotność wymian Sposób obliczeń: Wg umownej krotno	ości wymian		Minimalny strumień objętości powietrza V _{ue} = 83,44 <u>m³</u>
n _{ue} =0,50 <u>1</u> h		Tablice	Strumień powietrza między przestrzenią ogrzewaną i nieogrzewaną $V_{10} = 0 \frac{m^3}{h}$

Okno właściwości pomieszczenia nieogrzewanego. Zakładka Straty na wentylację.

Okno właściwości pomieszczenia nieogrzewanego. Zakładka *Dodatki*.

NAZWA – pole służące do ręcznego wpisywania nazwy pomieszczenia, program na podstawie wybranego przeznaczenia pomieszczenia wstawia domyślną wartość. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przenosi nazwę wpisaną w architekturze.

OGRZEWANE – użytkownik w polu wybiera jeden z dwóch wariantów typu pomieszczenia: Tak - ogrzewane, Nie - nieogrzewane. W przypadku wyboru pierwszego typu w oknie włącza się zakładki służące do definiowania start ciepła w pomieszczeniu. Wybór drugiego wariantu wyłącza zakładki strat ciepła, a użytkownik może zdefiniować albo współczynnik b_u (dla normy PN-EN 12831) i temperaturę pomieszczenia nieogrzewanego (dla normy PN B 03406), albo wybrać dla Sposóby obliczeń pom. niogrzewanego normę wg PN-EN ISO 13789 i wprowdzić dane do tabeli

PRZEZNACZENIE – pole służące do wyboru przeznaczenia pomieszczenia na tej podstawie do programu zostanie dodana nazwa pomieszczenia i domyślna temperatura pomieszczenia.

PRZEDROSTEK – pole służące do wpisywania przedrostku przed numerem pomieszczenia, wartość ta wyświetlana będzie w *drzewku struktury projektu* i *raportach*. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze przedrostek do projektu. W pole to można wpisać dowolną liczbę, znak lub literę.

NUMER - pole służące do wpisywania numeru pomieszczenia, wartość ta wyświetlana będzie w *drzewku* struktury projektu i raportach. Wstawione nowe pomieszczenie otrzymuje automatycznie o jeden większy numer. Użytkownik może dowolnie zmieniać numerację. W przypadku pobrania danych z ArCADia-ARCHITEKTURA program automatycznie przeniesie wpisany w architekturze numer do projektu. W pole to można wpisać dowolną liczbę całkowitą.

WSPÓŁCZYNNIK ZMNIEJSZENIA TEMPERATURY b_u – (dla normy PN-EN 12831) pole służące do wpisywania współczynnika zmniejszającego pomieszczenia nieogrzewanego, użytkownik może dodatkowo skorzystać z podpowiedzi otwieranej przyciskiem Tablice.

Współczynnik zmniejszenia temperatu	ury	×
Przestrzeń nieogrzewana	bu	
Pomieszczenie tylko z jedną ścianą zewnętrzną	0,4	
Pomieszczenie przynajmniej z 2 ścianami zewnętrznymi bez drzwi zewnętrznych	0,5	
Pomieszczenie przynajmniej z 2 ścianami zewnętrznymi oraz drzwiami zewnętrznymi (hale, garaże)	0,6	
Pomieszczenie z 3 ścianami zewnętrznymi (zewnętrzne klatki schodowe)	0,8	
Podziemia bez okien/drzwi zewnętrznych	0,5	
Podziemia z oknami/drzwiami zewnętrznymi	0,8	
Poddasze silnie wentylowane bez deskowania pokrytego papą lub płyt łączonych brzegami	1,0	
Poddasze inne nieizolowane dachy	0,9	
Poddasze izolowany dach	0,7	
Wewnętrzne przestrzenie komunikacyjne (bez zew. ścian, krotność wymiany powietrza mniejsza niż 0,5 1/h)	0	
Swobodnie wentylowane przestrzenie komunikacyjne (powierzchnia otworów/kubatura powierzchni > 0,005 m2/m3)	1,0	
Przestrzeń podpodłogowa	0,8	
Przejścia lub bramy przelotowe nieogrzewane, obustronnie zamknięte	0,9	

Podpowiedź	współczynnik	zmniejszenia	temperatury
- oup o nieuz		Linnejszema	to mp or actary

TEMPERATURA Θ_{t} [°*C*] –program wstawia domyślne wartości na podstawie wartości wybranych w *przeznaczenia*, użytkownik może dodatkowo skorzystać z podpowiedzi otwieranej przyciskiem Tablice. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze wartość bu do projektu.

DŁUGOŚĆ L [m] –pole służące do definiowania długości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

SZEROKOŚĆ W [m] –pole służące do definiowania szerokości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

POWIERZCHNIA POMIESZCZENIA $A_f[m^2]$ – pole służące do wpisywani pola powierzchni pomieszczenia, w przypadku wpisania wartości w polach *L* i *W* program automatycznie wyliczy wartość. W przypadku pobrania danych z ArCADia-ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze powierzchnię pomieszczenia. Wartość ta wykorzystywana jest do sumowania powierzchni stref cieplnych nieogrzewanych, a także całkowitej powierzchni netto budynku.

WYSOKOŚĆ POMIESZCZENIA H [m] – pole służące do wpisywania wysokości pomieszczenia, program dla nowo utworzonego pomieszczenia przenosi wartość wstawioną w oknie kondygnacji w polu *wysokość kondygnacji*. W przypadku pobrania danych z ArCADia-ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze wysokość pomieszczenia. Wartość ta wykorzystywana jest do obliczeń *kubatury pomieszczenia V*.

KUBATURA POMIESZCZENIA V $[m^3]$ – pole służące do wpisywania kubatury pomieszczenia. Program automatycznie wylicza tą wartość na podstawie powierzchni pomieszczenia *A* i jego wysokości *H*. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze kubaturę pomieszczenia. Wartość ta wykorzystywana jest do obliczeń sumowania kubatury stref i budynku.

STREFA CIEPLNA – pole służące do ręcznego wyboru do jakiej strefy cieplnej ma należeć pomieszczenie. Użytkownik na etapie wstawiania pomieszczeń może przypisać je do danej strefy, może też zrobić to później w oknie strefy cieplne. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przydzieli pomieszczenia do odpowiednich stref cieplnych na podstawie temperatury pomieszczenia.

6.1.4 Opis zakładek obliczeń strat cieplnych dla normy PN-EN 12831- metoda uproszczona

Metoda uproszczona normy PN-EN 12831 przewiduje wymiarowanie przegród zewnętrznych po obrysie zewnętrznym, natomiast wewnętrznych w osi. Metoda ta może być stosowana do budynków mieszkalnych, w których krotność wymian powietrza przy różnicy ciśnienia między wnętrzem a otoczeniem budynku równej 50 Pa jest niższa niż 3 1/h. W metodzie tej do każdej dopisany jest współczynnik poprawkowy temperatury f_k

(zależny od kierunku strat ciepła). Straty przez grunt obliczane są wraz z stratami przez przenikanie. W metodzie tej mamy trzy zakładki:

- Zakładka Straty przez przenikanie,
- Zakładka Straty na wentylacje
- Zakładka Dodatki

6.1.4.1 Zakładka Straty przez przenikanie - metoda uproszczona

Zakładka ta służy do definiowania przegród wchodzących w skład pomieszczenia. W tabelce użytkownik wybiera rodzaj przegrody, orientacje, wymiary, współczynnik poprawkowy temperatury f_k , sąsiada po drugiej stronie, współczynnik U, program na tej podstawie wylicza współczynnik strat przez przenikanie przegród sąsiadujących z obszarem zewnętrznym, z innymi wewnętrznymi pomieszczeniami ogrzewanymi, z pomieszczeniami nieogrzewanymi, przez grunt z poniższych wzorów:

Dla przegród zewnętrznych wyliczane jest z wzoru:

$$\mathbf{H}_{\mathbf{T},\mathbf{ie}} = \mathbf{A}_{\mathrm{obl}} \cdot \mathbf{U} \cdot \mathbf{f}_{\mathrm{k}}$$

Dla przegród sąsiadujących z pomieszczeniem nieogrzewanym z wzoru:

 $\mathbf{H}_{\mathbf{T},\mathbf{iue}} = \mathbf{A}_{obl} \cdot \mathbf{U} \cdot \mathbf{f}_k ,$

Dla przegród sąsiadujących z pomieszczeniem ogrzewanym o temp. innej niż w pomieszczeniu z wzoru:

$$\mathbf{H}_{T,ij} = \mathbf{A}_{obl} \cdot \mathbf{U} \cdot \mathbf{f}_{i}$$

Dla przegród typu podłoga na gruncie i ściana na gruncie:

$$\boldsymbol{H_{T,ig}} = \boldsymbol{A_{obl}} \cdot \boldsymbol{U} \cdot \boldsymbol{f_k}$$

Na tej podstawie wyliczane jest projektowana strata przez przenikanie:

 $\Phi_{T,i} = (H_{T,ie} + H_{T,iue} + H_{T,ij} + H_{T,ig}) \cdot (\theta_{int,i} - \theta_e)$

S	raty	przez przenikanie	Straty przez wentylację	D	odatki												
L	р.	Przegroda			n [szt.]	Orientacja		H [m]	W [m]	A [m²]	Aobl [m²]	fK	U [W/m²K]	Pokój/Temp. [ºC]		Ht [W/K]	+ ₊
Γ	1	H Strop nad piwnicą				-		8,93	6,43	57,42	57,42	0,42	0,80	20,00		19,3	
	2	Ściana wewnętrzna_piwnica .			-	w		2,91	8,93	25,99	25,99	0,42	1,04	0,67		11,4	×
	3	PG 1-Podłoga na gruncie			-	-		0,00	0,00	57,34	57,34	0,42	1,11	-20,00		26,7	-
	4	🚟 Ściana na grur		-	N		0,00	0,00	63,41	63,41	0,42	0,92	-20,00		24,5		
																	۳h
																	D

Tabelka ta służy do zdefiniowania przegród wchodzących w skład pomieszczenia (na tej podstawie wyliczona będzie strata cieplna dla pomieszczenia). Po prawej stronie mamy przyciski, które umożliwiają nam:

wklej przegrodę

kalkulator

NAZWA PRZEGRODY – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Przyciskiem kontynuacji ··· otwiera listę dostępnych w danym projekcie przegród:

🚊 😨 Drzwi zewnętrzne DZ 100x200 do modem 🗄 🗄 DZ garaż Okno zewnętrzne OZ 100x150 OZ 100x100 do modem OZ 100x150 do modem Ściana na gruncie SG 1 Sciana wewnętrzna łukowa 📁 SWŁ 1 Sciana zewnętrzna SZ 55 Ściana zewnetrzna łukowa 📁 SZŁ 1 Okno wewnętrzne OW 100x150

Drzewko przegród w projekcie

ILOŚĆ n [szt.]–kolumna ta jest aktywna tylko dla przegród typu okna i drzwi służy do definiowania liczby przegród o podanych wymiarach.

KIERUNEK O– orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

Ν	Północ
NE	Płn Wsch.
E	Wschód
SE	Płd Wsch.
S	Południe
SW	Płd Zach.
W	Zachód
NW	Płn Zach.

Wybór orientacji przegrody

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody wzdłuż osi (w zależności od wybranej opcji wymiarowania długość tą podajemy konturem zew., wew. i środkiem ściany). W przypadku ściągnięcia informacji tej z ArCADia-ARCHITEKTURA wartość wpisywana jest automatycznie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. W przypadku pobrania informacji z ArCADia ARCH wartość wpisywana jest automatycznie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody wartość wyliczana z $W \ge H$ w przypadku okien, drzwi, wartość wyświetlana jest dla jednej sztuki.

OBLICZENIOWE POLE POWIERZCHNI PRZEGRODY A_{obl} [m^2]- pole służące do podglądu rzeczywistej powierzchni przegrody przenoszonej do obliczeń. Program automatycznie odejmuje pola dodanych do tej przegrody drzwi i okien.

 $WSPÓŁCZYNNIK POPRAWKOWY f_k$ -pole służące do definiowania współczynnika, program automatycznie wstawia wartość uzależnioną od typu przegrody, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej przyciskiem ….

Współczynnik poprawkowy temperatury											
Strata cieplna	Komentarze	fk									
	Jeżeli mostki cieplne są zaizolowane	1,00									
Bezpośrednio na zewnątrz	Jeżeli mostki cieplne nie są zaizolowane	1,40									
	Dla okien i drzwi	1,00									
Draga pragotragnia pigograguano	Jeżeli mostki cieplne są zaizolowane	0,80									
Przez przestrzenie nieogrzewane	Jeżeli mostki cieplne nie są zaizolowane	1,00									
Description	Jeżeli mostki cieplne są zaizolowane	0,30									
Przez grunt	Jeżeli mostki cieplne nie są zaizolowane	0,42									
	Jeżeli mostki cieplne są zaizolowane	0,90									
Przez poddasze	Jeżeli mostki cieplne nie są zaizolowane	1,26									
	Jeżeli mostki cieplne są zaizolowane	0,92									
Przez przestrzen podpodłogową	Jeżeli mostki cieplne nie są zaizolowane	1,26									
De anademine en huderles	Jeżeli mostki cieplne są zaizolowane	0,50									
Do przylegająčego budynku	Jeżeli mostki cieplne nie są zaizolowane	0,70									
De provienciación de catta buduelas	Jeżeli mostki cieplne są zaizolowane	0,30									
bo przyregającej jednostki budynku	Jeżeli mostki cieplne nie są zaizolowane	0,42									

Współczynnik poprawkowy temperatury

 $WSPÓŁCZYNNIK PRZENIKANIA U [W/(m^2 \cdot K)]$ -pole służące do definiowania współczynnika przenikania ciepła dla wybranej przegrody program automatycznie wpisuje wartość obliczoną w oknie *definicje przegrody*.

POKÓJ/TEMP. [°C] – pole służące do wyboru temperatury lub pomieszczenia po drugiej stronie przegrody. Dla przegród zewnętrznych program automatycznie podaje temperaturę strefy klimatycznej, dla przegród mających po drugiej stronie pomieszczenie ogrzewane wybieramy z przycisku odpowiednie pomieszczenie …, gdy na liście wybierzemy *brak* wówczas ręcznie możemy wstawić odpowiednią temperaturę (a współczynnik strat ciepła wyliczony dla tej przegrody dodawany jest do sumy współczynników od pomieszczeń wewnętrznych). W przypadku wybrania pomieszczenia z listy program automatycznie wstawia jego temperaturę lub wartość współczynnika btr lub bu (jakakolwiek zmiana temperatury w tym pomieszczeniu automatycznie jest przenoszona i obliczana w dalszych etapach obliczeń).

Brak											
🔤 🖬 w tym samym pomieszczeniu											
-11 Kotłownia btr=0,43											
-12 Hydrofomia btr=0,66											
🛄 📕 Garaż nieogrzewany btr=											
🚊 📲 Piętro											
📕 02 Rekreacja 20,00°C											
📕 03 WC 20,00°C											
📗 04 Schody 20,00°C											
🗄 📲 Parter											

Drzewko wyboru sąsiadującego pomieszczenia

WSPÓŁCZYNNIK PROJEKTOWANEJ STRATY CIEPŁA H_T[*W/K*] – pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta przekazywana jest dalej do wyników obliczeń.

PROJEKTOWANA STRATA CIEPŁA PRZEZ PRZENIKANIE $\Phi_T[W]$ – pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta służy jedynie do podglądu straty cieplnej z danej przegrody.

6.1.4.2 Zakładka Straty przez wentylację - metoda uproszczona

Zakładka ta służy do definiowania strumienia powietrza wentylacyjnego i do wyliczenia współczynnika projektowanej wentylacyjnej straty ciepła wyliczanej z wzoru:

 $H_{V,i} = 0,34 \cdot n_{min} \cdot V_i$

Straty przez przenikanie	Straty przez v	Dodatki								
Krotność wymian n = 2,00	0 <u>1</u>	Tablice	с.							
Minimalny strumień objętości powietrza V _{mln} = 1077,08 ^{m³} / _h										

Zakładka straty na wentylację dla normy PN-EN 12831 - metoda uproszczona

TYP WENTYLACJI – lista, zawierająca różne typy wentylacji w pomieszczeniu.

KROTNOŚĆ WYMIAN n [1/h]-pole służące definiowania krotności wymian powietrza w pomie<u>szczeniu</u>.

Użytkownik może wstawić własną wartość lub skorzystać z podpowiedzi włączanej przyciskiem Tablice. Podane wartości dotyczą krotnośc wymian powietrza zarówno dla wentylacji grawitacyjnej jak i mechanicznej, jednak bez podziału jakie wartości dotyczą wentylacji grawitacyjnej , a jakie mechanicznej. Dlatego korzystać z tej Tablicy powinny tylko bardziej zaawansowane, znające podstawy określania strumieni powietzra wentylacyjnego.

Krotność wymian n									
Krotność wymian n wg PN-EN 12831									
Typ pomieszczenia	n min								
Mieszkalne	0,5								
Kuchnia	1,5								
Łazienka z oknem	1,5								
Pokój biurowy	1,0								
Sala konferencyjna	2,0								
Sala lekcyjna	2,0								
Łazienka bez okna	4,0								
Bank	2,0								
Bar	10,0								
Sklep	6,0								
Pomieszczenie gospodarcze	1,0								
Palarnia	10,0								
Pokój hotelowy	4,0								
Łazienka z natryskiem	20,0								
Magazyn	4,0								
Garaż	4,0								
Szatnia	3,0								

Podpowiedź- Krotność wymian nmin

MINIMALNY STRUMIEŃ POWIETRZA WENTYLACYJNEGO V_{min} [*m*³/*h*]–pole służące definiowania minimalnego strumienia wentylacyjnego, domyślnie obliczanego na podstawie *krotności wymian n* i *kubatury pomieszczenia*.

Dodatkowo każde pole liczbowe zawiera kalkulator główny, na którym znajdują się 2 przyciski do obliczania nietypowych powierzchni i kubatur.

	Kalkulator													
78+(5^(6))/42	2	= 450,0238												
Stopnie	Radia	iny 🔿 🤇	Gradusy	log	In	CC	FF	Ulub	oione					
Statystyka	pi	е	Round	Abs	x	Backs	pace	CL	1					
Funkcje	sin	sinh	arcsin	MC	(7 8		9	*					
Trygonom.	COS	cosh	arccos	MR)	4	4 5		-					
Logika	tan	tanh	arctan	MS	^	1	2	3	+					
Format	ctg	M+	sqrt	0	1.1	=								
۵ 🖣			A	nuluj	<									

Kalkulator

Kalkulator - obliczenia powierzchni

Kalkulator - obliczenia kubatur

obliczenia powierzchni

obliczenia kubatur

6.1.4.3 Zakładka Dodatki - metoda Uproszczona

Zakładka ta służy do definiowania dodatkowych parametrów niezbędnych do obliczenia straty cieplnej w pomieszczeniu. Użytkownik wpisuje tu współczynnik osłabienia nocnego i współczynnik poprawkowy wewnętrznej projektowanej temperatury.

WSPÓŁCZYNNIK NAGRZEWANIA $f_{RH}[W/m^2]$ -pole służące definiowania współczynnika nagrzewania, wartość można wpisać ręcznie lub skorzystać z podpowiedzi włączanej przyciskiem **Tablice**.

OSŁABIENIE NOCNE															
Współczynnik fRH dla osłabienia nocnego max. 12 h w budynkach niemieszkalnych															
	Współczynnik f RH dla osłabienia nocnego max. 12 h w budynkach niemieszkalnych														
Czas	Zakładane obniżenie temperatury wew. podczas osłabienia														
nagrzewania		2 K			3 K		4 K								
godz.		Masa			Masa		Masa								
	Niska	Średnia	Duża	Niska	Średnia	Duża	Niska	Średnia	Duża						
1	18	23	25	27	30	27	36	27	31						
2	9	16	22	18	20	23	22	24	25						
3	6	13	18	11	16	18	18	18	18						
4	4	11	16	6	13	16	11	16	16						

Podpowiedź współczynnik f_{RH} dla osłabienia nocnego max. 12 h

	OS	ABIENIE NOCNE	×								
Współczynnik fRH dla osłabienia nocnego max. 8 h w budynkach mieszkalnych											
Współczynnik fRH dla osłabienia nocnego max. 8 h w budynkach mieszkalnych											
CZas pagrzewania	Zakładane obniżenie temperatury wew. podczas osłabienia										
godz.	1 K	2 K	3 K								
_	Masa budynku duża	Masa budynku duża	Masa budynku duża								
1	11	22	45								
2	6	11	22								
3	4	9	16								
4	2	7 13									
[

Podpowiedź współczynnik f_{RH} dla osłabienia nocnego max. 8h

POPRAWKOWY WSPÓŁCZYNNIK TEMPERATURY $f_{\Delta \theta i}$ – pole służące definiowania współczynnika poprawkowego temperatury, wartość można wpisać ręcznie lub skorzystać z podpowiedzi włączanej przyciskiem Tablice.

	Współczynnik poprawkowy temperatury									
WEW	INĘTRZNA PROJEKTOWANA TEMPERATURA POMIESZCZENIA	f Δθ,i								
	normalna	1,0								
	podwyższona	1,6								
-										

Współczynnik poprawkowy temperatury

6.1.4.4 Opis okna Wyniki obliczeń dla normy PN-EN 12831 - metoda Uproszczona

Okno to służy do podglądu wyników obliczeń poszczególnych współczynników strat ciepła jak i projektowanych strat ciepła od ogrzewania, wentylacji i nadwyżki mocy cieplnej.

Wyniki obliczeń - metoda uproszczona

 $H_{T,ie}$ [*W*/*K*] – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do otoczenia przez obudowę budynku, wartość domyślnie obliczana z zakładki *Straty przez przenikanie* jest to suma wartości z kolumny (z tabelki z zakładki "Straty przez przenikanie") H_T dla wszystkich przegród zewnętrznych (ścian zew., okien zew., drzwi zew., dachów, stropodachów, stropów nad przejazdem), wyliczany z wzoru: $H_{T,ie} = A_{obl} \cdot U \cdot f_k$

 $H_{T,iue}[W/K]$ – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do otoczenia przez pomieszczenia nieogrzewane, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z tabelki z zakładki *Straty przez przenikanie*) H_T dla wszystkich przegród mających za sąsiada pomieszczenie nieogrzewane (ścian wew., okien wew., drzwi wew., stropów wew.), wyliczany z wzoru: $H_{T,iue} = A_{obl} \cdot U \cdot f_k$

 $H_{T,ij}$ [*W/K*] – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do sąsiedniej przestrzeni, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z tabelki z zakładki "Straty przez przenikanie") H_T dla wszystkich przegród mających za sąsiada pomieszczenie o innej temperaturze niż obliczane (ścian wew., okienwew., drzwiwew., stropówwew.), wyliczany z wzoru: $H_{T,ij} = A_{obl} \cdot U \cdot f_k$

 $H_{T,ig}[W/K]$ – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do gruntu, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z tabelki z zakładki *Straty przez przenikanie*) H_T dla wszystkich przegród typu ściana na gruncie i podłoga na gruncie, wyliczany z wzoru: $H_{T,ig}$ = $A_{obl} \cdot U \cdot f_k$

 $H_{V,i}[W/K]$ – współczynnik projektowanej wentylacyjnej straty ciepła, wartość wyliczana z wzoru: $H_{V,i}=0,34 \cdot V_{i}^{*}$

 $\Phi_{T,i}[W]$ – projektowana strata ciepła ogrzewanej przestrzeni przez przenikanie, wartość wyliczana z wzoru: $\Phi_{T,i} = (\mathbf{H}_{T,ie} + \mathbf{H}_{T,iue} + \mathbf{H}_{T,ij} + \mathbf{H}_{T,ig}) \cdot (\theta_{int,i} - \theta_e)$

 $\Phi_{V,i}[W]$ – projektowana wentylacyjna strata ciepła, wartość wyliczana z wzoru:

$$\Phi_{\mathrm{V},\mathrm{i}} = \mathbf{H}_{\mathrm{V},\mathrm{i}} \cdot (\boldsymbol{\theta}_{\mathrm{int},\mathrm{i}} - \boldsymbol{\theta}_{\mathrm{e}})$$

 $\Phi_{RH,i}[W]$ – nadwyżka mocy cieplnej, wartość wyliczana z wzoru: $\Phi_{RH,i} = \mathbf{A} \cdot \mathbf{f}_{RH}$

 $\Phi_{HL,i}[W]$ – projektowane obciążenie cieplne, wartość wyliczana z wzoru:

 $\Phi_{\mathrm{HL},i} = \Phi_{i,i} + \Phi_{\mathrm{RH},i}$

 $\Phi_{\text{HL,A}}[W]$ – projektowane obciążenie cieplne na m², wartość wyliczana z wzoru:

$$\Phi_{\mathrm{HL,A}} = \Phi_{\mathrm{HL,i}} / \mathrm{A}$$

 $\Phi_{HL,V}[W]$ – projektowane obciążenie cieplne na m³, wartość wyliczana z wzoru: $\Phi_{HL,V} = \Phi_{HL,i} / V_i$

 $\Phi_{i,i}[W]$ -całkowita projektowana strata ciepła ogrzewanej, wartość wyliczana z wzoru : $\Phi_{i,i} = (\Phi_{T,i} + \Phi_{V,i}) \cdot f_{\Delta\theta,i}$

6.1.5 Opis zakładek obliczeń strat cieplnychdla normy PN- EN 12831 metoda szczegółowa

6.1.5.1 Zakładka Straty przez przenikanie – metoda szczegółowa

Zakładka ta służy do definiowania przegród wchodzących w skład pomieszczenia. W tabelce użytkownik wybiera rodzaj przegrody, orientacje, wymiary, mostek cieplny, sąsiada po drugiej stronie, współczynnik U, program na tej podstawie wylicza współczynnik strat przez przenikanie przegród sąsiadujących z obszarem zewnętrznym, z innymi wewnętrznymi pomieszczeniami ogrzewanymi, z pomieszczeniami nieogrzewanymi, przez grunt z poniższych wzorów:

Dla przegród zewnętrznych wyliczane jest z wzoru:

$$\mathbf{H}_{\mathrm{T,ie}} = \mathbf{A}_{\mathrm{obl}} \cdot \mathbf{U} \cdot \mathbf{e}_{\mathrm{k}} + \sum \boldsymbol{\Psi}_{\mathrm{k}} \cdot \mathbf{L}_{\mathrm{k}}$$

Dla przegród sąsiadujących z pomieszczeniem nieogrzewanym z wzoru

$$\mathbf{H}_{\mathrm{T,iue}} = \mathbf{A}_{\mathrm{obl}} \cdot \mathbf{U} \cdot \mathbf{b}_{\mathrm{u}} + \sum \boldsymbol{\Psi}_{\mathrm{k}} \cdot \mathbf{L}_{\mathrm{k}} \cdot \mathbf{b}_{\mathrm{u}}$$

Dla przegród sąsiadujących z pomieszczeniem ogrzewanym o temp. innej niż w pomieszczeniu z wzoru:

$$\mathbf{H}_{\mathrm{T,ij}} = \mathbf{A}_{\mathrm{obl}} \cdot \mathbf{U} \cdot (\boldsymbol{\theta}_{\mathrm{int,i}} - \boldsymbol{\theta}_{\mathrm{pp}}) / (\boldsymbol{\theta}_{\mathrm{int,i}} - \boldsymbol{\theta}_{\mathrm{e}})$$

Dla przegród typu podłoga na gruncie i ściana na gruncie $H_{Tig} = f_{g1} \cdot f_{g2} \cdot (\sum Ak^*)$

$$I_{T,ig} = f_{g1} \cdot f_{g2} \cdot (\sum Ak^* U_{equiv}) \cdot Gw$$

Na tej podstawie wyliczane jest projektowana strata przez przenikanie

$\Phi_{T,i} = (\mathbf{H}_{T,ie} +$	HT,iue +	HT,ij +	H _{T,ig}) ·	($\theta_{int,i}$ -	θe)
-------------------------------------	----------	---------	-----------------------	----------------------	-----

Strat	/ prze	ez pi	rzenikanie	Straty przez wentylację)odatki														
Lp.	Przegroda					n [szt.]	Orient	acja	H [m]	W [m]	A [m²]	Aobl [m²]	Most	ki	U [W/m²K]	fij		Pokój/Te [ºC]	emp.	Ht [W/K]	Фt [W]	+ +
1	ściana zewnętrzna					-	E		3,50	26,5 3	92,86	52,30	21,75		1,15	-		-20,00		81,89	3275,57	×
2	🗱 🖵 Okno zewnętrzne				12	E		2,00	1,69	3,38	-	3,32		1,20	-	20,0			88,51	3540,48	-	
3	10000	Ścia	ana zewnę	trzna		-	s		3,50	6,43	22,51	22,51	5,67		1,15	-		-20,00		31,55	1262,03	Π'n
4	H Strop wewnętrzny				-	-		26,5 3	6,43	170,5 9	170,5 9	5,14		1,64	0,00		20,00		5,14	205,60	D	
5		Ścia	ana wewne	trzna		-	w		3,16	26,3 8	83,36	83,36	0,00		1,86	0,00		20,00		0,00	0,00	
6		Ścia	ana wewne	trzna		-	N		3,16	6,13	19,37	19,37	0,00		1,86	0,00		20,00		0,00	0,00	

Zakładka Straty przez przenikanie norma PN-EN 12831 - metoda szczegółowa

Zakładka ta służy do zdefiniowania przegród wchodzących w skład pomieszczenia (na tej podstawie wyliczona będzie strata cieplna dla pomieszczenia). Po prawej stronie mamy przyciski, które umożliwiają nam:

dodawanie nowych przegród do pomieszczeń,

+∔

dodawanie do przegrody okien i drzwi (dodanie okien i drzwi tym sposobem spowoduje, że do obliczeń wzięta będzie powierzchnia pomniejszona o wstawione otwory),

k

kalkulator

NAZWA PRZEGRODY–użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Ikonką … otwiera listę dostępnych w projekcie przegród

Drzewko przegród w projekcie

ILOŚĆ n [szt.] – kolumna ta jest aktywna tylko dla przegród typu okna i drzwi służy do definiowania liczby przegród o podanych wymiarach.

KIERUNEK O– orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

Północ
Płn Wsch.
Wschód
Płd Wsch.
Południe
Płd Zach.
Zachód
Płn Zach.

Wybór orientacji przegrody

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody wzdłuż osi (w zależności od wybranej opcji wymiarowania długość tą podajemy konturem zew., wew. i środkiem ściany). W przypadku ściągnięcia informacji tej z ArCADia ARCH wartość wpisywana jest automatycznie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. W przypadku pobrania informacji z ArCADia ARCH wartość wpisywana jest automatycznie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody wartość wyliczana z $W \ge H \le$ przypadku okien, drzwi, wartość wyświetlana jest dla jednej sztuki.

OBLICZENIOWE POLE POWIERZCHNI PRZEGRODY A_{obl} [m^2]- pole służące do podglądu rzeczywistej powierzchni przegrody przenoszonej do obliczeń. Program automatycznie odejmuje pola dodanych do tej przegrody drzwi i okien.

DODATEK NA MOSTKI CIEPLNE $\sum \Psi_K \cdot I_K$ – pole służące do definiowania współczynnika, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej przyciskiem …. Kolumna ta jest widoczna wówczas, gdy w oknie wybór obliczeń zostanie wybrana metoda obliczeń mostków cieplnych wg PN- EN ISO 14683.

	Mostki cieplne										
Kod	Typ mostka	Symbol	Ψk [W/m*K]	L k [m]		+					
49M	Nadproże, podokiennik, ościeżnica w środku/ściana z izolacją zewnętrzną	W7	0,35	2H+2W		×					
		T ↓		H							
							Γh				
							D				
				Σ	₩ĸ∙Ĺĸ= 🚹	ĸ		Anuluj	ОК		

Mostki cieplne

W oknie tym użytkownik może zdefiniować mostki cieplne z bazy zgodnej z normą PN-EN ISO 14683 lub z katalogu mostków cieplnych wydawnictwa ITB. Po prawej stronie ma podgląd wstawionego mostka, a także ikonki służące do edycji listy mostków.

+	dodawanie nowych typów mostków,
×	usuwanie mostków cieplnch,
Ť	przesuwanie mostka do góry,
ŧ	przesuwanie mostka do dołu,
	kalkulator

KOD - pole służące do podglądu kodu mostka cieplnego, wartość ta pokazywana jest w raportach RTF.

TYP MOSTKA – pole służące do zdefiniowania typu mostka, użytkownik może wpisać własny model lub skorzystać z podpowiedzi uruchamianej przyciskiem ….

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń strat ciepła w pomieszczeniu

				Baz	a mostkóv	v					- 🗆 🗙
Znajdź Szukaj: 🖪 Wyniki wyszukiwania aktualnie niedostępne.				Nyczyść	Wymia © Zer O Car O We	ary wnętrzne e kowicie we wnętrzne i	wnętrzne (Di			Wygląd mostka + ×
+┽×≫ҧ҇฿฿฿	Lp.	Nazwa	Kod	Symbol	Ψe [W/(m·K)]	Ψoi [W/(m⋅K)]	Ψi [W/(m+K)]	Automa	itycz niar	+	
PN-EN ISO 14683:2001 Połączenia dachu ze ścianą : Połączenia płyty balkonowej Połączenia płyty balkonowej	1	Naroże zewnętrzne ściany z izolacją zewnętrzną	17M	C1	-0,050	0,150	0,150	н		×	
Połączenia stropu ze ścianą Połączenia ściany zewnętrzi	2	Naroże zewnętrzne ściany z izolacją w środku	18M	C2	-0, 100	0,100	0,100	н		ін Б	Opis
Otwory okienne i drzwiowe	3	Naroże zewnętrzne ściany z izolacją wewnętrzną	19M	C3	-0,200	0,000	0,000	н		٩	
wg ITB	4	Naroże zewnętrzne ściany lekka	20M	C4	-0,150	0,050	0,050	н			
Oscieže bočzne Nadproža okienne Podokienniki Podokienniki	5	Naroże wewnętrzne ściany z izolacją zewnętrzną	21M	C5	0,000	-0,200	-0,200	н			
Wieńce PN-EN ISO 14683:2008 Połaczenia dachu ze ściana :	6	Naroże wewnętrzne ściany z izolacją w środku	22M	C6	0,100	-0,150	-0,150	н			
Połączenia płyty balkonowej Naroża ścian zewnętrznych Połączenia stropu ze ściana	7	Naroże wewnętrzne ściany z izolacją wewnętrzną	23M	C7	0,150	-0,050	-0,050	н			
Połączenia ściany zewnętrzu Połączenia ścian zewnętrzu	8	Naroże wewnętrzne ściany lekka	24M	C8	0,050	-0,150	-0,150	н			
Otwory okienne i drzwiowe Otwory okienne i drzwiowe											
Przywróć domyślne wartości Wybór wersji b	azy d	anych: 6.0									Anuluj OK

Okno bazy danych mostków cieplnych

SYMBOL – pole służące do podglądu symbolu mostka cieplnego z normy lub z katalogu mostków.

WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA LINIOWEGO MOSTKA CIEPLNEGO Ψ_K [*W/m·K*] – pole służące do wstawiania liniowego współczynnika mostka cieplnego, użytkownik może ręcznie wstawić wartość lub skorzystać z wartości domyślnej proponowanej przez program.

DŁUGOŚĆ LINIOWEGO MOSTKA CIEPLNEGO l_K [m] – pole służące do wstawiania długości liniowego mostka cieplnego.

WSPÓŁCZYNNIK PRZENIKANIA U[W/m2·K]–pole służące do definiowania współczynnika przenikania ciepła dla wybranej przegrody program automatycznie wpisuje wartość obliczoną w oknie *definicje przegrody*.

POKÓJ/TEMPERATURA [°C]–pole służące do wyboru temperatury lub pomieszczenia po drugiej stronie przegródy. Dla przegród zewnętrznych program automatycznie podaje temperaturę strefy klimatycznej, dla przegród mających po drugiej stronie pomieszczenie ogrzewane wybieramy z przycisku odpowiednie pomieszczenie …, gdy na liście wybierzemy *brak* wówczas ręcznie możemy wstawić odpowiednią temperaturę (a współczynnik strat ciepła wyliczony dla tej przegródy dodawany jest do sumy współczynników od pomieszczeń wewnętrznych). W przypadku wybrania pomieszczenia z listy program automatycznie wstawia jego temperaturę (jaka kol wiek pomniejsza zmian temperatury w tym pomieszczeniu automatycznie jest przenoszona i obliczana). Dla pomieszczeń nieogrzewanych pokazywany jest współczynnik *b_u*, który pobierany jest z sąsiadującego pomieszczenia.

Drzewko wyboru sąsiadującego pomieszczenia

WSPÓŁCZYNNIK PROJEKTOWANEJ STRATY CIEPŁA H_T[*W/K*]–pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta przekazywana jest dalej do wyników obliczeń.

PROJEKTOWANA STRATA CIEPŁA PRZEZ PRZENIKANIE $\Phi_T[W]$ -pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta służy jedynie do podglądu straty cieplnej z danej przegrody.

6.1.5.2 Zakładka Straty przez grunt – metoda Szczegółowa

Dla normy PN-EN 12831 użytkownik może wykonać obliczenia dwoma normami gruntowymi. Metoda uproszczoną wg normy PN-EN 12831 lub szczegółową wg normy PN-EN ISO 13370. W przypadku dodania nowej przegrody program automatycznie wstawia w kolumnę A_k wartość z pola powierzchnia pomieszczenia. W oknie tym użytkownik dodaje przegrody typu podłoga na gruncie lub ściana na gruncie. W przypadku pobrania danych z ArCADia - ARCHITEKTURA. Przegrody i parametry wstawiane są automatycznie. Wartości wyliczane są z wzoru:


```
\mathbf{H}_{T,ig} = \mathbf{f}_{g1} \cdot \mathbf{f}_{g2} \cdot (\sum \mathbf{A}_k^* \mathbf{U}_{equiv}) \cdot \mathbf{G}_w
```

L.p. – pole pokazujące kolejna liczbę porządkową,

PRZEGRODA – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Ikonką … otwiera listę dostępnych w projekcie przegród(do wyboru mamy przegrody typu podłoga na gruncie i ściana na gruncie).

Drzewko przegród podłoga i ściana na gruncie w projekcie

OBWÓD PODŁOGI PO OBRYSIE ZEWNĘTRZNYM P [m] – pole służące do wstawiania obwodu podłogi na gruncie, użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja* przegrody/zakładka parametrydodatkowe.

CAŁKOWITA POWIERZCHNIA PRZEGRODY A_g [*m*²]- pole służące do wstawiania całkowitego pola powierzchni przegrody (w całym budynku), użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

WSPÓŁCZYNNIK CHARAKTERSTYCZNY PODŁOGI B ' [m] – pole służące do wstawiania współczynnika charakterystycznego, wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

ZAGŁĘBIENIE Z [m] – pole służące do wpisywania zagłębienia podłogi lub ściany na gruncie, wartość wstawiana domyślnie na podstawie danych z okna *definicja przegrody/zakładka parametrydodatkowe*.

*WSPÓŁCZYNNIK PRZENIKANIA WARTSW PODŁOGI/ŚCIANY NA GRUNCIE U_k [W/m²·K]-*pole służące do definiowania współczynnika przenikania warstw przegrody, na tej podstawie z tabeli pomocniczych zostanie dobrany współczynnik $U_{equiv,bw}$ lub $U_{equiv,bf}$. Wartość domyślnie wstawiana jest z okna *definicja przegrody/zakładka parametrydodatkowe*.

 $RÓWNOWAŻNY WSPÓŁCZYNNIK PRZENIKANIA U_{equiv} [W/m²·K] – pole służące do podglądu wartości wstawianej na podstawie parametrów B', Z i U_k z niżej pokazanych tabel:$

POWIERZCHNIA PRZEGRODY STYKAJACEJ SIĘ Z GRUNTEMA_k $[m^2]$ – pole służące do definiowania wartości pola powierzchni przegrody w pomieszczeniu. Program domyślnie wstawia wartość z powierzchni pomieszczenia.

 $U_{equiv} \cdot A_k [W/K]$ – pole służące do podglądu i modyfikacji wyniku obliczeń dla podłogi na gruncie dana ta zostanie przekazana do dalszych obliczeń.

WSPÓŁCZYNNIK KOREKCYJNY f_{g1} – pole służące do definiowania współczynnika korekcyjnego uwzględniającego wpływ rocznych wahań temperatury zewnętrznej. Program domyślnie przyjmuje wartość 1,45.

WSPÓŁCZYNNIK KOREKCYJNY f_{g2} - pole służące do definiowania współczynnika redukcji temperatury uwzględniającego różnicę między średnią roczną temperaturą zewnętrzną i projektowaną temperaturą zewnętrzną. Program domyślnie przyjmuje wartość obliczona z wzoru:

$$\mathbf{f}_{g2} = (\boldsymbol{\theta}_{int,i} - \boldsymbol{\theta}_{m,e}) / (\boldsymbol{\theta}_{int,i} - \boldsymbol{\theta}_{e})$$

*WSPÓŁCZYNNIK KOREKCYJNY G*_w – pole służące do definiowania współczynnika uwzględniającego wpływ wody gruntowej a poziomem podłogi. Program domyślnie przyjmuje wartość 1,00.

6.1.5.3 Zakładka Straty przez wentylacje – metoda szczegółowa

Zakładka ta służy do definiowania strumienia powietrza wentylacyjnego i do wyliczenia współczynnika projektowanej wentylacyjnej straty ciepła wyliczanej z wzoru: $H_{i} = 0.24$, V_{i}^{*}

 $H_{V,i} = 0,34 \cdot V_{i}^{*}$

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki
Typ wentylacji: graw	vitacyjna		
Rodzaj obliczeń: Kroti	ność wymian		
Krotność wymian n = 2,00	<u>1</u> Та	blice	
Minimalny strumic V _{min} = 1	eń objętości pow 077,08 <u>m³</u> h	ietrza	
Strumień objętośc V _{inf} = 1	ci powietrza infilt 61,56 m³ h	racyjnego	

TYP WENTYLACJI – pole służące do wybory jednego z trzech typów wentylacji: 1.grawitacyjna, 2.mechaniczna, 3.z odzyskiem, 4.mechaniczna nawiewna, 5.4.mechaniczna wywiewna, 6. brak. W zależności od wybranej wartości użytkownik zobaczy jedno z sześciu okien.

KROTNOŚĆ WYMIAN n[1/h]–pole służące definiowania krotności wymian powietrza w pomieszczeniu. Użytkownik może wstawić własną wartość lub skorzystać z podpowiedzi włączanej przyciskiem Tablice.

Krotność wymian n 🛛 🗶								
Krotność wymian n wg PN-EN 12831								
Typ pomieszczenia	n min							
Mieszkalne	0,5							
Kuchnia	1,5							
Łazienka z oknem	1,5							
Pokój biurowy	1,0							
Sala konferencyjna	2,0							
Sala lekcyjna	2,0							
Łazienka bez okna	4,0							
Bank	2,0							
Bar	10,0							
Sklep	6,0							
Pomieszczenie gospodarcze	1,0							
Palarnia	10,0							
Pokój hotelowy	4,0							
Łazienka z natryskiem	20,0							
Magazyn	4,0							
Garaż	4,0							
Szatnia	3,0							

Podpowiedź krotność wymian

MIN. STRUMIEŃ POWIETRZA V_{min} [m^3/h]–pole służące definiowania strumienia powietrza ze względów higienicznych. Program wstawia domyślnie wartość wyliczona z wzoru: $V^*_{min,i} = n_{min} \cdot V_i$

STRUMIEŃ POWIETRZA INFILTRACYJNEGO Vinf [*m*³/*h*] – pole służące definiowania strumienia powietrza przedostającego się przez obudowę budynku infiltracją. Program wstawia domyślnie wartość wyliczona z wzoru:

$$\mathbf{V}^*_{\text{inf,i}} = 2 \cdot \mathbf{n}_{50} \cdot \mathbf{e}_{i} \cdot \mathbf{\varepsilon}_{i} \cdot \mathbf{V}_{i}$$

Zakładka straty na wentylację dla normy PN-EN 12831 wentylacja grawitacyjna

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki
Typ wentylacji: mec	haniczna		Temperatura powietrza wentylacyjnego $\theta_u^{=}$ -20,00 °C
Rodzaj obliczeń: Krot	ność wymian		
Krotność wymian n = 2,00 ¹ / _h		Tablice	
Strumień objętoś V _{ex} = 1077,0	cipowietrzausuv 18 <u>m</u> ³ h	wanego	
Strumień objętoś V _{su} = 1077,0	cipowietrzanaw 18 <u>m</u> ³ h	iewanego	

Zakładka Straty na wentylację dla normy PN-EN 12831 wentylacja mechaniczna, obliczenia na podstawie krotności wymian

Straty	przez przenikanie	Straty przez grunt	Straty przez we	ntylację Dod	atki				
Typ wentylacji: mechaniczna Temperatura powietrza wentylacyjnego $\theta_a^{=}$ -20,00 °C									
Rodza	aj obliczeń: zgo d	Inie z PN-B/B-0343	0/AZ3:2000						
Lp.	Urz	ądzenia / aktywnoś	ci	Ilość [szt.]	Vsu [m3/h]	Vex [m3/h]	Vcsu [m3/h]	Vcex [m3/h]	+
1	Kuchnia		1	L	0	70	0	70	
									×
Strui	mień objętości p V _{ex} = 70,00 <u>m</u> ³	oowietrza usuwai	nego St	rumień obję V _{su} =	tości powietra 0 m ³ h	a nawiewaneg	jo		

Zakładka straty na wentylację dla normy PN-EN 12831 wentylacja mechaniczna, obliczenia na podstawie normy PN-B/B-03430/AZ3:2000

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki	
Typ wentylacji: z od	zyskiem		Temperatura powietrza wentylacyjnego θ_u = -20,00 °C	Sprawność instalacji odzysku η = 0 %
Rodzaj obliczeń: Krot	ność wymian			
Krotność wymian n = 2,00 <u>1</u> h		Tablice		
Strumień objętoś V _{ex} = 1077,0	cipowietrzausuv 18 <u>m</u> ³ h	wanego		
Strumień objętoś V _{su} = 1077,0	ci powietrza nawi 18 m³ h	iewanego		

Zakładka Straty na wentylację dla normy PN-EN 12831 z odzyskiem, obliczenia na podstawie krotności wymian

Straty p	orzez przenikanie	Straty przez grunt	Straty przez v	ventylację	Dodatki				
Typ wentylacji: z odzyskiem Temperatura powietrza wentylacyjnego Sprawność instalacji odzysku 0 g = -20,00 °C n = 0 %									CU
Rodzaj	j obliczeń: zgo o	Inie z PN-B/B-0343	0/AZ3:2000						
Lp.	Urz	ądzenia / aktywnoś	ci	Ilość [sz	zt.] Vsu [m3/h]	Vex [m3/h]	Vcsu [m3/h]	Vcex [m3/h]	
1	Kuchnia			1	0	70	0	70	
									>
									E
Strun	nień obietości r	owietrzą usuwa	0000	Strumień	obietości powietr	za nawiewaner	10		
Jun	$V = 70.00 \frac{\text{m}^3}{\text{m}^3}$	Jowie ii za usuwai	icgo .	V	$t = 0 \frac{m^3}{m^3}$	La nawie wane y	<i>j</i> 0		
	ex n				su n				

Zakładka Straty na wentylację dla normy PN-EN 12831 z odzyskiem, obliczenia na podstawie normy PN-B/B-03430/AZ3:2000

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń strat ciepła w pomieszczeniu

Zakładka Straty na wentylację mechaniczna nawiewną dla normy PN-EN 12831, obliczenia na podstawie krotności wymian

Straty p	orzez przenikanie	Straty przez grunt	Straty przez w	ventylację	Dodatki			
Typ w	entylacji: mec	haniczna nawiew	na					
Rodza	j obliczeń: zgo d	Inie z PN-B/B-0343	0/AZ3:2000					
Lp.	Urz	ądzenia / aktywnoś	ci	Ilość [sz	zt.] Vsu [m3/h]		Vcsu [m3/h]	+
1	Os. w pom. klima	tyzowanym bez pal	enia	2	30	60		· ·
								×
Strue	nień obietości r	owietrzą nawiew	anego					
onun	V _{su} = 60,00	m ³ h	unogo					

Zakładka Straty na wentylację mechaniczna nawiewną dla normy PN-EN 12831, obliczenia na podstawie normy PN-B/B-03430/AZ3:2000

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki
Typ wentylacji: mecl	haniczna wywiew	/na	
Rodzaj obliczeń: Krotr	ność wymian		
Krotność wymian n = 2,00 <u>1</u>	- 1	Tablice	
Strumień objętośc V _{ex} = 1077,0	ci powietrza usuv 8 M ³ h	vanego	

Zakładka Straty na wentylację . Wentylacja mechaniczna wywiewną dla normy PN-EN 12831, obliczenia na podstawie krotności wymian

O	pis	obliczeń	strat	ciepła	w	pomieszczeniu
---	-----	----------	-------	--------	---	---------------

Straty p	rzez przenikanie	Straty przez grunt	Straty przez we	ntylację [odatki				
Typ wentylacji: mechaniczna wywiewna									
Rodzaj	obliczeń: zgo d	Inie z PN-B/B-0343	0/AZ3:2000						
Lp.	Urz	ądzenia / aktywnoś	ci	Ilość [szt	t.]	Vex [m3/h]		Vcex [m3/h]	+
1	Oddzielne WC			1	30		30		·
									×
Strum	nień objętości p V = 30,00	owietrza usuwar m ³	nego						

Zakładka Straty na wentylację mechaniczna wywiewną dla normy PN-EN 12831, obliczenia na podstawie normy PN-B/B-03430/AZ3:2000

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki
Typ wentylacji: brak			
	77 1 1 11 04	(1) D 1 (1	

Zakładka Straty na wentylację - Brak wentylacji

TYP WENTYLACJI – pole służące do wybory jednego z trzech typów wentylacji: 1.grawitacyjna, 2.mechaniczna, 3.z odzyskiem, 4. W zależności od wybranej wartości użytkownik zobaczy jedno z trzech okien.

RODZAJ OBLICZEŃ – pole służące do wyboru jednego z dwóch sposobów obliczeń strumienia wentylacyjnego: 1.krotność wymian, 2.typ urządzeń sanitarnych.

KROTNOŚĆ WYMIAN n[1/h]–pole służące definiowania krotności wymian powietrza w pomieszczeniu. Użytkownik może wstawić własną wartość lub skorzystać z podpowiedzi włączanej przyciskiem Tablice.

Krotność wymian n 🛛 🗶					
Krotność wymian n wg PN-EN 12831					
Typ pomieszczenia	n min				
Mieszkalne	0,5				
Kuchnia	1,5				
Łazienka z oknem	1,5				
Pokój biurowy	1,0				
Sala konferencyjna	2,0				
Sala lekcyjna	2,0				
Łazienka bez okna	4,0				
Bank	2,0				
Bar	10,0				
Sklep	6,0				
Pomieszczenie gospodarcze	1,0				
Palarnia	10,0				
Pokój hotelowy	4,0				
Łazienka z natryskiem	20,0				
Magazyn	4,0				
Garaż	4,0				
Szatnia	3,0				

Podpowiedź krotność wymian

STRUMIEŃ POWIETRZA WYWIEWANEGO V_{ex} [*m*³/*h*]–pole służące definiowania strumienia powietrza wywiewanego z pomieszczenia. W przypadku kiedy nie ma w pomieszczeniu instalacji wentylacyjnej wywiewnej wstawiamy do strumienia wywiewanego wartość 0. Program wstawia domyślnie wartość wyliczona z wzoru: $V_{ex} = \mathbf{n} \cdot V_i$

STRUMIEŃ POWIETRZA NAWIEWANEGO V_{su} [m³/h]–pole służące definiowania strumienia powietrza nawiewanego do pomieszczenia. W przypadku kiedy nie ma w pomieszczeniu instalacji wentylacyjnej

Podręcznik użytkownika dla programu ArCADia–TERMO

Opis obliczeń strat ciepła w pomieszczeniu

nawiewnej wstawia
my do strumienia nawiewanego wartość 0. Program wstawia domyślnie wartość wyliczona z w
zoru: $V_{su} = \mathbf{n} \cdot V_i$

TEMPERATURA POWIETRZA WENTYLACYJNEGO θ_{su} [°C]–pole służące definiowania temperatury powietrza nawiewanego do pomieszczenia. Program domyślnie wstawia wartość z strefy klimatycznej. Wartość ta potrzebna jest do obliczenia współczynnik redukcji temperatury $f_{V,i}$. W przypadku wentylacji z odzyskiem temperatura powietrza wyliczana jest na podstawie sprawności odzysku ciepła η .

SPRAWNOŚĆ ODZYSKU CIEPŁA η [%]–pole służące definiowania sprawności odzysku ciepła występuje tylko w wariancie z odzyskiem ciepła, na podstawie tej wartości i temperatury zewnętrznej wyliczana jest temperatura nawiewu.

Straty p	orzez przenikanie	Straty przez grunt	Straty przez	z wentylację	Dodatki					
Typ w	Typ wentylacji: mechaniczna $\theta_u = -20,00$ °C									
Rodzaj	j obliczeń: zgo d	lnie z PN-B/B-0343	0/AZ3:2000							
Lp.	Urz	ądzenia / aktywnoś	ci	Ilość [s	zt.] Vsu	ı [m3/h]	/ex [m3/h]	Vcsu [m3/h]	Vcex [m3/h]	+
1	1 Kuchnia z oknem zew. wyposażona w kuchenkę elektryczną w mieszkaniu do 3 osób … 1			0	30		0	30	×	
Strun	Strumień objętości powietrza usuwanegoStrumień objętości powietrza nawiewanego $V_{ex} = 30,00 \frac{m^3}{h}$ $V_{su} = 0 \frac{m^3}{h}$									

Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki					
Typ wentylacji:z odzyskiemTemperatura powietrza wentylacyjnego $\theta_u = 4,00$ °CSprawność instalacji odzysku $\eta = 60,00$ %								
Rodzaj obliczeń: zgod	lnie z PN-B/B-0343	0/AZ3:2000						
Lp. Urz	Lp. Urządzenia / aktywności Ilość [szt.] Vsu [m3/h] Vex [m3/h] Vcsu [m3/h] Vcex [m3/h] 4					+		
							~	
Ptauminé akiatnési nawiatan yawanangan Stauminé akiatnési nawiatan nawiawanang								
$V_{ex} = 0 \frac{m^3}{h}$	Jowieti za usuwa	lego strumen	$r_{su} = 0 \frac{m^3}{h}$	a nawiewanego				

Zakładka Straty na wentylację dla normy PN-EN 12831 - wentylacja z odzyskiem, obliczenia na podstawie typu urządzenia sanitarnego

TYP WENTYLACJI – pole służące do wybory jednego z trzech typów wentylacji: 1.grawitacyjna, 2.mechaniczna, 3.z odzyskiem. W zależności od wybranej wartości użytkownik zobaczy jedno z trzech okien.

RODZAJ OBLICZEŃ – pole służące do wyboru jednego z dwóch sposobów obliczeń strumienia wentylacyjnego: 1.krotność wymian, 2.typ urządzeń sanitarnych.

TEMPERATURA POWIETRZA WENTYLACYJNEGO θ_{su} [°C]–pole służące definiowania temperatury powietrza nawiewanego do pomieszczenia. Program domyślnie wstawia wartość z strefy klimatycznej. Wartość ta potrzebna jest do obliczenia współczynnik redukcji temperatury $f_{V,i}$.W przypadku wentylacji z odzyskiem temperatura powietrza wyliczana jest na podstawie sprawności odzysku ciepła η .

SPRAWNOŚĆ ODZYSKU CIEPŁA η [%]–pole służące definiowania sprawności odzysku ciepła występuje tylko w wariancie z odzyskiem ciepła, na podstawie tej wartości i temperatury zewnętrznej wyliczana jest temperatura nawiewu.

URZĄDZENIA/AKTYWNOŚĆ – pole służące do wyboru typu urządzenia lub aktywności na tej podstawie zostanie dodana odpowiednia wartość strumienia powietrza.

Galerie handlowe na m² powierzchni	^
Garaże zamknięte na miejsce postojowe	
Hale sprzedaży w dużych sklepach samoobsługowych na m² powierzchni	
Kawalerka M1	
Kuchnia bez okna, wyposażona w kuchenkę elektryczną	
Kuchnia z oknem, M-3 wyposażona w kuchenkę elektryczną	
Kuchnia z oknem, M-4 i więcej wyposażona w kuchenkę elektryczną	
Kuchnia z oknem, wyposażona w kuchenkę węglową lub gazową	
Łazienka	
Natryski na jeden natrysk	-
Nawiewnik okienny w przegrodzie zewnętrznej dla went. grawitacyjnej	

Lista typów urządzeń sanitarnych i aktywności

ILOŚĆ [szt.] – pole służące do definiowania ilości urządzeń lub osób w pomieszczeniu.

STRUMIEŃ POWIETRZA NAWIEWANEGO V_{su} [m³/h]–pole służące definiowania strumienia powietrza nawiewanego do pomieszczenia. Program wstawia domyślnie wartość na podstawie poniższej tabeli.

Typ urządzenia/aktywność osób	V [*] _{ex}	V_{su}^*
	[m ³ /h]	[m ³ /h]
Pisuar	25	0
Ubikacja	50	0
Kuchenkę elektryczną	30	0
Kuchenka gazowa	70	0
Kuchenka węglowa	70	0
Prysznic	100	0
Os. w pom. klimatyzowanym bez palenia	30	30
Os. w pom. klimatyzowanym z paleniam	50	50
Os. w pom. normalnym bez palenia	20	20
Os. w pom. normalnym z paleniam	30	30

Tab 1.Tabela urządzeń i aktywności osób

STRUMIEŃ POWIETRZA WYWIEWANEGO V_{ex} [m³/h]-pole służące definiowania strumienia powietrza wywiewanego z pomieszczenia. Program wstawia domyślnie wartość na podstawie powyższej tabeli.

CAŁKOWITY STRUMIEŃ POWIETRZA NAWIEWANEGO V_{csu} [*m*³/*h*]–pole służące definiowania strumienia powietrza nawiewanego do pomieszczenia. W przypadku kiedy nie ma w pomieszczeniu instalacji wentylacyjnej nawiewnej wstawiamy do strumienia nawiewanego wartość 0. Program wstawia domyślnie wartość z sumy kolumny V_{csu} .

CAŁKOWITY STRUMIEŃ POWIETRZA WYWIEWANEGO V_{cex} [*m*³/*h*]–pole służące definiowania strumienia powietrza wywiewanego z pomieszczenia. W przypadku kiedy nie ma w pomieszczeniu instalacji wentylacyjnej wywiewnej wstawiamy do strumienia wywiewanego wartość 0. Program wstawia domyślnie wartość z sumy kolumny V_{cex} .

6.1.5.4 Zakładka Dodatki – metoda Szczegółowa

Straty	przez przenikanie	Straty przez grunt	Straty przez wentylację	Dodatki	
0	Współczynnik na f _{RH} =0 <u>W</u>	agrzewania Tablice			
	Współczynnik o: e = 0	słonięcia Tablice			
	Współczynnik p	oprawkowy			
	ε = 0	Tablice			

Zakładka dodatki dla normy PN-EN 12831

WSPÓŁCZYNNIK NAGRZEWANIA f_{RH} [W/m²]-pole służące definiowania współczynnika nagrzewania,

wartość można wpisać ręcznie lub skorzystać z podpowiedzi włączanej przyciskiem

OSŁABIENIE NOCNE										
Współczynnik fRH dla osłabienia nocnego max. 12 h w budynkach niemieszkalnych										
	Współczynnik f RH dla osłabienia nocnego max. 12 h w budynkach niemieszkalnych									
Czas	Zakładane obniżenie temperatury wew. podczas osłabienia							a		
nagrzewania		2 K		3 K				4 K		
godz.		Masa			Masa			Masa		
	Niska	Średnia	Duża	Niska	Średnia	Duża	Niska	Średnia	Duża	
1	18	23	25	27	30	27	36	27	31	
2	9	16	22	18	20	23	22	24	25	
3	6	13	18	11	16	18	18	18	18	
4	4	11	16	6	13	16	11	16	16	

OSŁABIENIE NOCNE									
Współczynnik fRH dla osłabienia nocnego max. 8 h w budynkach mieszkalnych									
Współczynnik fRH dla osłabienia nocnego max. 8 h w budynkach mieszkalnych									
nagrzewania	Zakładane obniżenie temperatury wew. podczas osłabienia								
godz.	1 K	2 K	3 K						
	Masa budynku duża	Masa budynku duża	Masa budynku duża						
1	11	22	45						
2	6	11	22						
3	4	9	16						
4	2	7	13						
ſ									

Podpowiedź współczynnik f_{RH} dla osłabienia nocnego max. 8h

WSPÓŁCZYNNIK OSŁONIĘCIA e – pole służące definiowania współczynnika osłonięcia, wartość można wpisać ręcznie lub skorzystać z podpowiedzi włączanej przyciskiem Tablice. Wartość ta jest używana przy obliczaniu strumienia powietrza infiltracyjnego.

WSPÓŁCZYNNIK POPRAWKOWY ε – pole służące definiowania współczynnika poprawkowego uwzględniającego wzrost prędkości wiatru w zależności od wysokości położenia przestrzeni ogrzewanej ponad poziomem terenu, wartość można wpisać ręcznie lub skorzystać z podpowiedzi włączanej przyciskiem ^{Tablice}. Wartość ta jest używana przy obliczaniu strumienia powietrza infiltracyjnego.

6.1.6 Opis okna wyników obliczeń dla normy PN-EN 12831 - metoda Szczegółowa

Okno to służy do podglądu wyników obliczeń poszczególnych współczynników strat ciepła jak i projektowanych strat ciepła od ogrzewania, wentylacji i nadwyżki mocy cieplnej.

Wyniki obliczeń	
H _{T, ie} = 237,99 W	Φ _{V, i} =1039,65 W
$H_{T, iue} = 0 \frac{W}{K}$	Φ _{RH, i} =0 W
H _{T. ij} = 3,03 W/K	Φ _{HL, i} =10680,23 W
$H_{T, ig} = 0 \frac{W}{K}$	Φ _{HL,A} = 82,28 <u>W</u>
H _{V. i} =25,99 W /K	$\Phi_{HL, V} = 23,05 \frac{W}{m^3}$
Φ _{T, i} =9640,58 W	Φ _{i, i} =10680,23 W

Wyniki obliczeń

H_{T,ie} [*W*/*K*] – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do otoczenia przez obudowę budynku, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z

Podręcznik użytkownika dla programu ArCADia–TERMO

Opis obliczeń strat ciepła w pomieszczeniu

tabelki z zakładki "Straty przez przenikanie") H_T dla wszystkich przegród zewnętrznych (ścianzew., okienzew., drzwizew., dachów, stropodachów, stropów nad przejazdem) wyliczany z wzoru: $H_{T,ie} = A_{obl} \cdot U \cdot e_k + \sum \Psi_k \cdot L_k$

 $H_{T,iue}[W/K]$ – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do otoczenia przez pomieszczenia nieogrzewane, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z tabelki z zakładki "Straty przez przenikanie") H_T dla wszystkich przegród mających za sąsiada pomieszczenie nieogrzewane (ścian wew., okienwew., drzwiwew., stropówwew.) wyliczany z wzoru: $H_{T,iue} = A_{obl} \cdot U \cdot b_u + \sum \Psi_k \cdot L_k \cdot b_u$

 $H_{T,ij}[W/K]$ – współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do sąsiedniej przestrzeni, wartość domyślnie obliczana z zakładki "Straty przez przenikanie" jest to suma wartości z kolumny (z tabeli z zakładki "Straty przez przenikanie") H_T dla wszystkich przegród mających za sąsiada pomieszczenie o innej temperaturze niż obliczane (ścian wew., okienwew., drzwiwew., stropówwew.)wyliczany z wzoru: $H_{T,ij} = A_{obl} \cdot U \cdot (\theta_{int,i} - \theta_{pp})/(\theta_{int,i} - \theta_e)$

H_{T,ig}[*W*/*K*]– współczynnik strat ciepła przez przenikanie z przestrzeni ogrzewanej do gruntu, wartość domyślnie obliczana z wzoru:

$$\mathbf{H}_{\mathrm{T,ig}} = \mathbf{f}_{\mathrm{g1}} \cdot \mathbf{f}_{\mathrm{g2}} \cdot \left(\sum \mathbf{Ak^*} \ \mathrm{U_{equiv}}\right) \cdot \mathbf{G}_{\mathrm{w}}$$

 $H_{v,i}[W/K]$ – współczynnik projektowanej wentylacyjnej straty ciepła, wartość wyliczana z wzoru: $H_{v,i}=0,34 \cdot V_i^*$

 $\Phi_{T,i}$ [W]– projektowana strata ciepła ogrzewanej przestrzeni przez przenikanie, wartość wyliczana z wzoru: $\Phi_{T,i} = (\mathbf{H}_{T,ie} + \mathbf{H}_{T,iue} + \mathbf{H}_{T,ij} + \mathbf{H}_{T,ig}) \cdot (\theta_{int,i} - \theta_e)$

$$\begin{split} \Phi_{V,i} - \text{projektowana wentylacyjna strata ciepła, wartość wyliczana z wzoru:} \\ \Phi_{V,i} = H_{V,i} \cdot (\theta_{\text{int},i} - \theta_e) \end{split}$$

 $\Phi_{RH,i}$ – nadwyżka mocy cieplnej, wartość wyliczana z wzoru: $\Phi_{RH,i} = \mathbf{A} \cdot \mathbf{f}_{RH}$

 $\Phi_{\text{HL},i}$ – projektowane obciążenie cieplne, wartość wyliczana z wzoru: $\Phi_{\text{HL},i} = \Phi_{\text{T},i} + \Phi_{\text{V},i} + \Phi_{\text{RH},i}$

 $\Phi_{HL,A}$ – projektowane obciążenie cieplne na m2, wartość wyliczana z wzoru: $\Phi_{HL,A} = \Phi_{HL,i} / A$

 $\Phi_{HL,V}$ – projektowane obciążenie cieplne na m3, wartość wyliczana z wzoru: $\Phi_{HL,V} = \Phi_{HL,i} / V_i$

Podręcznik użytkownika dla programu ArCADia-TERMO

7.1 ETAP STREFY CIEPLNE

Etap ten służy do obliczeń sezonowego zapotrzebowania na ciepło budynku. Dane te potrzebne są do obliczeń świadectwa charakterystyki energetycznej budynku, audytu energetycznego oraz aby oszacować roczne zużycie ciepła przez budynek. Program pozwala na obliczenia wg rozp. MIIR z dnia 3 czerwca 2014 r. oraz normami PN-EN ISO 13790, PN-EN 832, PN-B 02025 metodą uproszczoną jak i szczegółową.

Użytkownik musi tylko zdefiniować, które pomieszczenie należy do jakiej strefy, a program na tej podstawie do każdej strefy przypisze przegrody sąsiadujące z obszarem zewnętrzne, z strefami nieogrzewanymi, z pozostałymi strefami ogrzewanymi, pomijając przegrody, które po obu stronach mają pomieszczenie z tej samej strefy. Program pozwala na zdefiniowanie dowolnej ilości stref (wyjątkiem jest metoda uproszczona w normie PN-B 02025).

Warto jednak przypomnieć, że początkujacy i niezaawansowani merytorycznie użytkownicy, którzy mają zamiar wykonyać obliczenia np. świadectwa charakterstyki energetycznej lub audytu, po dniu 2.10.2014 **powinni** po uruchomieniu programu, na początku skorzystać z wysuwanego panelu (po kliknięciu przycisku w kolorze

zielonym znajdujacego się po lewej stronie okna programu), aby wybór domyślnych norm oraz optymalnych ustawień programu został przeprowadzony automatycznie.

Wybór tematu	Dostepność
🔁 Analiza przegród budowlanych	~
Swiadectwo charakterystyki energetycznej	~
Projektowana charakterystyka energetyczna	~
Analiza środowiskowo-ekonomiczna	~
Audyt energetyczny	~
🛱 Audyt remontowy	~
Dobór grzejników	~
🗱 Klimatyzacja	~ <u>~</u>
🗸 Dostępny 🧹 Dostępny nie v	v pełnym zakresie
🖌 Dostępny niekomercyjnie przez 30 dni 🗙 Niedostępny -	Demo
🙎 Ustawienia użytkownika	

Wysuwany panel - pozwala automatycznie wybrać domyślne normy do obliczeń

Po kliknieciu na dowolne obliczenia wybraniu nastąpi automatyczna konfiguracja program wybór odpowiednich norm.

Okno stref cieplnych budynku składa się z czterech części:

- Drzewka stref cieplnych,
- Okna właściwości pomieszczenia,
- Zakładek obliczeń strat i zysków cieplnych,
- Panelu wyników obliczeń

Arcadi	ia-TERMO PRO 6.0 Licencja dla: Test -	- ArCADia-TERMO PRO 6 [L01] - 01. Szkoła	a wyższa (chłód) 🛛 🗕 🗖 🗙	
<u>P</u> lik <u>E</u> dycja <u>R</u> aporty	≞ ¢ ⊵ ♠ ₹ /> ₹ ?			
OBLICZENIA CIEPLNE St	trefy cieplne - Świadectwo charakterys	styki energetycznej 2014, WT 2014		
	Wasciwości strefyWyniki obliczeńWyniki obliczeńWyniki obliczeńNazwa:Strefa 01Strefa 01ImperaturaŚrednia ważona temperaturaImperaturaŚrednia ważona temperaturaImperaturaŚrednia ważona temperaturaImperaturaŚrednia ważona temperaturaImperaturaŚrednia ważona temperaturaImperaturaImperaturaImperaturaŚrednia ważona temperaturaImperatura <td< td=""></td<>			
-1.14 Komuni 	Tryby pracy Straty przez przenikanie Straty przez	grunt Straty przez wentylację Zyski wewnętrzne Zysk	ci od nasłonecznienia Dodatki	
-1.18 WC D	Lp. Przegroda	[szt.] Orientacja [m] [m] [m2] [m2]	Mostki [W/m²K] fij [°C	
-1.20 WC M		- E 1,40 1,40 1,96 1,2 1 F 1,20 0.60 0.72 -		
-1.22 Komuni	3 Ściana wewnętrzna gr. 25cm	- S 3,18 5,75 18,29 18,29	9 0,00 1,71 0,09 19,7	
-1.24 Pomies V	4 ściana wewnętrzna gr. 25cm	- N 3,18 5,75 18,29 18,29	9 0,00 1,71 0,09 19,7	
< >	5 Ściana zewnętrzna gr. 40 cm	- E 1,40 1,40 1,96 1,24	4 0,00 0,23 - 🇰 🕅	
Definicje przegród	6 🖾 🖵 Okno zewnętrzne	1 E 1,20 0,60 0,72 -	0,00 1,80 -	
Straty ciepta	7 🗰 Ściana zewnętrzna gr. 40 cm	- E 1,40 1,40 1,96 1,24	4 0,00 0,23 -	
Strefy clepine	8 Okno zewnętrzne	1 E 0,60 1,20 0,72 -		
Screry Chrodu	9 Sciana zewnętrzna gr. 40 cm	- E 1,40 1,40 1,96 1,24		
DANE WEJŚCIOWE	10 10 Here → Ukno zewnętrzne	I E 0,60 1,20 0,72 -		
	12 Ściana wewnętrzna gr. 25cm	- N 3 18 3 60 11 45 8 3		
	13 FI L Drzwi wewnetrzne	1 N 2.05 1.50 3.08 -	0.00 2.60 0.09	
	<		>	
LQ PODGLĄD PROJEKTU	laport o błędach			
🖶 WYDRUKI 🗌	Lp. Typ	Opis	~	
	1 Ostrzeżenie Parametr "Współczynnik p	przenikania Uc" w przegrodzie "PG 1", powinien znajdować	ć się w przedziale od 0,00 do 0,30! 🗸 🗸	
< [6/15] >			<table-cell> 🕼 🕼 💾 Zamknij</table-cell>	

Okno Strefy cieplne

7.1.1 Drzewko stref cieplnych

Drzewko pozwala na dowolne dodawanie pomieszczeń do stworzonych stref cieplnych budynku. Użytkownik poprzez zaznaczanie, a następnie przesuwanie strefy może dowolnie zmieniać przynależność do strefy wybranego pomieszczenia. W przypadku pobrania danych z ArCADia-ARCHITEKTURA. drzewko wypełniane jest automatycznie z podziałem na strefy. Zaznaczenie strefy przenosi nas do okna jego parametrów, które wyświetlają się po prawej stronie. Program umożliwia automatyczne przydzielenie pomieszczeń do stref (polega to na tym, że program tworzy grupy stref na podstawie największej wartości temperatury, a następnie tworzy zakresy temperatur dla każdej strefy, zakres wynosi 4 °C). Pomieszczenia, które znajdują się w grupie nieprzypisane nie są uwzględniane w wynikach końcowych.

Drzewko stref

Opis obli	iczeń sezonowego zapotrzebowania na ciepło na cele ogrzewania i wentylacji
+	dodawanie nowych kondygnacji do projektu,
×	usuwania wstawionych w projekcie kondygnacji, grup, pomieszczeń,
A.	automatyczne grupowanie pomieszczeń na podstawie temperatury wewnętrznej,
ኩ	kopiowanie wstawionych pomieszczeń wraz z ich przegrodami i parametrami,
Ō	wklejanie skopiowanych pomieszczeń,
	oznaczenie graficzne pomieszczenia ogrzewanego,
	oznaczenie graficzne pomieszczenia nieogrzewanego,
	oznaczenie graficzne grupy strefy cieplne ogrzewane,
Ŀ	oznaczenie graficzne grupy stref nieogrzewanych,
2	oznaczenie graficzne grupy dla nieprzypisanych pomieszczeń,
L	oznaczenie graficzne utworzonych stref,
₽Ž	alfabetyczne sortowanie pozycji
	pobranie stref z innych projektów

7.1.2 Opis okno właściwości strefy

W oknie tym wpisujemy podstawowe dane o strefie cieplnej odnośnie temperatury, nazwy, typ ogrzewanego czy nie, numeracji, powierzchni i kubatury, a także ilości osób w strefie i mieszkań.

Właściwości strefy			
Nazwa:	Sala gimnastyczna		
Тур:	Ogrzewana		
Temperatura		Średnia ważona temperatura	
θ _{int,ਜ} 16,00 ° C		θ _s =20,00°C	
Powierzchnia o reg	. temperaturze	Kubatura o reg. temperaturze	
A _f =193,91 m ²	Podział	V =1221,61 m ³	
Działanie wiatru		Osłonięcie przed wiatrem	
e =0,01	Tablice	f =15,00 Tablice	

NAZWA – pole służące do ręcznego wpisywania nazwy strefy.

TYP – użytkownik w polu wybiera jeden z dwóch wariantów typu strefy: 1. Ogrzewane, 2. Nieogrzewane. W przypadku wyboru pierwszego typu w oknie włącza się zakładki służące do definiowania start i zysków ciepła w strefie. Wybór drugiego wariantu wyłącza zakładki strat ciepła, a użytkownik może jedynie zdefiniować albo współczynnik b_u (dla normy PN-EN 12831), albo temperaturę strefy nieogrzewanego (dla normy PN-B 03406).

TEMPERATURA t lub $\theta_{int,H}$ [°C] – pole służące do wpisywania temperatury obliczeniowej strefy, program domyślnie wstawia największą wartość występującą w zgrupowanych w tej strefie pomieszczeń.

ŚREDNIA TEMPERATURA θ_s lub t_s [°C] - pole służące do podglądu średniej ważonej temperatury pomieszczeń zgrupowanych w strefie, gdzie wagą jest powierzchnia tych pomieszczeń.

CAŁKOWITA POWIERZCHNIA STREFY A $[m^2]$ – pole służące do wpisywani pola powierzchni strefy, program domyślnie wstawi powierzchnię pomieszczeń znajdujących się w strefie. Wartość ta przekazywana jest dalej do obliczeń certyfikatu i audytu energetycznego.

CAŁKOWITA KUBATURA STREFY V $[m^3]$ – pole służące do wpisywania kubatury strefy, program domyślnie wstawi kubaturę pomieszczeń znajdujących się w strefie. Wartość ta przekazywana jest dalej do obliczeń certyfikatu i audytu energetycznego.

ILOŚĆ OSÓB W STREFIE N – pole służące do wpisywania ilości osób w strefie, informacja ta posłuży do obliczeń wewnętrznych zysków ciepła.

ILOŚĆ MIESZKAŃ W STREFIE M – pole służące do wpisywania ilości mieszkań w strefie, informacja ta posłuży do obliczeń wewnętrznych zysków ciepła.

OSŁONIECIE PRZED WIATRE M_f – pole służące do wpisywania współczynnika osłonięcia przed wiatrem, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice. Wartość ta jest potrzebna do obliczeń powietrza infiltrującego przez osłonę zewnętrzna budynku.

Współczynnik odniesiony do wystawienia na działanie wiatru	
Klasa osłonięcia	f
Więcej niż jedna nieosłonięta fasada	15
Tylko jedna nieosłonięta fasada 20	

Podpowiedź współczynnik osłonięcia przed wiatrem

WSPÓŁCZYNNIK KLASY OSŁĄNIĘCIA e – pole służące do wpisywania współczynnika klasy osłonięcia przed wiatrem, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice. Wartość ta jest potrzebna do obliczeń powietrza infiltrującego przez osłonę zewnętrzną budynku.

Współczynnik osłonięcia przed wi 🗙			
	е		
Klasa osłonięcia	Więcej niż jedna nieosłonięta fasada	Tylko jedna nieosłonięta fasada	
Brak osłonięcia	0,1	0,03	
Średnie osłonięcie	0,07	0,02	
Dobrze osłonięte	0,04	0,01	

Podpowiedź współczynnik klasy osłonięcia

SPOSÓB WYMIANY CIEPŁA MIĘDZY STREFAMI – pole służące do wyboru w jaki sposób obliczane będzie wymiana ciepła miedzy graniczącymi strefami. Użytkownik ma do wyboru dwa przypadki: Adiabatycznie – nie są uwzględniane straty/zyski między strefami w przypadku kiedy wartość dla obliczanego miesiąca wyjdzie z wartością minusową wówczas do programu wpisywane jest 0. Z wymianą ciepła między strefami – wówczas program w obliczeniach uwzględnia straty/zyski od

sąsiadujących stref (w raporcie RTF stref cieplnych uwzględniony jest współczynnik strat ciepła H_{zy}).

7.1.3 Opis zakladek obliczeń strat i zysków ciepła
7.1.3.1 Zakładka tryby pracy

Tryby	racy	Straty przez przeni	kani	ie Straty przez grunt	Straty p	orzez	z wentylac	ję Zyski v	wewnętrzne	Zyski od r	nasłonecznienia	Doda	łki	
Lp.		Nazwa trybu		Typ trybu		١	Nastawa θint,H [℃]	Ilość godzin na dobę	Ilość dni w tygodniu	Ilość dni w miesiącu	Miesiąc		Parametry szczegółowe	+
1	Standa	rd		Ciągły			20,00							×
2	Standa	rd		Ciągły			16,00							Π'n
														D

Zakładka definiowania trybów pracy rozp. MIiR z 03.06.2014

TRYB PRACY- użytkownik wybiera jeden z trybów: 1. Standardowy, 2. Nocny, 3. Weekendowy, 4. Inny.

ILOŚĆ GODZIN – pole służące do definiowania ile godzin w ciągu dnia ma pracować instalacja. W przypadku dwóch trybów pracy codziennie suma dla obu trybów godzin powinna wynosić 24.

ILOŚĆ DNI – pole służące do definiowania jak często występuje dany tryb pracy, użytkownik ma do wyboru: 1. Codziennie, 2. Co 2 dni, 3. Co 3 dni, 4. Co 4 dni, 5. Co 5 dni, 6. Co 6 dni, 7. Co tydzień (4 dni z miesiąca), 8. Co weekend (8 dni z miesiąca), 9. Co miesiąc (jeden dzień z miesiąca)

TEMPERATURA [°C]- pole służące do definiowania temperatury, każdego trybu pracy. Na tej podstawie wyliczone będzie sezonowe zapotrzebowanie na ciepło.

WEWNĘTRZNE ZYSKI CIEPŁA [W/m²]- pole służące do definiowania wewnętrznych zysków ciepła, użytkownik może wpisać własna wartość lub skorzystać z podpowiedzi uruchamianej przyciskiem \cdots . Dane te będą potrzebne do obliczeń sezonowego zapotrzebowania na ciepło strefy.

UWAGI- pole służące do wpisywania uwag odnośnie trybu pracy.

Przykład 1

Tryby pracy służą do wyliczania rzeczywistego zużycia energii na cele ogrzewania budynku, ponieważ często zdarzają się sytuację, że budynek jest ogrzewany tylko podczas przebywania w nim ludzi.

Przykład 2

W szkole codziennie od poniedziałku do piątku odbywają się zajęcia lekcyjne od godz. 7.00 do 20.00 przy temp. 20.00 °C. W pozostałych godzinach temperatura w budynku jest 18.00 °C. Dodatkowo, podczas ferii zimowych w lutym przez 2 tygodnie szkoła jest nieczynna.

Wariant I

Najpierw zawsze trzeba zdefiniować tryb *Ciągły* oznaczający standardową temprtaturę podczas użytkowania. Potem trzeba wykorzystać pozostałe tryby. Tryb *Przerwy osłabienia* trwają w nocy przez 11 godzin 7 dni w tygodniu. Tryb *Nieużytkowane* jest w miesiącu lutym i trwa 14 dni.

Tryby	pracy Straty przez przen	ikani	e Straty przez grunt St	traty pr	przez wentylację Zyski wewnętrzne		Zyski od i	nasłonecznienia	Dod	atki		
Lp.	Nazwa trybu		Typ trybu		Nastawa Øint,H [°C]	Ilość godzin na dobę	Ilość dni w tygodniu	Ilość dni w miesiącu	Miesiąc		Parametry szczegółowe	+
1	Standard		Ciągły		20,00							×
2	Nocny		Przerwy osłabienia		18,00	11	7					ኩ
3	Przerwa zimowa		Nieużytkowanie		12,00			14	Luty			Ē

7.1.3.2 Zakładka Straty przez przenikanie

Tryby	y pracy Straty przez przenikanie Straty prz	ez grur	nt Strat	ty przez v	vent	ylacje 🗌	Zyski we	wnętrzne	e Zyski	od nasło	necznienia	Dodatki		
Lp.	Przegroda		n [szt.]	Orienta	acja	H [m]	W [m]	A [m²]	Aobl [m²]	Mostki	U [W/m]	² ĸ Strefa/Temp. [℃]	Hx [W/K]	+ ₊
1	Ściana zewnętrzna		-	S		6,50	10,63	69,10	69,10	9,48	1,	15 203 2	88,9	
2	ściana zewnętrzna		-	E		3,84	18,25	70,08	54,87	15,18	1,	15 203 2	78,3	×
3	📖 🖵 Okno zewnętrzne		6	E		1,50	1,69	2,54	-	2,87	1,	20 후미콩 홍~~	35,5	-
4	Ściana zewnętrzna		-	N		3,00	5,95	17,85	17,85	5,21	1,	15 美口菜 老 💒	25,7	
5	Ściana zewnętrzna		-	N		6,50	4,68	30,42	30,42	4,72	1,	15 美口菜 美 💒	39,7	Th.
6	Ħ Strop zewnętrzny_dach sali gimnast.		-	-		0,00	0,00	193,91	193,91	0,00	1,	29 후미로 문	250,1	5
7	Ściana wewnętrzna		-	E		2,71	18,25	49,46	49,46	0,00	1,	36 24,00	92,0	
8	Ściana wewnętrzna		-	N		2,90	4,68	13,57	13,57	0,00	1,	36 20,00	25,2	
9	H Strop zewnętrzny_dach nad wejściem		-	-		0,00	0,00	22,00	22,00	0,00	1,	8 至口菜 辛二	23,8	

Zakładka Straty przez przenikanie norma PN-EN 13790 i PN-EN 832

Tabelka ta służy do zdefiniowania przegród wchodzących w skład strefy (na tej podstawie wyliczona będzie strata cieplna strefy). W przypadku wpisania przegród w pomieszczeniach lista przegród w strefie zostanie wypełniona automatycznie. Po prawej stronie mamy przyciski, które umożliwiają nam:

+	dodawanie nowych przegród do stref,
+ ↓	dodawanie do przegrody okien i drzwi (dodanie okien i drzwi tym sposobem spowoduje, że do obliczeń wzięta będzie powierzchnia pomniejszona o wstawione otwory).
+	przycisk służący do odłączania okien i drzwi od przegrody (wówczas wymiary tych otworów nie będą wpływały na pole
Γh	kopiuj przegrodę
D	wklej przegrodę
	kalkulator

NAZWA PRZEGRODY – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Przyciskiem · · · otwiera listę dostępnych w projekcie przegród:

Drzewko przegród w projekcie

ILOŚĆ n [szt.]–kolumna ta jest aktywna tylko dla przegród typu okna i drzwi służy do definiowania liczby przegród o podanych wymiarach.

ORIENTACJA O- orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

N	Północ	
NE	Płn Wsch.	
E	Wschód	
SE	Płd Wsch.	
S	Południe	
SW	Płd Zach.	
W	Zachód	
NW	Płn Zach.	

Wybór orientacji przegrody

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody wzdłuż osi (w zależności od wybranej opcji wymiarowania długość tą podajemy konturem: zewnętrznym , wewnętrznym i środkiem ściany). W przypadku ściągnięcia informacji tej z ArCADia- ARCHITEKTURA - wartość wpisywana jest automatycznie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. W przypadku pobrania informacji z ArCADia-ARCH ITEKTURA wartość wpisywana jest automatycznie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody wartość wyliczana z $W \times H \otimes$ przypadku okien, drzwi, wartość wyświetlana jest dla jednej sztuki.

OBLICZENIOWE POLE POWIERZCHNI PRZEGRODY A_{obl} [m^2]- pole służące do podglądu rzeczywistej powierzchni przegrody przenoszonej do obliczeń. Program automatycznie odejmuje pola dodanych do tej przegrody drzwi i okien.

MOSTEK– pole służące do definiowania współczynnika, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej przyciskiem …. Kolumna ta jest widoczna wówczas, gdy w oknie wybór obliczeń zostanie wybrana metoda obliczeń mostków cieplnych wg PN- EN ISO 14683.

			Most	ki cieplne					×
Kod	d Typ mostka S		Symbol	Ψk [W/m*K]	L k [m]	:]	+	11 Starter Sta	
17M	Naroże zewnętrzne ściany z izolacją zewnętrzną		C1	-0,05	н		X		
25M	Strop/ściana z izolacją zewnętrzną		IF1	0,00	W		+		
90M	Połączenie ściany bez izolacji z podłogą na gruncie z izolacją krawędziową poziomą		GF3	0,55	W		Ļ		
							Πh		
							Ō		
Wyłącz pobieranie mostków z definicji przegrody				Σ	¥k·Lk= î	W K		Anuluj OK	

Mostki cieplne

W oknie tym użytkownik może zdefiniować mostki cieplne z bazy zgodnej z normą PN-EN ISO 14683 lub z katalogu mostków cieplnych wydawnictwa ITB. Po prawej stronie ma podgląd wstawionego mostka, a także ikonki służące do edycji listy mostków.

dodawanie nowych typów mostków,

KOD - pole służące do podglądu kodu mostka cieplnego, wartość ta pokazywana jest w raportach RTF.

TYP MOSTKA – pole służące do zdefiniowania typu mostka, użytkownik może wpisać własny model lub skorzystać z podpowiedzi uruchamianej przyciskiem ….

WYŁĄCZ POBIERANIE MOSTKÓWZ DEFINICJI PRZEGRODY - opcja ta służy do wyłączenia/włączenia pobierania zdefiniwanych mostków w etapie 4. dla danego typu przegrody. Po zaznaczeniu tej opcji kolejne zmiany typy i długości mostków okrelsone w definicji przegrody nie bedą miały żadnego wpływu na zawartość tego okna, rys. 165.

Okno bazy mostków cieplnych

SYMBOL – pole służące do podglądu symbolu mostka cieplnego z normy lub z katalogu mostków.

WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA LINIOWEGO MOSTKA CIEPLNEGO Ψ_K [*W/m·K*] – pole służące do wstawiania liniowego współczynnika mostka cieplnego, użytkownik może ręcznie wstawić wartość lub skorzystać z wartości domyślnej proponowanej przez program.

*DŁUGOŚĆ LINIOWEGO MOSTKA CIEPLNEGOI*_K [*m*] – pole służące do wstawiania długości liniowego mostka cieplnego.

WSPÓŁCZYNNIK PRZENIKANIAU[W/m2·K]–pole służące do definiowania współczynnika przenikania ciepła dla wybranej przegrody program automatycznie wpisuje wartość obliczoną w oknie *definicje przegrody*.

STREFA/TEMP. [°C]–pole służące do wyboru temperatury lub strefy po drugiej stronie przegródy. Dla przegród zewnętrznych program automatycznie podaje temperaturę strefy klimatycznej, dla przegród mających po drugiej stronie strefę ogrzewaną wybieramy z przycisku odpowiednie strefę ••••, gdy na liście wybierzemy *brak* wówczas ręcznie możemy wstawić odpowiednią temperaturę (a współczynnik strat ciepła wyliczony dla tej

przegrody dodawany jest do sumy współczynników od stref wewnętrznych). W przypadku wybrania strefy z listy program automatycznie wstawia jego temperaturę (jakakolwiek zmian temperatury w tym pomieszczeniu automatycznie jest przenoszona i obliczana). Dla stref nieogrzewanych pokazywany jest współczynnik b_u, który pobierany jest z sąsiadującego strefy.

WSPÓŁCZYNNIK PROJEKTOWANEJ STRATY CIEPŁA H_x [W/K] – pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta przekazywana jest dalej do wyników obliczeń.

7.1.3.3 Zakładka Straty przez grunt

Dla normy PN-EN 13790 i PN-EN 832 użytkownik może wykonać obliczenia dwoma normami gruntowymi. Metoda uproszczoną wg normy PN-EN 12831 lub szczegółową wg normy PN EN ISO 13370. Dla normy PN B 02025 do wyboru mamy tylko normę PN EN ISO 13370W przypadku dodania nowej przegrody program automatycznie wstawia w kolumnę A_K wartość z pola powierzchnia pomieszczenia. W oknie tym użytkownik dodaje przegrody typu podłoga na gruncie i ściana na gruncie. W przypadku pobrania danych z ArCADia ARCH. Przegrody i parametry wstawiane są automatycznie. Wartości wyliczane są z wzoru:

$\mathbf{H}_{\mathrm{T,ig}} = \mathbf{f}_{\mathrm{g1}} \cdot \mathbf{f}_{\mathrm{g2}} \cdot \left(\sum \mathbf{Ak^* U_{\mathrm{equiv}}}\right) \cdot \mathbf{G}_{\mathrm{w}}$

Zakładka straty przez grunt norma PN-EN 12831

wklej przegrodę

kalkulator

L.P. – pole pokazujące kolejna liczbę porządkową,

PRZEGRODA – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Ikonką … otwiera listę dostępnych w projekcie przegród(do wyboru mamy przegrody typu podłoga na gruncie i ściana na gruncie).

Drzewko przegród podłoga i ściana na gruncie w projekcie

OBWÓD PODŁOGI PO OBRYSIE ZEWNETRZNYM P [m] – pole służące do wstawiania obwodu podłogi na gruncie, użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja* przegrody/zakładka parametrydodatkowe.

CAŁKOWITA POWIERZCHNIA PRZEGRODY A_g [*m*²]- pole służące do wstawiania całkowitego pola powierzchni przegrody (w całym budynku), użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

WSPÓŁCZYNNIK CHARAKTERSTYCZNY PODŁOGI B' [m] – pole służące do wstawiania współczynnika charakterystycznego, wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

ZAGŁĘBIENIE Z [m] – pole służące do wpisywania zagłębienia podłogi lub ściany na gruncie, wartość wstawiana domyślnie na podstawie danych z okna *definicja przegrody/zakładka parametrydodatkowe*.

*WSPÓŁCZYNNIK PRZENIKANIA WARTSW PODŁOGI/ŚCIANY NA GRUNCIE U*_k [*W/m*²·*K*]-pole służące do definiowania współczynnika przenikania warstw przegrody, na tej podstawie z tabeli pomocniczych zostanie dobrany współczynnik $U_{equiv,bw}$. Wartość domyślnie wstawiana jest z okna *definicja przegrody/zakładka parametrydodatkowe*.

 $RÓWNOWAŻNY WSPÓŁCZYNNIK PRZENIKANIA U_{equiv} [W/m²·K] – pole służące do podglądu wartości wstawianej na podstawie parametrów B', Z i U_k z niżej pokazanych tabel:$

POWIERZCHNIA PRZEGRODY STYKAJACEJ SIĘ Z GRUNTEMA_k $[m^2]$ – pole służące do definiowania wartości pola powierzchni przegrody w strefie. Program domyślnie wstawia wartość z powierzchni strefy.

 $U_{equiv} \cdot A_k [W/K]$ – pole służące do podglądu i modyfikacji wyniku obliczeń dla podłogi na gruncie dana ta zostanie przekazana do dalszych obliczeń.

WSPÓŁCZYNNIK KOREKCYJNY f_{g1} – pole służące do definiowania współczynnika korekcyjnego uwzględniającego wpływ rocznych wahań temperatury zewnętrznej. Program domyślnie przyjmuje wartość 1,45.

WSPÓŁCZYNNIK KOREKCYJNY f $_{g2}$ – pole służące do definiowania współczynnika redukcji temperatury uwzględniającego różnicę między średnią roczną temperaturą zewnętrzną i projektowaną temperaturą zewnętrzną. Program domyślnie przyjmuje wartość obliczona z wzoru:

 $\mathbf{f}_{g2} = (\theta_{int,i} - \theta_{m,e}) / (\theta_{int,i} - \theta_{e})$

*WSPÓŁCZYNNIK KOREKCYJNY G*_w pole służące do definiowania współczynnika uwzględniającego wpływ wody gruntowej a poziomem podłogi.Program domyślnie przyjmuje wartość 1,00.

7.1.3.4 Zakładka Straty na wentylację

Zakładka ta służy do definiowania strumienia powietrza wentylacyjnego i do wyliczenia strat ciepła przez wentylację.

ArCADi	a-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 – 📮	×
Plik Edycja Ustawienia		
OBLICZENIA CIEPLNE	Strefy cieplne - Świadectwo charakterystyki energetycznej 2014, WT 2014	
Grzewane Grzewane So Zapiecze s So Zapiecze s So Zapiecze s So Zapiecze s M.02 Łazienka M.03 Garaż ind Niegrzewane	Wlaściwości strefyWyniki obliczeńNazwa:SklepWyniki obliczeńWyniki obliczeńTyp:Ogrzewana $H_{D,i} = 36,16 \frac{W}{K}$ Wyniki dla miesiącTemperaturaŚrednia ważona temperatura $\theta_{g}=20,00^{\circ}C$ $H_{u,i} = 0,01 \frac{W}{K}$ $Q_{H,gn} = 409,84 \frac{KVR}{m-C}$ Powierzchnia o reg.Kubatura o reg. temperaturze $V = 100,80 m^3$ $M_{g,i} = 3,06 \frac{W}{K}$ $Q_{H,m} = 53737,37 \frac{KV}{m}$ Działanie wiatruOstonięcie przed wiatrem $I = 1825,22 \frac{W}{K}$ $Q_{H,nd_{n}} = 53329,73 \frac{KV}{m}$ $H = 1825,22 \frac{W}{K}$ $Q_{H,nd_{n}} = 5329,73 \frac{KV}{m}$	ca c Wh n-c
> 142.21 kV/h/(m ² rok) 200 400 600 800 1000 > 1000 1 Definicje przegród Definicje przegród	Tryby pracy Straty przez przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne Zyski od naslonecznienia Dodatki Rodzaj budynku Dom wielorodzinny Image: straty przez grunt Próba szczelności budynku Próba szczelności Tak n 50 = 1,50 mm 1,50	e
Zyski ciepła	Lp. Nazwa pomieszczenia/strefy Af V Vve,1 bve,1 Vve,2 bve,2 Hve Qve [m²] [m³] [m³/h] bve,1 [m³/h] bve,2 Hve Qve [W/h] [k/h/rok] <	+
Strefy cieplne	1 4000,00 10000,00 4608,00 1,00 750,00 1,00 1786,00 183779,40 >	×
DANE WEJŚCIOWE OBLICZENIA CIEPLNE CERTYFIKAT	Π	h
Q PODGLĄD PROJEKTU	Raport o blędach	
WYDRUKI	Lp. Typ Opis Odśwież listę błędów!	
〈 [7/14] 〉	D D D E E E E E C. C. C. C C.	umknij

Wentylacja grawitacyjna - Sklep

RODZAJ BUDYNKU – pole do wyboru z rozwijanej listy, użytkownik ma do wyboru następujące rodzaje budynków:

a) mieszkalne jednorodzinne
b) mieszkalne wielorodzinne
c) biurowy
d) oświaty
e) szkolnictwa wyższego
f) nauki
g) opieki zdrowotnej
h) gastronomii
i) handlu
j) sportu
k) usług
l) zamieszkania zbiorowego
m) magazynowy

n) przemysłowy (Hala produkcyjna)

Akademik
Biurowy
Dom jednorodzinny
Dom wielorodzinny
Gastronomia
Hala produkcyjna
Handel
Hotel
Koszary
Lokal mieszkalny
Magazyn
Nauka
Opieka zdrowotna
Oświata
Sport
Szkolnictwo wyższe
Usługi

TYP WENTYLACJI – pole do wyboru z rozwijanej listy użytkownika ma do wyboru jeden z 6 typów:

- wentylacja grawitacyjna
- wentylacja mechaniczna wywiewna
- wentylacja mechaniczna nawiewno wywiewna
- wentylacja mechaniczna wywiewna działająca okresowo
- wentylacja mechaniczna nawiewno wywiewna działająca okresowo
- wentylacja mechaniczna nawiewna działająca okresowo

Na tej podstawie zmienia się wygląd całej zakładki.

PRÓBA SZCZELNOŚCI BUDYNKU – użytkownik ma do wyboru Tak lub Nie w przypadku tak pojawia się pole n_{50} gdy wybierze nie pojawia się pole n od wyboru tego parametru uzależnione są obliczenia V_{inf}

SPRAWNOŚĆ ODZYSKU CIEPŁA $\eta_{oc,n}$ [%] – pole służące definiowania sprawności odzysku ciepła występuje tylko w przypadku pojawienia się tego symbolu w tabelkach 5,6,7. Użytkownik może wstawić własną wartość lub skorzystać z podpowiedzi włączanej przyciskiem Tablice.

Vartości sp	prawności instalacji odzysku	×
Lp.	System odzysku ciepła	Sprawność odzysku [%]
1	Wymiennik płytowy, krzyżowy	50-60
2	Rekuperacja pośrednia	40-50
3	Rurka cieplna	50-60
4	Wymiennik obrotowy bez odzysku wilgoci	65-80
5	Wymiennik obrotowy z odzyskiem wilgoci	65-80
6	Wymiennik spiralny	70-89
7	Wymiennik gruntowy	80-99

Podpowiedź wartość sprawności instalacji odzysku

SPRAWNOŚĆ ODZYSKU GWC $\eta_{GWC,n}$ [%]–pole służące definiowania sprawności odzysku ciepła gruntowego wymiennika ciepła. Użytkownik może wstawić własną wartość powinna się zawierać między 0-100 %, domyślnie 20,0 %.

Lp.	Nazwa pomieszczenia/strefy	Af [m²]	V [m³]	Vve [m³/	;, 1 /h]	bve,1	Vve,2 [m³/h]	bve,2	Hve [W/K]	Qve [kWh/r	ok]	+
1		. 4000,00	10000,00	4608,00		1,00	750,00	1,00	1786,00	183779,40		×

Wentylacja - rodzaj budynku a,b,g,l

NAZWA POMIESZCZENIA/STREFY – pole do wpisywania textu przez użytkownika lub pobierania danych za pomocą przycisku ... z strefy lub pomieszczeń należących do strefy (wówczas wsyawia się domyślnie pole Af i V). Gdy użytkownik zaznaczy strefę przenoszą się dane dla strefy gdy pomieszczenie to dane dla pomieszczenia.

Wentylacja - rozwijana lista strefy i pomieszczeń

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE $A_f[m^2]$ – pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

KUBATURA POMIESZCZENIA/STREFY V [**m**³] - pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU V_{ve,1,n} [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wówczas pojawiają się poniższe trzy tabele). Wartość wyliczana z tabelki poniżej x Af:

Vve,l,s Lp. Strefa ogrzewana lub okresowo ogrzewana $[m^{3}/(s \cdot m^{2})]$ Lokale mieszkalne w przypadku wentylacji: 1 0,32.10-3 a) ciągłej, b) mechanicznej z osłabieniem w nocy $0.28 \cdot 10^{-3}$ 2 Klatki schodowe w budynkach wybudowanych przed 1990 r., w których nie przeprowadzono termomodernizacji: a) bez wiatrołapu, $0.43 \cdot 10^{-3}$ b) z wiatrołapem 0,22.10-3 Klatki schodowe w budynkach innych niż wymienione w lp.2: 3 $0,22 \cdot 10^{-3}$ bez wiatrołapu, a) 0.07.10-3 b) z wiatrołapem

Tabelka 5 wartości V_{ve} dla wentylacji grawitacyjnej i mechanicznej wywiewnej rodzaju budynków: b)

Tabelka 6 wartości V_{ve} wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: a)

Lp.	Strefa ogrzewana	$\frac{V_{\text{ve,l,s}}}{[m^3/(s \cdot m^2)]}$
1	Pomieszczenia mieszkalne i pomocnicze, w tym wewnętrzna klatka	
	c) ciagłaj	0.31,10 ⁻³
	d) mechanicznej z osłabieniem w nocy	0,27·10 ⁻³

Tabelka 7 wartości Vve wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: g), l)

Lp.Strefa ogrzewana $V_{ve,l,s}$ $[m^3/(s \cdot m^2)]$	Lp.). Strefa ogrzewana	$\frac{\mathbf{V}_{\text{ve,l,s}}}{[\mathbf{m}^3/(\mathbf{s}\cdot\mathbf{m}^2)]}$
---	-----	---------------------	---

1	Użyteczności publicznej	a) biurowy,	0,56·10 ⁻³
		b) przeznaczony na potrzeby:	
		oświaty, szkolnictwa wyższego i nauki	
2		przeznaczony na potrzeby:	0,42.10-3
		opieki zdrowotnej, gastronomii	
3		przeznaczony na potrzeby:	0,33.10-3
		handlu, usług	
4		przeznaczony na potrzeby:	0,42.10-3
		sportu	
5	Zamieszkania zbiorowego)	0,42.10-3
6	Magazynowy		0,08.10-3
7	Produkcyjny		indywidualne w
			zależności od rodzaju
			produkcji i sposobu
			użytkowania

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE

UŻYTKOWANIA BUDYNKU b_{ve,1,n}– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wtedy pojawiają się okienka zawierające tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 2 DODATKOWEGO W

OKRESIE UŻYTKOWANIA BUDYNKU $V_{ve,2,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7. Obliczenia poszczególnych strumieni:

 $V_{inf} = \frac{n \cdot V}{3600} [m^3/s] - \text{bez próby szczelności n} = 0,2 \text{ lub } 0,3$

 $V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s]$ - z próbą szczelności

 $V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot n_{50} \cdot e}{V \cdot n_{50}} \right]^2}$ (gdy nie ma próby szczelności n₅₀ = 4)

 $V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 2 DODATKOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU b_{ve,2,n} – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wówczas pojawiają się nam tabelki 5,6,7).

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ H_{ve} [W/K] – pole do odczytu wartość wyliczana z wzoru H_{ve} = $1200 \cdot \sum_{k} b_{ve,k} \cdot V_{ve,k,n}$

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ Q_{ve} [kWh/rok] – pole do odczytu użytkownik ma dodatkowo przycisk … którym otwiera się okienko gdzie są pokazane miesiące od I-V i IXd-XII wartość wyliczana z wzoru $Q_{ve} = \sum_{n} Q_{ve,s,n}$

$$Q_{ve,s,n} = H_{ve} \cdot (\theta_{int,S,H} - \theta_{e,m}) \cdot t_m \cdot 10^{-3}$$
 (dla każdego miesiąca)

gdzie:

 $\begin{array}{ll} \theta_{int,S,H} & - \text{ temperatura strefy} \\ \theta_{e,m} & - \text{ temperatura danego miesiąca z bazy klimatycznej} \\ t_m & - \text{ czas danego miesiąca} \end{array}$

Tabelka obliczeń wentylacji rodzaj budynku c,d,e,f,h,i,j,k,m,n

A ArCADi	ia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód) 6.0. 💫 – 📮 💌
Plik Edycja Ustawienia	
OBLICZENIA CIEPLNE	Strefy cieplne - Świadectwo charakterystyki energetycznej 2014, WT 2014
	Wiaściwości strefyWyniki obliczeńNazwa:MieszkalnaMieszkalnaMieszkalnaWyniki dla miesiącaTyp:OgrzewanaŚrednia ważona temperatura $\theta_{n,\bar{n}} = 0.50 \frac{W}{K}$ Wyniki dla miesiąca $\theta_{m,\bar{n}} = 20,60 °C$ $\theta_{-} = 20,60 °C$ $H_{u,i} = 0,01 \frac{W}{K}$ $U_{H,gn} = 852,92 \frac{kWh}{m-c}$ Powierzchnia o reg.Kubatura o reg. temperaturze $H_{u,i} = 0, \frac{W}{K}$ $Q_{H,MI} = 1659,38 \frac{kWh}{m-c}$ Działanie wiatru $\circ = 0,01$ Tablice $f = 15,00$ Tablice $H_{u,e} = 30,56 \frac{W}{K}$ $H_{ve} = 30,56 \frac{W}{K}$ $H_{u,n,dn} = 822,46 \frac{kWh}{m-c}$ $Q_{H,nd} = 3483,97 \frac{Wh}{rok}$ $Q_{H,nd,n} = 3483,97 \frac{Wh}{rok}$
> 142.21 kWh/(m²rok) 200 400 500 1000 > 1000 1 Definicje przegród Dobár adbiaralitáw cisala	Tryby pracy Straty przez przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne Zyski od nasłonecznienia Dodatki Rodzaj budynku Biurowy
Zyski ciepła	Lp. Nazwa pomieszczenia/strefy Af V β Vve,1 bve,1 Vve,2 vve,3 bve,3 +
Strefy cieplne	1 Biuro 200,00 600,00 0,30 403,20 0,06 120,00 0,30 0,00 0,70
OBLICZENIA CIEPLNE	Γ'n
CERTYFIKAT	< >> D
	Raport o błędach
	Lp. Typ Opis Odśwież liste błedów!
< [7/14] >	R R R R R R R L L L L C. C. C. H Zamknij

Wentylacja - rodzaj budynku c,d,e,f,h,i,j,k,m,n

Lp.	Nazwa pomieszczenia/strefy	Af [m ²]	V [m ³]	В	V _{ve,1} [m ³ /h]	b _{ve,1}	V _{ve,2} [m ³ /h]	b _{ve,2}		V _{ve,3} [m ³ /h]	b _{ve,3}		V _{ve, 4} [m ³ /h]	b _{ve,4}	1	H _{ve} [W/K]	Q _{ve} [kWh/	/rok]	+
1	•••					 			••••			••••						•••	X
																			T
																			2

Tabelka wentylacji dla rodzajów budynków c,d,e,f,h,i,j,k,m,n

PRÓBA SZCZELNOŚCI – pole służące do wyboru jednego z dwóch sposobów obliczeń strumienia infiltracyjnego:

1.gdy wybierzemy TAK na podstawie wzoru $V_{inf} = 0.05 \cdot n_{50} \cdot kubatura wentylowana ,$

2.gdy wybierzemy NIE na podstawie wzoru $V_{inf} = 0.2 \cdot kubatura wentylowana.$

SZCZELNOŚĆ BUDYNKU n₅₀ [1/h] – pole służące do wpisani wartości próby szczelności, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice.

	Wartości próby szczelności budynku	×
Lp.	Typ budynku	n50 [1/h]
1	Budynki pasywne	0,6
2	Budynki energooszczędne	1,5
3	Budynki tradycyjne	6
4	Budynki z went. grawitacyjną	3
5	Budynki z went. mechaniczną	1,5

Wartość próby szczelności budynku n50

	Wartości próby szczelności budynku	×
Lp.	Typ budynku	n [1/h]
1	W budynkach wzniesionych po 1995 r. oraz w budynkach wzniesionych wcześniej, w których po roku 1995 wymienione zostały okna i drzwi balkonowe	0,2
2	W budynkach innych niż wymienione w pkt 1.	0,3

Podpowiedź krotność wymian n

NAZWA POMIESZCZENIA STREFY – pole do wpisywania textu przez użytkownika lub pobierania danych za pomocą przycisku ... z strefy lub pomieszczeń należących do strefy (wówczas wsyawia się domyślnie pole A_f i V).

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE Af [m²] – pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

KUBATURA POMIESZCZENIA/STREFY V [**m**³] - pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

UDZIAŁ CZASU WYKORZYSTANIA BUDYNKU W MIESIĄCU β – pole do edycji, po wciśnięciu przycisku … pojawia się nam okienko jak dla specyfikacji obliczenia współczynnika β

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU $V_{ve,1,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ...

UWAGA! gdy mamy rodzaj wentylacji grawitacje lub wentylację mechaniczną wywiewną wówczas pojawia się podpowiedź z tabelki i pojawia się okienko z danymi jednostkowego strumienia wentylacyjnego.

Tabelka 4 wartości V_{ve} wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: c,d,e,f,h,i,j,k,m,n

Lp.	Strefa ogrzewana		$\frac{V_{\text{ve,l,s}}}{[m^3/(s\cdot m^2)]}$
1	Użyteczności publicznej	c) biurowy,	0,56.10-3
		d) przeznaczony na potrzeby:	
		oświaty, szkolnictwa wyższego i nauki	
2		0,42.10-3	
3		0,33·10 ⁻³	
		handlu, usług	
4		przeznaczony na potrzeby:	0,42.10-3
5	Zamieszkania zbiorowego)	0,42.10-3
6	Magazynowy		0,08.10-3
7	Produkcyjny		indywidualne w
			zależności od rodzaju

użytkowania				produkcji i sposobu użytkowania
-------------	--	--	--	------------------------------------

UWAGA! gdy wybrana jest wentylacja nawiewno – wywiewna lub nawiewna wówczas zamiast tabelki 4 pojawia się nam nowe okno

	Obliczen	powietrz	a Vve,1,n			×			
Stop Rod:	Stopień zmniejszenia strumienia powietrza zewnętrznego r _n = 0,75 D Rodzaj obliczeń zgodnie z PN-B/8-03430/AZ3:2000								
L.p.	Urządzenia/aktywności		Ilość [szt.]	Vsup m³/h	Vex m³/h	Vcsup m³/h	Vcex m³/h	+	
1	Kuchnia z oknem zew. wyposażona w kuchenkę gazową		1	0,00	70,00	0,00	70,00	×	
2	2 Os. w pom. normalnym z paleniem			30,00	30,00	60,00	60,00	Б	
		Strumień objętości powietrza nawiewanego $V_{sup} = 60,00 \frac{m^3}{h}$							
St	Strumień objętości powietrza usuwanego $V_{ex}~=130,00\frac{m^3}{h}$				Strumień objętości powietrza zewnętrznego V _{vę.1.n} = 45,00 ^{m³} / _h				
						Anuluj	Oł	<	

Obliczenie strumienia powietrza dla wentylacji nawiewno-wywiewnej zgodnie z normą PN-B/B-03430/AZ3:2000

STOPIEŃ ZMNIEJSZENIA STRUMIENIA POWIETRZA ZEWNĘTRZNEGO r_n – pole do edycji przez użytkownika, wartość domyślna 0,75 użytkownik ma przycisk Info zawierajacy tekst:

- W systemach wentylacji nawiewno-wywiewnej działających ze stałem strumieniem powietrza zewnętrznego $r_n=1,0$.

- W systemach wentylacyjnych działających z regulacją ręczną lub automatyczną strumienia powietrza zewnętrznego, wartość r_n oblicza się lub przyjmuje $r_n=0,75$.

Strumień powietrza zewnętrznego Vve, 1, n $[m^3/h]$ – pole do edycji program domyślnie wstawia wartość V_{sup} · r_n do dalszych obliczeń jednostka na m3/s została podzielona przez 3600.

Obliczenia strumien	ia powietrza Vve,1,n
Stopień zmniejszenia strumienia powietrza zewnętrznego r	n = 0,75 ()
Rodzaj obliczeń Krotność wymian	
Krotność wymian	Strumień objętości powietrza nawiewanego
n = 1,00 1 Tablice	$V_{sup} = 688,00 \frac{m^3}{h}$
Strumień objętości powietrza usuwanego	Strumień objętości powietrza zewnętrznego
$V_{ex} = 688,00 \frac{m^3}{h}$	V _{ve,1,n} = 504,00 m ³
	Anuluj OK

Obliczenie strumienia powietrza dla wentylacji nawiewno-wywiewnej - krotność wymian

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE

UŻYTKOWANIA BUDYNKU $\mathbf{b}_{ve,1,n}$ pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 2 DODATKOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU V_{ve,2,n} [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7. Obliczenia poszczególnych strumieni:

$$V_{inf} = \frac{n \cdot V}{3600} [m^3/s] - \text{bez próby szczelności} \quad n = 0,2 \text{ lub } 0,3$$

 $V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s] - z \text{ próbą szczelności}$

$$V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot n_{50} \cdot e}{V \cdot n_{50}} \right]^2} \quad (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

$$V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^2} \quad (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

 $V_{\chi} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{e\chi}}{V \cdot n_{50}} \right]^2} \quad (\text{gdy nie ma próby szczelności } n_{50} = 4)$

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 3 PODSTAWOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU b_{ve,3,n}– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 3 PODSTAWOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU $V_{ve,3,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7.

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 4 DODATKOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU bve,4,n– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 4 DODATKOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU $V_{ve,4,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7. Obliczenia poszczególnych strumieni:

- $V_{inf} = \frac{n \cdot V}{3600} [m^3/s]$ bez próby szczelności n = 0,2 lub 0,3
- $V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s] z \text{ próbą szczelności}$
- $V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot up V_{ex}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$
- $V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 V_{ex}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$
- $V_x = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 V_{ex}}{V \cdot n_{50}} \right]^2}$ (gdy nie ma próby szczelności n₅₀ = 4)

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ H_{ve} [W/K] – pole do odczytu wartość wyliczana z wzoru H_{ve} = $1200 \cdot \sum_{k} b_{ve,k} \cdot V_{ve,k,n}$

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ Q_{ve} [kWh/rok] – pole do odczytu użytkownik ma dodatkowo przycisk ... którym otwiera się okienko gdzie są pokazane miesiące od I-V i IXd-XII wartość wyliczana z wzoru $Q_{ve} = \sum_{n} Q_{ve,s,n}$

 $\mathbf{Q}_{ve,s,n} = H_{ve} \cdot \left(\theta_{int,S,H} - \theta_{e,m}\right) \cdot t_m \cdot 10^{-3} \text{ (dla każdego miesiąca)}$

ddzie:

 $\theta_{int,S,H}$ - temperatura strefy

 $\theta_{e,m}$ - temperatura danego miesiąca z bazy klimatycznej

 t_m - czas danego miesiąca

Lp.	Wentylacja	k	b _{ve,k}	V _{ve,k,n} [m ³ /s]
1	Wantylacia grawitacyina	1	1	\mathbf{V}_0
1	wentylacja grawnacyjna	2	1	V_{inf}
2	Wantulacia machaniazna uzuviavna	1	1	V _{ex}
Z	wentylacja mechaniczna wywiewna		1	V _{x,ex}
2	Wentylacja mechaniczna nawiewno-	1	1-η _{oc}	V _{su}
3	wywiewna	2	1	V _{x,su}

Tabela. wartości bve	i V _{ve} dla rodzaju budyr	nków o działaniu ciąg	głym : a,b,g,l
----------------------	-------------------------------------	-----------------------	----------------

Tabela. wartości bve i Vve dla rodzaju budynków o działaniu okresowym : c,d,e,f,h,i,j,k,m,n

Lp.	Wentylacja	k	b _{ve,k}	V _{ve,k,n} [m ³ /s]
		1	β	\mathbf{V}_0
1	Wentylacja grawitacyjna	2	β	V_{inf}
		3	(1-β)	$0,2 \cdot V_{inf}$
		4	(1-β)	V_{inf}
	Wentylacja mechaniczna wywiewna działająca okresowo	1	β	V _{ex}
		2	β	V _{x,ex}
		3	(1-β)	$0,1 \cdot V_{ex}$
		4	(1-β)	V _{inf}
			β·(1-	V
	Wentylacja mechaniczna nawiewno- wywiewna działająca okresowo	1	η_{oc})	v su
3		2	β	V _{x,su}
		3	(1-β)	0
			(1-β)	V _{inf}

7.1.3.5 Zakładka Wewnętrzne zyski ciepła

Zakładka ta służy do definiowani wewnętrznych zysków ciepła strefie chłodu. Możemy to zrobić na dwa sposoby:

- A. Metoda uproszczona polega na tym, że w każdym pomieszczeniu możemy zdefiniować wartość wewnętrznych zysków ciepła na podstawie podpowiedzi z tabelek z metodologii MI, wówczas na podstawie powierzchni program może nam wyliczyć średnie ważone zyski wew. dla tej strefy albo na podstawie średniej arytmetycznej lub jako sumę algebraiczną.
- B. Metoda szczegółowa pozwala na określenie indywidualnie dla każdego pomieszczenia i trybu pracy wewnętrznych zysków od ludzi, urządzeń, oświetlenia, instalacji i zasobników.

METODA UPROSZCZONA WEWNĘTRZNYCH ZYSKÓW CIEPŁA

Tryby pracy Straty przez przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne Zyski od nasłonecznienia Dodatki

-					1 1			- · · ·			•								
M	Metoda obliczeń wewnętrznych zysków ciepła: Uproszczona																		
L¢		Nazv	va źródła	a/pomies:	zczenia				Rodzaj	/Funkc	ja budy	ynku		Af [m²]	P1	β		qint [W/m²]	+
1	Biuro						Bi	urowy						220,00	0,60	0,30		5,68	×
																			Πh
																			Ō
Sp	osób ob	liczeń:	Śred	nia ważo	ona									Φ _{int,t}	wite, wew ot = 5,68 $\frac{W}{m}$	nętrzne zy	/ski (ciepła	

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer i pole powierzchni.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE $A_f[m^2]$ – pole do wpisywania powierzchni o regulowanej temperaturze pomieszczeń należących do danej strefy pole to będzie później wykorzystane do obliczeń średnio ważonych zysków wewnętrznych strefy.

STRUMIEŃ WEWNETRZNYCH ZYSKÓW CIEPŁA $\Phi_{int}[W/m^2]$ – wyniki obliczeń w zależności od rodzaju budynku i przeznaczenia pomieszczenia.

SPOSÓB OBLICZEŃ – pole do wybory jednego z trzech sposobów obliczeń wstawionych w tabelce wewnętrznych zysków ciepła.

- A. Średnia ważona program wylicza na podstawie powierzchni $A_f i \Phi_{int}$ wartość z wstawionych w tabeli danych,
- B. Średnia arytmetyczna wartość wyliczana z Φ_{int} i liczby wstawionych wierszy,
- C. Suma algebraiczna wartość wyliczana z sumy Φ_{int} wierszy wstawionych do tabelki.

CAŁKOWITE WEWNĘTRZNE ZYSKI CIEPŁA $\Phi_{int}[W/m^2]$ – pole do edycji przez użytkownika, na podstawie danych wypełnionych w tabelce i wybranego sposobu obliczań program wstawia w to pole wartości domyślne. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNETRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD LUDZI

Tryby	Tryby pracy Straty przez przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne Zyski od nasłonecznienia Dodatki											
Meto	Metoda obliczeń wewnętrznych zysków ciepła: Szczegółowa											
Od I	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki											
Lp.	Lp. Nazwa źródła/pomieszczenia		Tryb pracy				qi n [W/osoba] [osób]]	qint,P [W]		
1	Biuro	Stand	dard		1,00		134,00	38,	000	5092,00	×	

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od ludzi

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam osoby przebywają tylko w czasie pracy i jeśli wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla nocnego można

ograniczyć ilość osób przebywających w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i $Q_{C,nd}$.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent osób przebywa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

Współczynn	nik jednoczesności 🛛 🗙
Rodzaj pomieszczenia	φ
Biura, duże sale	0,75-0,95
Hotele, recepcje, pokoje wieloosobowe	0,4–0,6
Domy towarowe	0,8–0,9
Pomieszczenia technologiczne	0,9–1,0
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,0
	Anuluj OK

Podpowiedź współczynnik jednoczesności

STRUMIEŃ ZYSKÓW CIEPŁA OD LUDZI qi [W/osobę] – pole do definiowania zysków od osób przebywających w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej … w której podane są zyski od ludzi w zależności od temperatury w pomieszczeniu i stopnia aktywności.

Zyski ciepła od ludzi 🗙											
Aktaunoóó		15°C	18°C	20°C	23°C	26°C	29°C				
Aktywnosc	ЧC	qi	qi	qi	qi	qi	qi				
	[W]	[W]	[W]	[W]	[W]	[W]	[W]				
Odpoczynek w postaci siedzącej	113	95	91	86	74	66	46				
Odpoczynek w postaci stojącej	127	106	99	91	79	66	46				
Praca lekka, siedząca, aktywność mała	144	116	107	96	81	66	46				
Praca lekka, stojąca, aktywność mała	174	130	115	101	80	66	46				
Praca lekka, stojąca, aktywność duża	193	135	120	108	85	66	46				
Praca średniociężka np. malarz, mechanik	251	165	145	130	101	81	52				
Praca ciężka, aktywność bardzo duża	293	181	158	141	112	95	70				
Praca bardzo ciężka, szybki taniec	407	238	203	180	151	134	102				
		Ar	nuluj		ОК						

Podpowiedź zyski od ludzi w zależności od aktywności

ILOŚĆ OSÓB n [osób] – pole do definiowania ilości osób przebywających w pomieszczeniu użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., w której można wykonać obliczenia w zależności od typu pomieszczenia na podstawie powierzchni lub przeznaczenia.

	Liczba c	osół	o/jednostek od	niesienia			×
Lp.	Rodzaj lokalu Przeznaczenie	Normowa liczba osób na lokal / powierzchnię	Liczba lokali	Af [m²]	Całkowita ilość osób	+	
1	Mieszkanie 4 pokojowe		4,000	2,000		8,000	×
2	Butiki		0,142		23,000	3,266	
L _i =	11,27 os.				Anuluj	ок	

Okno obliczenie liczby osób

LP. – kolejna liczba porządkowa dla dodawanego wiersza

RODZAJ LOKALU / PRZEZNACZENIE – użytkownik z przycisku •••• wybiera z listy jeden z wariantów na podstawie, którego wyświetlana jest wartość **Normowa liczba osób na lokal**/.

Lp.	Wariant	Rodzaj lokalu/przeznaczenie	Normowa liczba osób
			na lokal/powierzchnie
1	1	Mieszkanie 1 pokojowe	1
2	1	Mieszkanie 2 pokojowe	2,5
3	1	Mieszkanie 3 pokojowe	3,5
4	1	Mieszkanie 4 pokojowe	4,0
5	1	Mieszkanie 5 pokojowe	4,5
6	1	Mieszkanie 6 pokojowe	5
7	2	Pomieszczenia biurowe klasy A	1os. na 10 m ²
8	2	Pomieszczenia biurowe klasy B	10s. na 6m ²
9	2	Pomieszczenia biurowe klasy C	1os. na 2 m ²
10	2	Butik	10s. na 7m ²
11	2	Sala konferencyjna	1os. na 2 m ²

NORMOWA LICZBA OSÓB NA LOKAL/POWIERZCHNIE – wartość przepisywana z powyższej tabeli na podstawie wybranego **Rodzaj lokalu/przeznaczenie**.

LICZBA LOKALI – wartość podawana przez użytkownika.

POWIERZCHNIA Af [m²]- wartość podawana przez użytkownika.

CAŁKOWITA ILOŚĆ OSÓB – pole do edycji, domyślnie wstawiana wartość obliczana z kolumn dla wariantu 1 k3 x k4, dla wariantu 2 k3 x k5

CAŁKOWITA ILOŚĆ OSÓB Li– pole do edycji, domyślnie wstawiana wartość sumy wszystkich kolumn *CAŁKOWITA ILOŚĆ OSÓB*.

ZYSKI CIEPŁ*AOD LUDZI* $\Phi_{int,P}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,P} = \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD URZĄDZEŃ

Try	/by pracy Straty przez przenikanie Straty przez grunt Straty przez wentylację		Zyski wev	wnętrzn	e Zyski od n	Zyski od nasłonecznienia		Dodatki								
Me	Metoda obliczeń wewnętrznych zysków ciepła: Szczegółowa															
Oc	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki					'yniki										
L	р.	o. Nazwa źródła/pomieszczenia			Tryb pracy			φ		qi [W/sztuk]		n [sztuk]		qint,U [W]	+	
:	1 Komputer			. Stan	ndard			0,95		530,00			30	15105,00	~	
																^

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od urządzeń

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam większość urządzeń włączonych jest tylko w czasie pracy i jeśli wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla nocnego można ograniczyć ilość włączonych urządzeń w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i $Q_{C,nd}$.

 $WSPÓŁCZYNNIK JEDNOCZESNOŚCI \varphi$ - pole do określania ile procent urządzeń włączonych jest jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

Współczynn	ik jednoczesności 🛛 🗙						
Rodzaj pomieszczenia	φ						
Biura, duże sale	0,75-0,95						
Hotele, recepcje, pokoje wieloosobowe	0,4–0,6						
Domy towarowe	0,8–0,9						
Pomieszczenia technologiczne	0,9–1,0						
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,0						
	Anuluj OK						

Podpowiedź współczynnik jednoczesności

STRUMIEŃ ZYSKÓW CIEPŁA OD URZĄDZEŃ qi [W/sztuk] – pole do definiowania zysków od urządzeń w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej …, w której podane są zyski dla najczęściej występujących urządzeń biurowych i innych pomocniczych.

Zyski ciepła od urządzeń ×													
Zyski ciepła od urządzeń wg ASHRAI	E Fundamental	s Handbook 19	89 r.										
Nazwa urządzenia	Wydajność	Maks. moc doprowadzo na	Moc pobierana w czuwaniu	Zalecany strumień do bilansu zysków ciepła	^								
[-]	[-]	[W]	[W]	[W]									
	Ur	ządzenia komp	outerowe										
Urządzenia komunikacji i transportu		1800-4600	1640-2810	1640-2810									
Napędy dysków/ pamięci masowej		1000-10000	1000-6600	1000-6600									
Komputer/ jednostka centralna		2200-6600	2200-6600	2200-6600									
Minikomputer/ komputer osobisty		100-600	90-530	90-530									
Drukarki laserowe	8 str./min.	850	180	300									
Drukarka wierszowa bardzo szybka	>5000 str./min.	1000-5300	500-2550	1000-4700									
Terminal		90-200	80-180	80-180									
		Kopiarki, dru	karki										
Światłokopiarka		1150-12500	500-5000	1150-12500									
Kserokopiarka (duża)	30-65 kopi/min	1700-6600	900	1700-6600									
Kserokopiarka (mała)	30-65 kopi/min	1700-6600	900	1700-6600									
Drukarka fotograficzna		1725		1520									
	Urządzei	nia do obsługi l	korespondencj	i									
Sortowaczka	3600-6800 str./min	600-3300		390-2150									
Etykieciarka	1500-30000 str./min	600-6600		390-4300									
		Inne											
Kasa rejestrująca		60		48									
Witryna z zimnymi przekąskami i napojami		1150-1920		575-960									
Ekspres do kawy	10 filiżanek	1500		1050	~								
				Anuluj OK									

Podpowiedź zyski od urządzeń wg ASHRAE

Zyski ciepła od urządzeń												
Recknagel Poradnik Ogrzewanie+Kl	imatyzacja					\$						
	Мос	Czas	Wydzielanie	Zys	k ciepła	^						
Rodzaj urządzenia	zainstalowana W	użytkowania min/h	wody g/h lub zyski wilgoci	Ciepło jawne W	Całkowite zyski W							
Elektryczna maszyna do pisania	50	60	-	50	50							
Komputer osobisty(PC)	100-150	60	-	100-150	100-150							
Terminal	60-90	60	-	60-90	60-90							
Drukarka	20-30	15	-	5-7	5-7							
Ploter	20-60	15	-	5-15	5-15							
Piec elektryczny	3000	60	2100	1450	3000							
FIEL EIEKTI YCZIIY	5000	60	3600	2500	5000							
Odkurzacz	200	15	-	50	50							
Dealling automation and	3000	60	2100	1450	3000							
Praika automatyczna	6000	60	4200	2900	6000							
Wirówka do bielizny	100	10	-	15	15							
Chłodziarka sprężarkowa 100 1	100	60	-	300	300							
Chłodziarka sprężarkowa 200 1	175	60	-	500	500							
Żelazko	500	60	400	230	500							
Radio	40	60	-	40	40							
"Słoneczko" do nagrzewania	1000	60	-	1000	1000							
Telewizor	175	60	-	175	175							
Ekoproo do parzonia kausu	500	30	100	180	250							
Ekspres do parzenia kawy	3000	30	500	1200	1500							
(Deickasz (do obloba)	500	30	70	200	250							
Opiekacz (do chieba)	2000	30	300	800	1000							
Suszarka do włosów	500	30	120	175	250							
Suszarka do włosów	1000	30	240	350	500							
Phitka do gotowania	500	30	200	120	250							
Pytka do gotowania	1000	30	400	250	500							
Ruszt do smażenia	3000	30	500	1200	1500							
Aparat do trwałej ondulacji	1500	15	120	300	375	¥						
				Anuluj	ОК							

Podpowiedź zyski od urządzeń wg Poradnika Recknagel

ILOŚĆ n [sztuk] – pole do definiowania przez użytkownika ilości sztuk danego urządzenia.

ZYSKI CIEPŁA OD URZĄDZEŃ $\Phi_{int,v}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,u} = \varphi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD OŚWIETLENIA

Tryby pracy Straty przez przenikanie Straty przez grunt Strat				Straty przez gr	unt Straty przez wenty	ylację Zyski wewnęt	rzne Zyski od nasło	onecznienia Do	odatki		
Me	Metoda obliczeń wewnętrznych zysków ciepła: Szczegółowa										
Oc	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki										
L	Lp. Nazwa źródła/pomieszcze		enia	Tryb pracy	φ	qi [W/m²]	Af [m²]	qint,L [W]	+		
	1 Biuro)				. 0,95	14,00	220,00	2926,00	×	

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od oświetlenia

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer i powierzchnia A_f pomieszczenia.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam większość urządzeń oświetlenia włączonych jest tylko w czasie nocnym, wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla dziennego można ograniczyć ilość włączonych urządzeń oświetlenia w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i Q_{C,nd}.

 $WSPÓŁCZYNNIK JEDNOCZESNOŚCI \varphi$ - pole do określania ile procent urządzeń oświetlenia włączonych jest jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

STRUMIEŃ ZYSKÓW CIEPŁA OD URZĄDZEŃOŚWIETLENIA qi [W/m²] – pole do definiowania zysków od urządzeń oświetlenia w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej •••, w której podane są zyski dla najczęściej występujących typów i natężenia oświetlenia.

Podpowiedź strumień zysków od oświetlenia wg W.P. Jones

POWIERZHNIA $A_f[m^2]$ – pole do definiowania przez użytkownika powierzchni pomieszczenia, program wstawia domyślnie wartość na podstawie wybranego pomieszczenia.

ZYSKI CIEPŁA OD OŚWIETLENIA $\Phi_{int,L}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,u} = \varphi \cdot A_f \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD INSTALACJI

Tryby pracy Straty przez przenikanie Straty przez grunt Straty przez wentylacje							vnętrzne	Zyski od nasłone	cznienia Dod	latki	
	Metoda obliczeń wewnętrznych zysków ciepła: Szczegółowa										
	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki										
	Lp. Nazwa źródła/pomieszczenia		enia	Tryb pracy		DN [mm]	L [m]	φ	qi [W/m]	qint,I [W]	+
	1	Biuro	St	andard		20	70,00	0,95	5,90.	392,35	×

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od instalacji

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent rurociągów działa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej …, która zawiera współczynniki w zależności od przeznaczenia budynku.

DN [mm] – średnica przewodów, wartość wybierana przez użytkownika z listy: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100.

L [m] – długość przewodów o zadanej średnicy, wartość wpisywana przez użytkownika.

STRUMIEŃ ZYSKÓW CIEPŁA OD INSTALACJI qi [W/m] – pole do definiowania zysków od instalacji w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej …, w której podane są zyski od grubości izolacji i średnicy rurociągu.

		Zyski cie	pła od instal	acji wg Roz	porządzenia	MI 06.11.20	08 r.		>
	Izolacja termiczna	Na ze	wnątrz osłony	izolacyjnej bu	dynku	V	Vewnątrz osło	ny izolacyjnej b	udynku
Parametry *C	przewodów	DN 10-15	DN 20-32	DN 40-65	DN 80-100	DN 10-15	DN 20-32	DN 40-65	DN 80-100
	nieizolowane	39,3	65,0	106,8	163,2	34,7	57,3	94,2	144,0
00/7000 -4-1-	1/2 grubości wg WT	20,1	27,7	38,8	52,4	17,8	24,4	34,2	46,2
90/70°C state	grubość wg WT	10,1	12,6	12,1	12,1	8,9	11,1	10,7	10,7
	2x grubość wg WT	7,6	8,1	8,1	8,1	6,7	7,1	7,1	7,1
	nieizolowane	24,3	40,1	66,0	100,8	19,6	32,5	53,4	81,6
90/70°C	1/2 grubości wg WT	12,4	17,1	24,0	32,4	10,1	13,9	19,4	26,2
regulowane	grubość wg WT	6,2	7,8	7,5	7,5	5,0	6,3	6,0	6,0
	2x grubość wg WT	4,7	5,0	5,0	5,0	3,8	4,0	4,0	4,0
	nieizolowane	18,5	30,6	50,3	76,8	13,9	22,9	37,7	57,6
70/55°C	1/2 grubości wg WT	9,5	13,0	18,3	24,7	7,1	9,8	13,7	18,5
regulowane	grubość wg WT	4,7	5,9	5,7	5,7	3,6	4,4	4,3	4,3
	2x grubość wg WT	3,6	3,8	3,8	3,8	2,7	2,8	2,8	2,8
	nieizolowane	14,4	23,9	39,3	60,0	9,8	16,2	26,7	40,8
55/45°C	1/2 grubości wg WT	7,4	10,2	14,3	19,3	5,0	6,9	9,7	13,1
regulowane	grubość wg WT	3,7	4,6	4,4	4,4	2,5	3,1	3,0	3,0
	2x grubość wg WT	2,8	3,0	3,0	3,0	1,9	2,0	2,0	2,0
	nieizolowane	8.1	13.4	22.0	33.6	3.5	5.7	9.4	14.4
35/28°C	1/2 grubości wg WT	4.1	5.7	8.0	10.8	1.8	2.4	3.4	4.6
regulowane	grubość wg WT	2.1	2.6	2.5	2.5	0.9	1.1	1.1	1.1
	2x grubość wg WT	1.6	1.7	1.7	1.7	1.7	0.7	0.7	0.7
								Anuluj	ОК

Podpowiedź strumień zysków od instalacji wg Rozporządzenia MI.

ZYSKI CIEPŁA OD INSTALACJI $\Phi_{int,I}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,I} = \varphi \cdot L \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD ZASOBNIKÓW

Tryby	pracy	Straty przez prz	zenikanie 🖇	Straty przez	grunt	Straty przez w	entyla	ację	Zyski wew	nętrzne	Zyski od n	asłonecznienia	Dodatki		
Metod	da oblicz	zeń wewnętrzi	nych zyskóv	w ciepła:	Sz	czegółowa									
Od lu	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki														
Lp. Nazwa źródła/pomieszczenia				Tryb pracy			φ		V [dm³]	qs [W/dm³]		qint,V [W]	+		
1 Kotłownia Standard		ard			0,95		1500,00	0,18		256,50	×				

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od zasobników

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … - wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent rurociągów działa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

POJEMNOŚĆ ZASOBNIKA V [dm³] – pojemność zasobnika, wartość podawana przez użytkownika w zakresie (0-2000),

STRUMIEŃ ZYSKÓW OD ZASOBNIKÓW qs [W/dm³]- pole do edycji przez użytkownika, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej poprzez wciśnięcie przycisku ...

Lokalizacja zasobnika Pojemność I(dm ²) Pojemność isolarre, zasobniki solarre, zasobniki elektryczne całodzeno io Pojemność isolarre, zasobniki elektryczne całodzeno izolacji i Izolacj izolacji i Izolacj izolacji i Izolacj izolacji i Izolacj izolacji i Izolacj i Izolacj i Izolacj i Izolacji i Izolacji i <thizolacji i<th colspan="7">Posrednio podgrzewane, biwalentne zasobniki solarne, zasobniki elektryczne całodobowe</th></thizolacji 	Posrednio podgrzewane, biwalentne zasobniki solarne, zasobniki elektryczne całodobowe						
Izolacja 10 cm Izolacja 5 cm Izolacja 2 cm 25 0,68 1,13 2,04 50 0,54 0,86 1,58 100 0,43 0,65 1,23 oslony 200 0,34 0,49 0,95 1000 0,25 0,34 0,68 1,58 1000 0,24 0,49 0,95 0,25 0,34 0,68 1000 0,20 0,26 0,33 0,68 1,58 1000 0,20 0,26 0,33 0,68 1,58 2000 0,16 0,20 0,44 0,68 1,58 2000 0,14 0,70 1,29 1,66 500 0,55 0,92 1,66 1,69 500 0,21 0,28 0,56 1,00 2000 0,28 0,40 0,78 1,00 500 0,21 0,28 0,56 1,02 0,43 1500 0,14 0	Lokalizacja zasobnika	Pojemność [dm³]	Pośrednio podgrzewane, biwalentne zasobniki solarne, zasobniki elektryczne całodobowe				
25 0,68 1,13 2,04 50 0,54 0,86 1,58 100 0,43 0,65 1,23 izolacyingi budynku 200 0,34 0,49 0,55 1000 0,25 0,34 0,68 1,58 1000 0,25 0,34 0,68 1,58 1000 0,20 0,26 0,53 1,00 2000 0,16 0,20 0,44 1,29 50 0,44 0,70 1,29 1,66 50 0,44 0,70 1,29 1,60 500 0,44 0,70 1,29 1,60 500 0,44 0,70 1,29 1,60 500 0,21 0,28 0,68 1,00 500 0,21 0,28 0,58 1,00 500 0,21 0,28 0,58 1,00 1000 0,17 0,21 0,43 1,60 1500 0,1			Izolacja 10 cm	Izolacja 5 cm	Izolacja 2 cm		
50 0,54 0,86 1,58 100 0,43 0,65 1,23 ostony 200 0,34 0,49 0,55 jbudynku 500 0,25 0,34 0,68 1000 0,20 0,26 0,53 1500 0,16 0,20 0,41 2000 0,16 0,20 0,41 2000 0,16 0,20 0,41 2000 0,16 0,20 0,41 2000 0,44 0,70 1,29 100 0,35 0,53 1,00 2000 0,28 0,40 0,78 2010 0,28 0,24 0,56 1000 0,17 0,28 0,56 1000 0,17 0,28 0,56 1000 0,17 0,21 0,43 1500 0,14 0,18 0,37 2000 0,13 0,16 0,33		25	0,68	1,13	2,04		
Na zewnątrz osłony izolacyjnej budynku 100 0,43 0,65 1,23 200 0,34 0,49 0,95 500 0,25 0,34 0,68 1000 0,20 0,26 0,53 1500 0,18 0,22 0,46 2000 0,16 0,20 0,41 200 0,16 0,20 0,41 2000 0,16 0,20 0,41 200 0,55 0,92 1,66 500 0,44 0,70 1,29 100 0,35 0,53 1,00 2000 0,28 0,40 0,78 1201 0,28 0,21 0,28 1000 0,17 0,21 0,43 1600 0,14 0,18 0,33 1600 0,14 0,18 0,33		50	0,54	0,86	1,58		
Vewnatrz osłony izolacyjnej budynku 200 0,34 0,49 0,95 500 0,25 0,34 0,68 1000 0,20 0,26 0,53 1500 0,18 0,22 0,46 2000 0,16 0,20 0,26 2000 0,16 0,20 0,44 2000 0,65 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 2000 0,28 0,40 0,78 1000 0,17 0,28 0,56 1000 0,17 0,21 0,43 1500 0,14 0,18 0,37 2000 0,13 0,16 0,33	Na zownatrz	100	0,43	0,65	1,23		
izolacyjnej budynku 500 0,25 0,34 0,68 1000 0,20 0,26 0,53 1500 0,18 0,22 0,46 2000 0,16 0,20 0,41 25 0,55 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 200 0,28 0,40 0,78 izolacyjnej 500 0,21 0,28 0,56 1000 0,17 0,21 0,43 0,56 1000 0,17 0,21 0,43 0,56 1000 0,17 0,21 0,43 0,56 1000 0,17 0,18 0,37 2000 0,13 0,16 0,33	osłony	200	0,34	0,49	0,95		
budynku 1000 0,20 0,26 0,53 1500 0,18 0,22 0,46 2000 0,16 0,20 0,41 25 0,55 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 200 0,28 0,40 0,78 200 0,21 0,28 0,66 1000 0,17 0,21 0,43 1500 0,14 0,18 0,37 2000 0,13 0,16 0,33	izolacyjnej budynku	500	0,25	0,34	0,68		
1500 0,18 0,22 0,46 2000 0,16 0,20 0,41 25 0,55 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 200 0,28 0,40 0,76 1200 0,28 0,40 0,76 1000 0,17 0,21 0,43 1500 0,14 0,18 0,33 2000 0,13 0,16 0,33		1000	0,20	0,26	0,53		
2000 0,16 0,20 0,41 25 0,55 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 200 0,28 0,40 0,78 izolacyjnej 500 0,21 0,28 0,56 1000 0,17 0,21 0,43 0,18 0,37 2000 0,13 0,16 0,33 0,13 0,16 0,33		1500	0,18	0,22	0,46		
25 0,55 0,92 1,66 50 0,44 0,70 1,29 100 0,35 0,53 1,00 oslony 200 0,28 0,40 0,78 jzolacyjnej 500 0,21 0,28 0,56 1000 0,17 0,21 0,43 0,16 1500 0,14 0,18 0,33 2000 0,13 0,16 0,33		2000	0,16	0,20	0,41		
50 0,44 0,70 1,29 100 0,35 0,53 1,00 ostony 200 0,28 0,40 0,78 budynku 500 0,21 0,28 0,56 1000 0,17 0,21 0,43 1500 0,14 0,18 0,33 2000 0,13 0,16 0.33		25	0,55	0,92	1,66		
Wewnatrz osłony izolacyjnej budynku 100 0,35 0,53 1,00 200 0,28 0,40 0,78 500 0,21 0,28 0,66 1000 0,17 0,21 0,43 1600 0,14 0,18 0,33 2000 0,13 0,16 0,33		50	0,44	0,70	1,29		
200 0,28 0,40 0,78 jzolacyjnej 500 0,21 0,28 0,66 budynku 1000 0,17 0,21 0,43 1500 0,14 0,18 0,33 2000 0,13 0,16 0,33	Wewnatrz	100	0,35	0,53	1,00		
izolacyjnej budynku 500 0,21 0,28 0,56 1000 0,17 0,21 0,43 1500 0,14 0,18 0,37 2000 0,13 0,16 0,33	osłony	200	0,28	0,40	0,78		
Dudynku 1000 0,17 0,21 0,43 1500 0,14 0,18 0,37 2000 0.13 0.16 0.33	izolacyjnej	500	0,21	0,28	0,56		
1500 0,14 0,18 0,37 2000 0,13 0,16 0,33	budynku	1000	0,17	0,21	0,43		
2000 0.13 0.16 0.33		1500	0,14	0,18	0,37		
		2000	0,13	0,16	0,33		

Podpowiedź strumień zysków od zasobników.

ZYSKI CIEPŁA OD ZASOBNIKÓW $\Phi_{int,V}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,V} = \phi \cdot V \cdot q_s$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA WYNIKI DLA POSZCZEGÓLNYCH TRYBÓW

٦	Fryby p	pracy Straty przez przenikanie	Straty przez g	runt Straty	przez wentylacj	ę Zyski wewnętr	zne Zyski od n	asłonecznienia	Dodatki	
	Metod	la obliczeń wewnętrznych zyski	ów ciepła:	Szczegó	ółowa					
Γ	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki									
	Lp. Tryb pracy			qint,P [W]	qint,U [W]	qint,L [W]	qint,I [W]	qint,V [W]	qii [V	nt /]
1 Standard 5092,00 1		15105,00	0,00	392,35	256,50		20845,85			

Zakładka wewnętrznych zysków ciepła metoda szczegółowa wyniki

TRYB PRACY – pole do podglądu dla jakiego trybu pracy budynku są cząstkowe wyniki wewnętrznych zysków ciepła.

ZYSKI CIEPŁAOD LUDZI $\Phi_{int,P}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,P} = \Sigma \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD URZĄDZEŃ $\Phi_{int,U}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,u} = \Sigma \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD OŚWIETLENIA $\Phi_{int,L}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,u} = \Sigma \phi \cdot A_f \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD INSTALACJI $\Phi_{int,I}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,I} = \Sigma \phi \cdot L \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD ZASOBNIKÓW $\Phi_{int, V}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,V} = \Sigma \phi \cdot V \cdot q_s$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

WEWNĘTRZNE ZYSKI CIEPŁA $\Phi_{int}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int} = \Sigma \Phi_{int,P} + \Sigma \Phi_{int,L} + \Sigma \Phi_{int,I} + \Sigma \Phi_{int,V}.$

7.1.3.6 Zakładka Zysyki od nasłonecznienia

W opcjach zakładki *Wybór obliczeń* dodajemy nowa grupę *Zapotrzebowanie na chłód budynku* (zaraz poniżej zapotrzebowanie na ciepło) i pole Norma w którym użytkownik ma do wyboru dwie metody:

- 1) Wg PN-EN 13790:2009,
- 2) Wg Rozporządzenia MI z 2014

Wybór pierwszej normy pozostawia zakładkę Zyski od nasłonecznienia bez zmian, wybór drugiej opcji włącza nowe okno i obliczenia.

T	īyby	pracy Straty przez prze	nikanie	Straty przez	grunt	Straty p	orzez wentyla	cję	Zyski	wev	wnętrzr	ne	Zyski	i od nasł	oneczi	nieni	a Do	odati	di	
	Lp.	Przegroda	Symbol	Orientacja	A [m²]	с	I [kWh/(m²•ro	ok)]	fsh,w	ith	ggl	f	ċ	ggl+sh	Fsh,	.gl	Fs	h	Qsol [kWh/ro	ok]
	1	OZ 1-Okno zewnętrzne	OZ 1	E	43,50	0,700	809,20		0,08		0,70	0,45	i	0,32	0,96		1,00		17248,0	
	2	OZ 1-Okno zewnętrzne	OZ 1	S	48,00	0,700	909,52		0,21		0,70	0,45	i	0,32	0,88		1,00		21391,9	
	3	OZ 1-Okno zewnętrzne	OZ 1	W	16,50	0,700	785,82		0,04		0,70	0,45	i	0,32	0,98		1,00		6353,4	
	4	OZ 1-Okno zewnętrzne	OZ 1	N	84,00	0,700	667,85		0,00		0,70	0,45	i	0,32	1,00		1,00		27488,9	

Zakładka Zyski od nasłonecznienia

PRZEGRODA - pole służące do podglądu nazwy przegrody przezroczystej,

SYMBOL- kolumna ta służy do podglądu symbolu przegrody,

ORIENTACJA– kolumna ta służy do podglądu orientacja względem róży wiatrów, w każdym wierszu sumujemy przegrody o tym samym typie, symbolu, orientacji, współczynniku C, współczynniku ggl,

POWIERZCHNIA A $[m^2]$ – kolumna służy do podglądu sumy powierzchni przegród o tym samym typie, symbolu, orientacji, współczynniku C, współczynniku ggl,

UDZIAŁ POLA OSZKLENIA C– kolumna do edycji domyślnie program pobiera wartość z definicji przegrody z pola C

WARTOŚĆ ENERGII PROMIENIOWANIA SŁONECZNEGO I [kWh/(m²·rok)]– kolumna do podglądu wartości promieniowania słonecznego dla danej orientacji przegrody, kąta nachylenia i stacji aktynometrycznej, wartość przepisywana z bazy aktynometrycznej (podzielona przez 1000).

WAŻONY UDZIAŁ CZASU Z UŻYCIEM OSŁONY PRZECIWSŁONECZNEJ $f_{sh,with}$ – kolumna do podglądu wartości wyliczana z wzoru: $f_{sh,with} = \frac{\sum I_{sol>300/500}}{\sum I_{sol}}$, gdzie $\sum I_{sol>300/500}$ są to wszystkie godziny w danym roku dla których wartość z bazy klimatyzacji (godzinowej) dla danej orientacji i kąta nachylenia są większe od 300 W/m² (dla stref cieplnych wartość większa od 500 W/m²), a wartość $\sum I_{sol}$ jest sumą dla danej orientacji i kąta nachylenia promieniowania słonecznego w danym roku. Domyślnie 1, chyba że w definicji przegrody dla okna jest wybrana osłona przeciwsłoneczna ruchoma.

CAŁKOWITA PRZEPUSZCZALNOŚĆ ENERGII SŁONECZNEJ OKNA, GDY OSŁONA PRZECIWSŁONECZNA JEST STOSOWANA g_{gl+sh} – wartość obliczana z wzoru $g_{gl+sh} = g_{gl} * f_c$

CZYNNIK REDUKCJI OSZKLENIA Z EWENTUALNYM URZĄDZENIEM PRZECIWSŁONECZNYM

 $F_{sh, gl}$ – kolumna do podglądu wartości wyliczana z wzoru: $F_{sh, gl} = \frac{\dot{l}(1 - f_{sh, with}) \cdot g_{gl} + f_{sh, with} \cdot g_{gl+sh}}{g_{gl}}$

PRZEGRODA - pole służące do podglądu nazwy przegrody przezroczystej,

ILOŚĆ N [szt.] – kolumna ta służy do definiowania liczby przegród o podanych wymiarach,

KIERUNEK O – orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

SZEROKOŚĆ W [m] – długość przegrody informacja o całkowitej długości przegrody. Wartość wpisywana jest automatycznie z zakładki straty przez przenikanie.

WYSOKOŚĆ H [m] – wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. Wartość wpisywana jest automatycznie z zakładki straty przez przenikanie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody przejęta z zakładki straty przez przenikanie.

OBLICZENIOWY WSPÓŁCZYNNIK ZACIENIENIA Fslub Z – współczynnik definiowany przez użytkownika lub wyliczany na podstawie danych wpisanych w oknie włączanym przyciskiem … i wyliczonych z wzoru:

 $\mathbf{F}_{s} = \mathbf{F}_{h} * \mathbf{F}_{o} * \mathbf{F}_{f}$

Obliczenia współczynnika zacienienia Korekcyjny współczynnik zacienienia od elementów poziomych F n = 0,92 Tablice Korekcyjny współczynnik zacienienia od elementów poziomych F o = 0,95 Tablice Korekcyjny współczynnik zacienienia od elementów poziomych F o = 0,95 Tablice Współczynnik zacienienia F s = 0,82 Anuluj OK

Obliczenie współczynnika zacienienia

Obliczenia współczynnika zacienienia	×
Korekcyjny współczynnik zacienienia od elementów poziomych	
F _h = 1,00 Tablice	
Korekcyjny współczynnik zacienienia od elementów poziomych	
F ₀ = 1,00 Tablice	
Korekcyjny współczynnik zacienienia od elementów pionowych	
Fr = 1,00 Tablice	
Współczynnik zacienienia	
Z =1,00 Tablice	
Anuluj OK	

Obliczenie współczynnika zacienienia PN-EN 13790:2008

 F_h – korekcyjny współczynnik zacienienia otoczeniem, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

 F_o – korekcyjny współczynnik zacienienia od wystających elementów poziomych, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

 F_{f} – korekcyjny współczynnik zacienienia od wystających elementów pionowych, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

Z- współczynnik zacienienia wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem **Tablice**.

WSPÓŁCZYNIK RAMY F_F lub C– pole do wstawiania wartości współczynnika ramy, program domyślnie dla okien wstawia 0,7 dla drzwi 0. Wartość 1,0 - pobierana domyślnie z okna *definicje przegród*.

Z1 – współczynnik zacienienia w zależności od przesłon na elewacji budynku-loggie, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem....

Z2 – współczynnik zacienienia w zależności od przesłon na elewacji budynku-balkony, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem … .

Z3 – współczynnik zacienienia w zależności od usytuowania przeszkody równoległej do elewacji budynku, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem....

ZYSKI CIEPŁA OD PRZEGRODY Qsol [kWh] – pole służące do podglądu i edycji wyników obliczeń zysków ciepła dla całego sezonu grzewczego.

Lp.	Miesiąc	l [kWh/(m²·r ok)]	Fsh,gl	Qsol [kWh/rok]
1	Styczeń	19,38	1,00	40,7
2	Luty	21,51	1,00	45,2
3	Marzec	46,90	1,00	98,5
4	Kwiecień	70,72	1,00	148,5
5	Maj	86,54	1,00	181,7
6	Czerwiec	104,17	1,00	218,7
7	Lipiec	97,91	1,00	205,6
8	Sierpień	83,29	1,00	174,9
9	Wrzesień	57,42	1,00	120,6
10	Październik	35,67	1,00	74,9
11	Listopad	18,65	1,00	39,2
12	Grudzień	15,70	1,00	33,0
	Razem	657,9	1,0	1381,5

Miesieczne zyski od nasłonecznienia wg rozp. MiIR z dnia 03.06.2014r.

7.1.3.7 Zakładka Dodatki

Zakładka ta służy do podglądu i edycji obliczeń pomocniczych na podstawie, których wyliczone będzie sezonowe zapotrzebowanie na ciepło.

Tŋ	/by pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	
1	letoda obl	iczenia wewnętrznej poje	mności cieplnej Cm	Uproszczona				
	Klasa bu	idynku/strefy		Wewnętrzna pojer	mność cieplna			
	🚺 Cięż	ki		O c = 90339715,5	4 <u>J</u>			
	Stała cza	asowa		Udział graniczny p	otrzeb ogrzewania	a		
	0 T = 6	8,6 h		1,2 T = 1				
	Parame	tr numeryczny		Czas trwania sezo	onu grzewczego			
	1 a _H = 6	i,6		1 L _n = 9,000 m-c		Tablice		

Okno Dodatki – metoda uproszczona dla rozp. MIiR z dnia 03.06.2014r.

STREFA OGRZEWANA W CIĄGU DOBY – użytkownik wybiera jeden z dwóch wariantów:

- Więcej niż 12 h na dobę wtedy do wzorów podstawiamy $a_o = 1$ i $\tau_o = 15$
- Mniej niż 12 h na dobę wtedy do wzorów podstawiamy $a_o = 0.8$ i $\tau_o = 70$

WEWNĘTRZNA POJEMNOŚĆ CIEPLNA BUDYNKU/STREFY C – wartość wstawiana przez użytkownika, domyślnie program wylicza tę wartość na podstawie wzoru: $\mathbf{C} = \sum_{j} \sum_{i} \rho_{ij} \cdot \mathbf{cp}_{ij} \cdot \mathbf{d}_{ij} \cdot \mathbf{A}_{j}$

STAŁA CZASOWA BUDYNKU/STREFY τ - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru: $\tau = C/H$

STOSUNEK ZYSKÓW DO STRAT γ - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru (w oknie widoczna wartość dla sum z całego roku): $\gamma = Q_g/Q_L$ gdzie:

 Q_g – wartość całkowitych zysków ciepła wyliczana z wzoru $Qg = \Phi_{i,h} + Q_s$

 Q_L – całkowita strata ciepła wyliczana z wzoru $Q_L = \sum_{j=1}^{N} N_j H_j (\theta_{iad,j} - \theta_e) t_j$

WSPÓŁCZYNNIK WYKORZYSTANIA ZYSKÓW CIEPŁA η - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru:

Dla $\gamma \neq 1$ $\eta = 1 - \gamma^a / 1 - \gamma^{a+1}$ Dla $\gamma = 1$ $\eta = a/a + 1$

CIEPŁO ODZYSKANE Z URZĄDZEŃ POMOCNICZYCH, SYSTEMÓW OGRZEWANIA I PRZEGOTOWANIA CIEPŁEJ WODY Qr – wartość wpisywana przez użytkownika,

CAŁKOWITE STRATY CIEPŁA PRZEZ SYSTEM GRZEWCZY Z UWZGLĘDNIENIEM STRAT SYSTEMU REKUPERACJI Q_{th} - wartość wpisywana przez użytkownika,

CIEPŁO ODZYSKANE Z POMOCNICZEGO WYPOSAŻENIA, INSTALACJI OGRZEWCZEJ I OTOCZENIA Qr – wartość wpisywana przez użytkownika,

Zakładka do definiowania sposobu obliczeń współczynnika wewnętrznej pojemności cieplnej, a także podglądu wyników stałej czasowej, udziału potrzeb ogrzewania i czasu trwania sezonu grzewczego.

Tryby pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	
Metoda ob	liczenia wewnętrznej poje	emności cieplnej Cm:	Szczegółowa Wewnętrzna pojer C c m= 861681671,4	mność cieplna 44 – J K	Raport		
Stała cz T = 1	asowa 17,4 h		Udział graniczny p Y _{HJIm} 1,5	otrzeb ogrzewani	8		
Parame	tr numeryczny 2,2		Czas trwania sezo L _h = 9,000 m-c	onu grzewczego	Tablice		

Zakładka Dodatki metoda obliczeń Cm szczegółowa rozp. MIiR z dnia 03.06.2014r.

WEWNĘTRZNA POJEMNOŚĆ CIEPLNA C_m [J/K] – pole do edycji przez użytkownika program wylicza tą wartość na podstawie wstawionych przegród, które mają wypełnione informacje odnośnie C_p i ρ . Wyliczenia

odbywają się zgodnie z normą PN EN 13790:2008 wg jednego z trzech sposobów (program wybiera ten który się pierwszy pojawi):

- A. Metoda 10 cm w głąb przegrody od strony wewnętrznej,
- B. Metoda do połowy grubości przegrody,
- C. Metoda do pierwszej warstwy izolacji termicznej.

Tryby	pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	
Mete	oda obi	iczenia wewnętrznej poje	emności cieplnej Cm	Uproszczona				
KI	asa bu	idynku/strefy		Wewnętrzna pojer	mność cieplna			
0	Śred	ni		C _= 676698000,	00 <u>J</u>			
St	ała cza	asowa		Udział graniczny p	otrzeb ogrzewani	a		
0	т = 1	3,7 h		1 γ = 1,5				
				0				
Pa	arame	tr numeryczny		Czas trwania sezo	onu grzewczego			
0	a _H = 1	,9		1 L _h = 9,000 m-c		Tablice		

Zakładka dodatki metoda obliczeń Cm uproszczona PN-EN 13790:2008

KLASA BUDYNKU/STREFY- pole do wyboru ciężaru budynku na tej podstawie wybrany będzie odpowiedni wzór na policzenie C_m. Do wyboru mamy budynki bardzo lekkie, lekkie, średnie, ciężkie, bardzo ciężkie.

 $\label{eq:wewnETRZNA POJEMNOŚĆ CIEPLNA Cm [J/K] - pole do edycji przez użytkownika program wylicza tą wartość na podstawie wybranego ciężaru budynku i pola strefy Af. Wyliczenia odbywają się zgodnie z normą PN EN 13790:2008 wg poniższych wzorów: Budynek bardzo lekki Cm=80 000 • Af Budynek lekki Cm=110 000 • Af Budynek i cm=165 000 • Af Budynek średni Cm=165 000 • Af Budynek ciężki Cm=260 000 • Af Budynek bardzo ciężki Cm=370 000 • Af$

STAŁA CZASOWA τ [h] – pole do podglądu wyników obliczeń stałej czasowej budynku wyliczanej z wzoru $\tau = \frac{Cm}{3600 \cdot (Htr,adj+Hve)}$

UDZIAŁ POTRZEB OGRZEWANIA $\gamma_{-(H,lim)}$ – pole do podglądu wyników obliczeń udziału potrzeb chłodzenia budynku wyliczanej z wzoru $\gamma_{H,lim} = \frac{a_{H}+1}{a_{H}}$

PARAMETR NUMERYCZNY a_H– pole do podglądu wyników obliczeń parametru numerycznego budynku wyliczanej z wzoru $a_H = a_{H,o} + \frac{\tau}{\tau_{H,o}}$

CZAS TRWANIA SEZONU GRZEWCZEGO L_H- pole do podglądu wyników obliczeń czasu trwania sezonu chłodniczego wyliczanej z wzoru L_H= $\sum_{m=1}^{m=12} f_{H,m}$

	Se	ezon grzewczy	×
Lp.	Miesiąc	Czas [h]	Dni
1	Styczeń	744,0	31,0
2	Luty	672,0	28,0
3	Marzec	744,0	31,0
4	Kwiecień	720,0	30,0
5	Maj	744,0	31,0
6	Czerwiec	0,0	0,0
7	Lipiec	0,0	0,0
8	Sierpień	0,0	0,0
9	Wrzesień	720,0	30,0
10	Październik	744,0	31,0
11	Listopad	720,0	30,0
12	Grudzień	744,0	31,0
Razem		6552,0	273,0
			ок

Okienko czas trwania sezonu grzewczego.

Opis okna wyników obliczeń

Wyniki obliczeń H_{D,i} = 2463,76 <u>W</u> Wyniki dla miesiąca $H_{zy,i} = 0 \frac{W}{K}$ $H_{u,i} = 0 \frac{W}{K}$ $H_{u,i} = 180,73 \frac{W}{K}$ $H_{tr,adj} = 2644,49 \frac{W}{K}$ Styczeń $Q_{H,gn} = 40030,15 \frac{kWh}{m-c}$ $Q_{H,ht} = 40825,63 \frac{kWh}{m-c}$ $H_{tr,adj} = 2644,49 \frac{W}{K}$ WStyczeń $H_{ve} = 11055,02 \frac{W}{K}$ H = 13699,51 $\frac{W}{K}$ Q_{H,nd,n} = 12267,49 $\frac{kWh}{m-c}$ Q_{H,nd}= 54840,71 <u>kWh</u> rok

Wyniki Q_{H,nd} obliczeń rozp. MIiR z 03.06.2014 r.

 $\eta_{H,gn}$ – współczynnik wykorzystania zysków

8 OPIS OBLICZEŃ SEZONOWEGO ZAPOTRZEBOWANIA NA CHŁÓD NA CELE CHŁODZENIA I WENTYLACJI

8.1 ETAP STREFY CHŁODU

Etap ten służy do obliczeń sezonowego zapotrzebowania na chłód budynku. Dane te potrzebne są do obliczeń świadectwa charakterystyki energetycznej budynku. Program pozwala na obliczenia normą PN-EN ISO 13790:2008. Użytkownik musi tylko zdefiniować, które pomieszczenie należy do jakiej strefy, a program na tej podstawie do każdej strefy przypisze przegrody sąsiadujące z obszarem zewnętrzne, z strefami niechłodzonymi, z pozostałymi strefami chłodzonymi, pomijając przegrody, które po obu stronach mają pomieszczenie z tej samej strefy. Program pozwala na zdefiniowanie dowolnej ilości stref. Okno stref chłodu budynku składa się z czterech części:

- Drzewka stref chłodu,
- Okna właściwościstref,
- Zakładek obliczeń strat i zysków cieplnych,
- Panelu wyników obliczeń.

A.	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - Ve1 – 🗖 💌
Plik Edycja Ustawienia Pomoc	□ ≄ 昆 ◆ 〒 /> 〒 ?
OBLICZENIA CIEPLNE	Strefy chłodu - Świadectwo charakterystyki energetycznej 2014, WT 2014
X AF IN	Washive circle with the set of the s
▶	Tryby pracy Straty przez przetkanie Straty przez wartykację Zyski wewnętrzne Żyski wownętrzne Żyski wownętrzne Żyski wownętrzne Zyski wownętrzne D datski Rodzaj budynku Butrowy Próba szczelności budynku Próba szczelności budynku Próba szczelności budynku Typ wenjacji mechaniczna nawiewno-wywiewna działająca Próba szczelności Tak n ₅₀ = 1,60 $\frac{1}{n}$ Tablice Sprawność odzysku ciepla Sprawność odzysku GWC 0 n ₅₀ = 0 % 1 1
200 400 600 1000 > 1000 1 Definicje przegród	Lp. Nazwa pomieszczenia/strefy Af [m ³] V [m ³] β Wve,s [m ³ /6] Vve,1 [m ³ /6] bve,1 We,2 [m ³ /6] Vve,3 bve,2 Vve,4 [m ³ /6] bve,4 + 1
Strefy clepine Strefy chiedu	Γh
DANE WEJŚCIOWE	
	()
	Raport o blędach
	Lp. Typ Opis Odśwież listę błędówi
< [6/14] >	D D D E E E E E E E C. C. C. B Zamknij

Okno Stref chłodu

8.1.1 Drzewko stref chłodu

Drzewko pozwala na dowolne dodawanie pomieszczeń do stworzonych stref chłodu budynku. Użytkownik poprzez zaznaczanie, a następnie przesuwanie strefy może dowolnie zmieniać przynależność do strefy wybranego pomieszczenia. Zaznaczenie strefy przenosi nas do okna jego parametrów, które wyświetlają się po prawej stronie. Program umożliwia automatyczne przydzielenie pomieszczeń do stref (polega to na tym, że program tworzy grupy stref na podstawie największej wartości temperatury, a następnie tworzy zakresy temperatur dla każdej strefy, zakres wynosi 4 °C), istnieje też możliwość skopiowania stworzonych stref cieplnych do stref chłodu, wówczas przenoszą się dane z zakładek tryby pracy (bez wewnętrznych zysków ciepła), straty przez przenikanie, starty przez grunt, starty przez wentylacje. Pomieszczenia, które znajdują się w grupie nieprzypisane nie są uwzględniane w wynikach końcowych.

	Dillowiko bilor emodu
+	dodawanie nowych stref chłodu,
×	usuwania wstawionych stref,
A	automatyczne przenoszenie stref cieplnych do stref chłodu z kopiowaniem zakładek,
A	automatyczne grupowanie pomieszczeń do stref na podstawie temperatury wewnętrznej,
Γh –	kopiowanie wstawionych stref wraz z ich przegrodami i parametrami,
Ē	wklejanie skopiowanych stref,
	oznaczenie graficzne pomieszczenia chłodzonych,
	oznaczenie graficzne pomieszczenia nieochłodzonych,
	oznaczenie graficzne grupy strefy niechłodzonych,
L	oznaczenie graficzne grupy stref chłodzonych,
2	oznaczenie graficzne grupy nieprzypisnych pomiesczeń,
L	oznaczenie graficzne stref.
₽Ž	sortowanie
÷.	praca grupowa - iImportowanie stref z innych projektów

8.1.2 Opis okno właściwości strefy

W oknie tym wpisujemy podstawowe dane o strefie chłodu odnośnie temperatury, nazwy, typ chłodzona czy nie, numeracji, powierzchni i kubatury.

O	ois	obliczeń	sezonowego	zapotrzeb	owania na	chłód na	i cele cl	hłodzenia	i wentv	lacii
~	0.0	001102011	002011011080		0	0111004110		noaceina	,	i a oji

Właściwości strefy						
Nazwa: Stre	efa C1					
Typ: Chł	odzona					
Temperatura		Średnia ważona temperatura				
θ _{int,} ≣ 25,00 ° C		θ _s =25,00°C				
Powierzchnia o reg. ten	nperaturze	Kubatura o reg. temperaturze				
A _f =724,56 m ²	Podział	V =2868,61 m ³				
Działanie wiatru		Osłonięcie przed wiatre	m			
e =0,01	Tablice	f =15,00	Tablice			

Okno właściwości strefy chłodu dla rozp. MIiR z 03.06.2014r.

NAZWA – pole służące do ręcznego wpisywania nazwy strefy.

TYP – użytkownik w polu wybiera jeden z dwóch wariantów typu strefy: 1. Chłodzona, 2. Niechłodzona. W przypadku wyboru pierwszego typu w oknie włącza się zakładki służące do definiowania start i zysków ciepła w strefie. Wybór drugiego wariantu wyłącza zakładki strat ciepła, a użytkownik może jedynie zdefiniować albo współczynnik b_{tr}.

TEMPERATURA $\theta_{int,C}$ [°C] – pole służące do wpisywania temperatury obliczeniowej strefy, program domyślnie wstawia największą wartość występującą w zgrupowanych w tej strefie pomieszczeń. Temperatura komfortu dla klimatyzacji uzależniona jest od wilgotności powietrza i prędkości przepływu i waha się w zakresie od 18 °C do 27 °C.

ŚREDNIA WAŻONA TEMPERATURA 6^s **[°C]** - pole służące do podglądu średniej temperatury pomieszczeń zgrupowanych w strefie, wyliczonych na podstawie wagi powierzchni tych pomieszczeń.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE $A_f [m^2]$ – pole służące do wpisywani pola powierzchni strefy o regulowanej tempertaurze, program domyślnie wstawi powierzchnię pomieszczeń znajdujących się w strefie. Wartość ta przekazywana jest dalej do obliczeń certyfikatu. Użytkownik powinien wpisać tutaj wartość powierzchni rzeczywistej podłogi, w przypadku kiedy mamy poddasze użytkowe wpisujemy pole rzeczywiste tzn. bez uwzględnienia wysokości i wyliczeń powierzchni użytkowej.

KUBATURA O REGULOWANEJ TEMPERATURZE STREFY V [m³] – pole służące do wpisywania kubatury o regulowanej temperaturze strefy, program domyślnie wstawi kubaturę pomieszczeń znajdujących się w strefie. Wartość ta przekazywana jest dalej do obliczeń certyfikatu. Użytkownik powinien wstawić rzeczywistą kubaturę strefy (nie użytkową).

OSŁONIĘCIE PRZED WIATREM f – pole służące do wpisywania współczynnika osłonięcia przed wiatrem, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem ^{Tablice}. Wartość ta jest potrzebna do obliczeń powietrza infiltrującego przez osłonę zewnętrzna budynku w wzorach na wentylację mechaniczną.

Klasa osłonięcia	f
Więcej niż jedna nieosłonięta fasada	15
Tylko jedna nieosłonięta fasada	20

Podpowiedź współczynnik osłonięcia przed wiatrem

WSPÓŁCZYNNIK KLASY OSŁONIĘCIA e – pole służące do wpisywania współczynnika klasy osłonięcia przed wiatrem, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice. Wartość ta jest potrzebna do obliczeń powietrza infiltrującego przez osłonę zewnętrzna budynkuw wzorach na wentylację mechaniczną.

Współczynnik osłonięcia przed wi 🗙								
	e							
Klasa osłonięcia	Więcej niż jedna nieosłonięta fasada	Tylko jedna nieosłonięta fasada						
Brak osłonięcia	0,1	0,03						
Średnie osłonięcie	0,07	0,02						
Dobrze osłonięte	0,04	0,01						

Podpowiedź współczynnik klasy osłonięcia

8.1.3 Opis zakladek obliczeń strat i zysków ciepła

8.1.3.1 Zakładka *Tryby pracy*

Tryby	pracy Straty przez przeni	Straty przez przenikanie Straty przez grunt		ty przez przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne Zyski od nasłonecznienia			Dodatki					
Lp.	Nazwa trybu		Typ trybu		Nastawa θint,H [℃]	Ilość godzin na dobę	Ilość dni w tygodniu	Ilość dni w miesiącu	Miesiąc		Parametry szczegółowe	+
1	Standard		Ciągły		20,00							X
2	Noany		Przerwy osłabienia		20,00	5	7					Π'n

Zakładka definiowania trybów pracy rozp. MIiR z 03.06.2014 r.

TRYB PRACY- użytkownik wybiera jeden z trybów: 1. Standardowy, 2. Nocny, 3. Weekendowy, 4. Inny.

ILOŚĆ GODZIN – pole służące do definiowania ile godzin w ciągu dnia ma pracować instalacja. W przypadku dwóch trybów pracy codziennie suma dla obu trybów godzin powinna wynosić 24.

ILOŚĆ DNI – pole służące do definiowania jak często występuje dany tryb pracy, użytkownik ma do wyboru: 1. Codziennie, 2. Co 2 dni, 3. Co 3 dni, 4. Co 4 dni, 5. Co 5 dni, 6. Co 6 dni, 7. Co tydzień (4 dni z miesiąca), 8. Co weekend (8 dni z miesiąca), 9. Co miesiąc (jeden dzień z miesiąca)

TEMPERATURA [°C]- pole służące do definiowania temperatury, każdego trybu pracy. Na tej podstawie wyliczone będzie sezonowe zapotrzebowanie na ciepło.

WEWNĘTRZNE ZYSKI CIEPŁA [W/m²]- pole służące do definiowania wewnętrznych zysków ciepła, użytkownik może wpisać własna wartość lub skorzystać z podpowiedzi uruchamianej przyciskiem …. Dane te będą potrzebne do obliczeń sezonowego zapotrzebowania na ciepło strefy.

UWAGI- pole służące do wpisywania uwag odnośnie trybu pracy.

Przykład 1

Tryby pracy służą do wyliczania rzeczywistego zużycia energii na cele ogrzewania budynku, ponieważ często zdarzają się sytuację, że budynek jest ogrzewany tylko podczas przebywania w nim ludzi.

Przykład 2

W szkole codziennie od poniedziałku do piątku odbywają się zajęcia lekcyjne od godz. 7.00 do 20.00 przy temp. 20.00 °C. W pozostałych godzinach temperatura w budynku jest 18.00 °C. Dodatkowo, podczas ferii zimowych w lutym przez 2 tygodnie szkoła jest nieczynna.

Wariant I

Najpierw zawsze trzeba zdefiniować tryb Ciągły oznaczający standardową temprtaturę podczas użytkowania.

Potem trzeba wykorzystać pozostałe tryby. Tryb Przerwy osłabienia trwają w nocy przez 11 godzin 7 dni w tygodniu. Tryb Nieużytkowane jest w miesiącu lutym i trwa 14 dni.

Tryby	racy Straty przez przenikanie Straty przez grunt S		z przenikanie Straty przez grunt Straty przez wentylację Zyski wewnętrzne 2		Zyski od i	nasłonecznienia	Dod	atki				
Lp.	p. Nazwa trybu		Typ trybu		Nastawa Øint,H [°C]	Ilość godzin na dobę	Ilość dni w tygodniu	Ilość dni w miesiącu	Miesiąc		Parametry szczegółowe	+
1	Standard		Ciągły		20,00							X
2	Nocny		Przerwy osłabienia		18,00	11	7					Ψ
3	Przerwa zimowa		Nieużytkowanie		12,00			14	Luty			Ō

8.1.3.2 Zakładka Straty przez przenikanie

Tryby	y pracy Straty przez przenikanie Straty prz	ez grur	nt Stra	ty przez v	vent	ylacje 2	Zyski we	wnętrzne	e Zyski	od nasłone	ecznienia	Dodatki		
Lp.	p. Przegroda			Orienta	acja	H [m]	W [m]	A [m²]	Aobl [m²]	Mostki	U [W/m²]	K Strefa/Temp. [℃]	Hx [W/K]	+ €
1	Ściana zewnętrzna		-	S		6,50	10,63	69,10	69,10	9,48	. 1,1	5 韵 书 书 📩	88,9	
2	Ściana zewnętrzna		-	E		3,84	18,25	70,08	54,87	15,18	. 1,1	5 \$10 \$1 \$ 🛁	78,3	×
3	📖 🖵 Okno zewnętrzne		6	E		1,50	1,69	2,54	-	2,87	. 1,2	日本 日本	35,5	-
4	Ściana zewnętrzna		-	N		3,00	5,95	17,85	17,85	5,21	. 1,1	5 \$10 \$1 \$ 🛁	25,7	-
5	Ściana zewnętrzna		-	N		6,50	4,68	30,42	30,42	4,72	. 1,1	5 韵 幕 幕 📩	39,7	Ph
6	Ħ Strop zewnętrzny_dach sali gimnast.		-	-		0,00	0,00	193,91	193,91	0,00	. 1,2	9 \$0\$ \$	250,1	
7	Ściana wewnętrzna		-	E		2,71	18,25	49,46	49,46	0,00	. 1,8	5 24,00	92,0	
8	Ściana wewnętrzna		-	N		2,90	4,68	13,57	13,57	0,00	. 1,8	5 20,00	25,2	
9	FI Strop zewnętrzny_dach nad wejściem		-	-		0,00	0,00	22,00	22,00	0,00	. 1,0	3 第二字 字 📩	23,8	

Zakładka Straty przez przenikanie norma PN-EN 13790 i PN-EN 832

Tabelka ta służy do zdefiniowania przegród wchodzących w skład strefy (na tej podstawie wyliczona będzie strata cieplna strefy). W przypadku wpisania przegród w pomieszczeniach lista przegród w strefie zostanie wypełniona automatycznie. Po prawej stronie mamy przyciski, które umożliwiają nam:

NAZWA PRZEGRODY – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Przyciskiem ··· otwiera listę dostępnych w projekcie przegród:

Drzewko przegród w projekcie

ILOŚĆ n [szt.]–kolumna ta jest aktywna tylko dla przegród typu okna i drzwi służy do definiowania liczby przegród o podanych wymiarach.

ORIENTACJA O- orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

N	Północ
NE	Płn Wsch.
E	Wschód
SE	Płd Wsch.
S	Południe
SW	Płd Zach.
W	Zachód
NW	Płn Zach.

Wybór orientacji przegrody

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody wzdłuż osi (w zależności od wybranej opcji wymiarowania długość tą podajemy konturem: zewnętrznym , wewnętrznym i środkiem ściany). W przypadku ściągnięcia informacji tej z ArCADia- ARCHITEKTURA - wartość wpisywana jest automatycznie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. W przypadku pobrania informacji z ArCADia-ARCH ITEKTURA wartość wpisywana jest automatycznie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody wartość wyliczana z $W \ge H \le$ przypadku okien, drzwi, wartość wyświetlana jest dla jednej sztuki.

OBLICZENIOWE POLE POWIERZCHNI PRZEGRODY A_{obl} [m^2]- pole służące do podglądu rzeczywistej powierzchni przegrody przenoszonej do obliczeń. Program automatycznie odejmuje pola dodanych do tej przegrody drzwi i okien.

MOSTEK– pole służące do definiowania współczynnika, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej przyciskiem ····. Kolumna ta jest widoczna wówczas, gdy w oknie wybór obliczeń zostanie wybrana metoda obliczeń mostków cieplnych wg PN- EN ISO 14683.
Mostki cieplne								
Kod	Kod Typ mostka			Ψk [W/m*K]	L k [m]	1	+	
17M	Naroże zewnętrzne ściany z izolacją zewnętrzną		C1	-0,05	Н		×	
25M	Strop/ściana z izolacją zewnętrzną		IF1	0,00	W		★	
90M	Połączenie ściany bez izolacji z podłogą na gruncie z izolacją krawędziową poziomą		GF3	0,55	w			
							D	
Wyłącz pobieranie mostków z definicji przegrody				Σ	Ψ _k ·L _k = 1	W K	Anuluj OK	

Mostki cieplne

W oknie tym użytkownik może zdefiniować mostki cieplne z bazy zgodnej z normą PN-EN ISO 14683 lub z katalogu mostków cieplnych wydawnictwa ITB. Po prawej stronie ma podgląd wstawionego mostka, a także ikonki służące do edycji listy mostków.

+	dodawanie nowych typów mostków,
×	usuwanie mostków cieplnch,
1	przesuwanie mostka do góry,
ŧ.	Przesuwanie mostka do dołu,
	kalkulator

KOD - pole służące do podglądu kodu mostka cieplnego, wartość ta pokazywana jest w raportach RTF.

TYP MOSTKA – pole służące do zdefiniowania typu mostka, użytkownik może wpisać własny model lub skorzystać z podpowiedzi uruchamianej przyciskiem ….

WYŁĄCZ POBIERANIE MOSTKÓWZ DEFINICJI PRZEGRODY - opcja ta służy do wyłączenia/włączenia pobierania zdefiniwanych mostków w etapie 4. dla danego typu przegrody. Po zaznaczeniu tej opcji kolejne zmiany typy i długości mostków okrelsone w definicji przegrody nie bedą miały żadnego wpływu na zawartość tego okna, rys. 165.

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

				Baz	a mostkóv	v					-	. 🗆	x
Znajdź Szuka; 臣 Wyniki wyszukiwania aktualnie niedostępne.				Wyczyść	Wymia © Zer O Cał O We	ary wnętrzne e ikowicie we wnętrzne i	wnętrzne (li			Wygląd mostka		+ ×
╪┽╅╳╠╔╔╠╝	Lp.	Nazwa	Kod	Symbol	Ψе [W/(m-K)]	Ψοi [W/(m·K)]	Ψi [W/(m·K)]	Automa ny wyr	atycz niar	+			
PN-EN ISO 14683:2001	1	Naroże zewnętrzne ściany z izolacją zewnętrzną	17M	C1	-0,050	0,150	0,150	н		×			
Połączenia ściany zewnętrzy Połączenia ściany zewnętrzy	2	Naroże zewnętrzne ściany z izolacją w środku	18M	C2	-0,100	0,100	0,100	н		יחי D	Opis		
Otwory okienne i drzwiowe Otwory okienne i drzwiowe	3	Naroże zewnętrzne ściany z izolacją wewnętrzną	19M	C3	-0,200	0,000	0,000	н		\$			
wg ITB	4	Naroże zewnętrzne ściany lekka	20M	C4	-0,150	0,050	0,050	н					
Nadproża okienne Podokienniki Pkyty balkonowe	5	Naroże wewnętrzne ściany z izolacją zewnętrzną	21M	C5	0,000	-0,200	-0,200	н					
Phys balkohowe Wieńce Ph-EN ISO 14683:2008 Połsczenia dachu ze ściana :	6	Naroże wewnętrzne ściany z izolacją w środku	22M	C6	0,100	-0,150	-0,150	н					
Połączenia obyty balkonowej Połączenia płyty balkonowej Naroża ścian zewnętrznych Połączenia stronu ze ściana	7	Naroże wewnętrzne ściany z izolacją wewnętrzną	23M	С7	0,150	-0,050	-0,050	н					
Połączenia ściany zewnętrzu Połączenia ścian zewnętrzu Połączenia ścian zewnętrzu	8	Naroże wewnętrzne ściany lekka	24M	C8	0,050	-0,150	-0,150	н					
Otwory okienne i drzwiowe Otwory okienne i drzwiowe ✓ ✓ ✓													
Przywróć domyślne wartości Wybór wersji b	azy d	anych: 6.0									Anuluj	ок	

Okno bazy mostków cieplnych

SYMBOL – pole służące do podglądu symbolu mostka cieplnego z normy lub z katalogu mostków.

WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA LINIOWEGO MOSTKA CIEPLNEGO Ψ_K [*W/m·K*] – pole służące do wstawiania liniowego współczynnika mostka cieplnego, użytkownik może ręcznie wstawić wartość lub skorzystać z wartości domyślnej proponowanej przez program.

*DŁUGOŚĆ LINIOWEGO MOSTKA CIEPLNEGOI*_K [*m*] – pole służące do wstawiania długości liniowego mostka cieplnego.

WSPÓŁCZYNNIK PRZENIKANIAU[W/m2·K]–pole służące do definiowania współczynnika przenikania ciepła dla wybranej przegrody program automatycznie wpisuje wartość obliczoną w oknie *definicje przegrody*.

STREFA/TEMP. [°C]–pole służące do wyboru temperatury lub strefy po drugiej stronie przegrody. Dla przegród zewnętrznych program automatycznie podaje temperaturę strefy klimatycznej, dla przegród mających

po drugiej stronie strefę ogrzewaną wybieramy z przycisku odpowiednie strefę ••••, gdy na liście wybierzemy *brak* wówczas ręcznie możemy wstawić odpowiednią temperaturę (a współczynnik strat ciepła wyliczony dla tej przegrody dodawany jest do sumy współczynników od stref wewnętrznych). W przypadku wybrania strefy z listy program automatycznie wstawia jego temperaturę (jakakolwiek zmian temperatury w tym pomieszczeniu automatycznie jest przenoszona i obliczana). Dla stref nieogrzewanych pokazywany jest współczynnik b_u, który pobierany jest z sąsiadującego strefy.

Drzewko wyboru sąsiadującej strefy

WSPÓŁCZYNNIK PROJEKTOWANEJ STRATY CIEPŁA H_x[W/K]–pole służące do podglądu i edycji wyników dla danej przegrody. Wartość ta przekazywana jest dalej do wyników obliczeń.

8.1.3.3 Zakładka Straty przez grunt

Dla normy PN EN 13790 i PN EN 832 użytkownik może wykonać obliczenia dwoma normami gruntowymi. Metoda uproszczoną wg normy PN EN 12831 lub szczegółową wg normy PN EN ISO 13370. Dla normy PN B 02025 do wyboru mamy tylko normę PN EN ISO 13370W przypadku dodania nowej przegrody program automatycznie wstawia w kolumnę A_K wartość z pola powierzchnia pomieszczenia. W oknie tym użytkownik dodaje przegrody typu podłoga na gruncie i ściana na gruncie. W przypadku pobrania danych z ArCADia ARCH. Przegrody i parametry wstawiane są automatycznie. Wartości wyliczane są z wzoru: $H_{T,ig} = f_{g1} \cdot f_{g2} \cdot (\sum Ak^* U_{equiv}) \cdot G_w$

╋	dodawanie nowych przegród,
×	usuwanie przegród,
P	kopiuj przegrodę
Ē	wklej przegrodę
	kalkulator

L.P. – pole pokazujące kolejna liczbę porządkową,

PRZEGRODA–użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Ikonką … otwiera listę dostępnych w projekcie przegród(do wyboru mamy przegrody typu podłoga na gruncie i ściana na gruncie).

Drzewko przegród podłoga i ściana na gruncie w projekcie

Podręcznik użytkownika dla programu ArCADia–TERMO

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

OBWÓD PODŁOGI PO OBRYSIE ZEWNETRZNYM P [m] – pole służące do wstawiania obwodu podłogi na gruncie, użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja* przegrody/zakładka parametrydodatkowe.

CAŁKOWITA POWIERZCHNIA PRZEGRODY A_g [*m*²]- pole służące do wstawiania całkowitego pola powierzchni przegrody (w całym budynku), użytkownik może stawić własna wartość lub skorzystać z wartości wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

WSPÓŁCZYNNIK CHARAKTERSTYCZNY PODŁOGI B' [m] – pole służące do wstawiania współczynnika charakterystycznego, wstawionej w oknie *definicja przegrody/zakładka parametrydodatkowe*.

ZAGŁĘBIENIE Z [m] – pole służące do wpisywania zagłębienia podłogi lub ściany na gruncie, wartość wstawiana domyślnie na podstawie danych z okna *definicja przegrody/zakładka parametrydodatkowe*.

WSPÓŁCZYNNIK PRZENIKANIA WARTSW PODŁOGI/ŚCIANY NA GRUNCIE U_k [W/m²·KJ-pole służące do definiowania współczynnika przenikania warstw przegrody, na tej podstawie z tabeli pomocniczych zostanie dobrany współczynnik U_{equiv,bw}. Wartość domyślnie wstawiana jest z okna <i>definicja przegrody/zakładka parametrydodatkowe.

 $RÓWNOWAŻNY WSPÓŁCZYNNIK PRZENIKANIA U_{equiv} [W/m²·K] – pole służące do podglądu wartości wstawianej na podstawie parametrów B', Z i U_k z niżej pokazanych tabel:$

POWIERZCHNIA PRZEGRODY STYKAJACEJ SIĘ Z GRUNTEMA $_k[m^2]$ – pole służące do definiowania wartości pola powierzchni przegrody w strefie. Program domyślnie wstawia wartość z powierzchni strefy.

 $U_{equiv} \cdot A_k [W/K]$ – pole służące do podglądu i modyfikacji wyniku obliczeń dla podłogi na gruncie dana ta zostanie przekazana do dalszych obliczeń.

WSPÓŁCZYNNIK KOREKCYJNY f_{g1} – pole służące do definiowania współczynnika korekcyjnego uwzględniającego wpływ rocznych wahań temperatury zewnętrznej. Program domyślnie przyjmuje wartość 1,45.

*WSPÓŁCZYNNIK KOREKCYJNY f*_{g2} – pole służące do definiowania współczynnika redukcji temperatury uwzględniającego różnicę między średnią roczną temperaturą zewnętrzną i projektowaną temperaturą zewnętrzną. Program domyślnie przyjmuje wartość obliczona z wzoru:

$$\mathbf{f}_{g2} = (\boldsymbol{\theta}_{\text{int,i}} - \boldsymbol{\theta}_{\text{m,e}}) / (\boldsymbol{\theta}_{\text{int,i}} - \boldsymbol{\theta}_{\text{e}})$$

*WSPÓŁCZYNNIK KOREKCYJNY G*_w – pole służące do definiowania współczynnika uwzględniającego wpływ wody gruntowej a poziomem podłogi.Program domyślnie przyjmuje wartość 1,00.

8.1.3.4 Zakładka Straty na wentylację

Zakładka ta służy do definiowania strumienia powietrza wentylacyjnego i do wyliczenia strat ciepła przez wentylację.

Podręcznik użytkownika dla programu ArCADia-TERMO

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - Ve1 🔷 – 🗖 🗙
Plik Edycja Ustawienia Pomoc	
OBLICZENIA CIEPLNE	Strefy chłodu - Świadectwo charakterystyki energetycznej 2014, WT 2014
	Waściwości strefy Wyniki obliczeń Wyniki dla miesiąca Nazwa: Część blurowa H H 45,75 $\frac{W}{K}$ Wyniki dla miesiąca Typ: Chłodzona H $_{2,7}^{-0} \frac{W}{K}$ Styczeń Tempertura V v e68,00 m³ H $_{2,7}^{-0} \frac{W}{K}$ O Powierzchnia o reg. Osłonięcie przed wiatrem Osłonięcie przed wiatrem H $_{3,7}^{-0} \frac{W}{K}$ O A, ~200,00 m² Podział f =15,00 Tablice H $_{2,3,7}^{-0} \frac{W}{K}$ O Działanie wiatru e =0,01 Tablice H $_{2,3,0}^{-0} \frac{W}{K}$ O $_{2,nd}^{-0} = 0,11$
482.63 kV/h/(m²rok)	Tryby pracy Straty przez przenkanie Straty przez grunt Straty przez wertytację Zyski wewnętrzne Zyski od nasłonecznienia Dodatki Rodzaj budynku Biurowy Próba szczelności budynku Próba szczelności budynku Próba szczelności budynku Typ wentylacji mechaniczna nawiewno-wywiewna działająca Próba szczelności Tak n 50 = 1,50 1 n Tablice Sprawność odzysku ciepla O nowo = 0 % O nowo = 0 % Próba szczelności tak N 50 = 1,50 1 n Tablice
0 200 400 600 800 1000 >1000	Lp. Nazwa pomieszczenia/strefy Af V β Vve,s Vve,1 bve,1 Vve,2 bve,2 Vve,3 bve,3 (m²/h) bve,4 +
1	1 200,00 688,00 0,30 516,00 516,00 0,09 10,32 0,30 0,00 0,70 51,60 0,70
Definicje przegród Strefy cienine	
Strefy chłodu	ريل ا
DANE WEJŚCIOWE	
OBLICZENIA CIEPLNE	
CERTYFIKAT	
C PODGLĄD PROJEKTU	r Bannt o bledach
H WYDRUKI	Lp. Typ Opis Opis Opis Opis Opis Opis
< [6/14] >	

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

Wentylacja nawiewno wywiewna działająca okresowo - Biurowiec

RODZAJ BUDYNKU – pole do wyboru z rozwijanej listy, użytkownik ma do wyboru następujące rodzaje budynków:

- a) mieszkalne jednorodzinne
- b) mieszkalne wielorodzinne
- c) biurowy
- d) oświaty
- e) szkolnictwa wyższego
- f) nauki
- g) opieki zdrowotnej
- h) gastronomii
- i) handlu
- j) sportu
- k) usług
- l) zamieszkania zbiorowego
- m) magazynowy
- n) przemysłowy

Akademik
Biurowy
Dom jednorodzinny
Dom wielorodzinny
Gastronomia
Hala produkcyjna
Handel
Hotel
Koszary
Lokal mieszkalny
Magazyn
Nauka
Opieka zdrowotna
Oświata
Sport
Szkolnictwo wyższe
Usługi

TYP WENTYLACJI – pole do wyboru z rozwijanej listy użytkownika ma do wyboru jeden z 6 typów:

- wentylacja grawitacyjna
- wentylacja mechaniczna wywiewna
- wentylacja mechaniczna nawiewno wywiewna
- wentylacja mechaniczna wywiewna działająca okresowo
- wentylacja mechaniczna nawiewno wywiewna działająca okresowo
- wentylacja mechaniczna nawiewna działająca okresowo

Na tej podstawie zmienia się wygląd całej zakładki.

PRÓBA SZCZELNOŚCI BUDYNKU – użytkownik ma do wyboru Tak lub Nie w przypadku tak pojawia się pole n_{50} gdy wybierze nie pojawia się pole n od wyboru tego parametru uzależnione są obliczenia V_{inf}

SPRAWNOŚĆ ODZYSKU CIEPŁA $\eta_{oc,n}$ [%] – pole służące definiowania sprawności odzysku ciepła występuje tylko w przypadku pojawienia się tego symbolu w tabelkach. Użytkownik może wstawić własną wartość lub skorzystać z podpowiedzi włączanej przyciskiem Tablice.

Wartości sp	/artości sprawności instalacji odzysku							
Lp.	System odzysku ciepła	Sprawność odzysku [%]						
1	Wymiennik płytowy, krzyżowy	50-60						
2	Rekuperacja pośrednia	40-50						
3	Rurka cieplna	50-60						
4	Wymiennik obrotowy bez odzysku wilgoci	65-80						
5	Wymiennik obrotowy z odzyskiem wilgoci	65-80						
6	Wymiennik spiralny	70-89						
7	Wymiennik gruntowy	80-99						

Podpowiedź wartość sprawności instalacji odzysku

SPRAWNOŚĆ ODZYSKU GWC $\eta_{GWC,n}$ [%]–pole służące definiowania sprawności odzysku ciepła gruntowego wymiennika ciepła. Użytkownik może wstawić własną wartość powinna się zawierać między 0-100, domyślnie 0,2.

Lp.	Nazwa pomieszczenia/strefy	Af [m²]	V [m³]	Vve [m³/	;, 1 /h]	bve,1	Vve,2 [m³/h]	bve,2	Hve [W/K]	Qve [kWh/r	ok]	+
1		4000,00	10000,00	4608,00		1,00	750,00	1,00	1786,00	183779,40		×

Wentylacja - rodzaj budynku a,b,g,l

NAZWA POMIESZCZENIA/STREFY – pole do wpisywania textu przez użytkownika lub pobierania danych za pomocą przycisku ... z strefy lub pomieszczeń należących do strefy (wówczas wsyawia się domyślnie pole Af i V). Gdy użytkownik zaznaczy strefę przenoszą się dane dla strefy gdy pomieszczenie to dane dla pomieszczenia.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE Af $[m^2]$ – pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

KUBATURA POMIESZCZENIA/STREFY V [**m**³] - pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU $V_{ve,1,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 1,2,3). Wartość wyliczana z tabelki poniżej x _{Af}:

Tabelka 1 wartości Vve dla wentylacji grawitacyjnej i mechanicznej wywiewnej rodzaju budynków: b)

Lp.	Strefa ogrzewana lub okresowo ogrzewana	Vve,l,s [m ³ /(s·m ²)]
1	Lokale mieszkalne w przypadku wentylacji:	
	e) ciągłej,	0,32.10-3
	f) mechanicznej z osłabieniem w nocy	0,28.10-3
2	Klatki schodowe w budynkach wybudowanych przed 1990 r., w których	
	nie przeprowadzono termomodernizacji:	
	c) bez wiatrołapu,	0,43.10-3
	d) z wiatrołapem	0,22.10-3
3	Klatki schodowe w budynkach innych niż wymienione w lp.2:	
	c) bez wiatrołapu,	0,22.10-3
	d) z wiatrołapem	0,07·10 ⁻³

Tabelka 2 wartości Vve wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: a)

Lp.	Strefa ogrzewana	Vve,l,s [m ³ /(s·m ²)]
1	Pomieszczenia mieszkalne i pomocnicze, w tym wewnętrzna klatka schodowa, w przypadku wentylacji:	
	g) ciągłej,	0,31.10-3
	h) mechanicznej z osłabieniem w nocy	0,27.10-3

Tabelka 3 wartości Vve wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: g), l)

Lp.	Strefa ogrzewana		V ve,l,s [m³/(s·m²)]
1	Użyteczności publicznej	 e) biurowy, f) przeznaczony na potrzeby: oświaty, szkolnictwa wyższego i nauki 	0,56.10-3
2		przeznaczony na potrzeby: opieki zdrowotnej, gastronomii	0,42.10-3
3		przeznaczony na potrzeby: handlu, usług	0,33.10-3
4		przeznaczony na potrzeby: sportu	0,42.10-3
5	Zamieszkania zbiorowego)	0,42.10-3
6	Magazynowy		0,08.10-3
7	Produkcyjny		indywidualne w zależności od rodzaju produkcji i sposobu użytkowania

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE

UŻYTKOWANIA BUDYNKU b_{ve,1,n}– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 2 DODATKOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU V_{ve,2,n} [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 . Obliczenia poszczególnych strumieni:

 $V_{inf} = \frac{n \cdot V}{3600} [m^3/s] - \text{bez próby szczelności} n = 0,2 \text{ lub } 0,3$

$$V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s] - z \text{ próbą szczelności}$$

$$V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot n_{50} \cdot e}{V \cdot n_{50}} \right]^2} \quad (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

 $V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^2} \quad (\text{gdy nie ma próby szczelności } n_{50} = 4)$

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 2 DODATKOWEGO W OKRESIE

UŻYTKOWANIA BUDYNKU $b_{ve,2,n}$ – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 5,6,7).

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ H_{ve} [W/K] – pole do odczytu wartość wyliczana z wzoru H_{ve} = $1200 \cdot \sum_{k} b_{ve,k} \cdot V_{ve,k,n}$

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ Q_{ve} [kWh/rok] – pole do odczytu użytkownik ma dodatkowo przycisk ... którym otwiera się okienko gdzie są pokazane miesiące od I-V i IXd-XII wartość wyliczana z wzoru $Q_{ve} = \sum_{n} Q_{ve,s,n}$

$$Q_{\text{ve,s,n}} = H_{ve} \cdot \left(\theta_{int,S,H} - \theta_{e,m}\right) \cdot t_m \cdot 10^{-3} \text{ (dla każdego miesiąca)}$$

gdzie:

 $\theta_{int,S,H}$ - temperatura strefy $\theta_{e,m}$ - temperatura danego miesiąca z bazy klimatycznej t_m - czas danego miesiąca Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji <u>Tabelka obliczeń wentylacji rodzaj budynku</u> c,d,e,f,h,i,j,k,m,n

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - Ve1 – 🗖	×
Plik Edycja Ustawienia Pomoc	🗄 夕 啟 ヘ 〒 // 〒 ?	
OBLICZENIA CIEPLNE	Strefy chłodu - Świadectwo charakterystyki energetycznej 2014, WT 2014	
X AF IN D ↓2 Choldrone Strefa C1 Gardzinee Gardzineehodzone Gardzineehodzony Berzypisane	Wakitwoki strefy Wp/mik oblizani Nazwa: Część blarowa Nazwa: Część blarowa Tomperatura Hoga 25,00 °C Yowietwian Hoga 25,00 °C Powierschnia oreg. V + 688,00 m³ Powierschnia oreg. Osoniącie przed wistrem $f_{a,0}^{-1} \frac{W}{K}$ Osoniącie przed wistrem $f_{a,10}^{-1} \frac{W}{K}$ Osoniącie przed wistrem $h_{a,34}^{-1} \frac{453,75 \frac{W}{K}}{K}$ $\Omega_{c,p1}^{-1} = 168, \frac{WW}{m-c}$ $Q_{c,n2}^{-1} = 168, \frac{WW}{TOC}$ $Q_{c,n2}^{-1} = 168, \frac{WW}{m-c}$	
1482.63 k/vh/(m ² rok)	Tryby yracy Stady przez przerikanie Strady przez work/łacją Zyski wewnętzme Żyski od nasionecznienia Dodaki Rodzaj budynku Biurowy O Próba szczelności budynku Próba szczelności Tak n _{co} = 1,50 1/n Tablice Typ wertyłacj mechaniczna nawiewno-wywiewna działająca Próba szczelności Tak n _{co} = 1,50 1/n Tablice Sprawność odzysku ciępla Sprawność odzysku ciępla O n _{co} = 0 % Próba szczelności Tak n _{co} = 1,50 1/n	
a 200 400 600 600 5000 ≥1000 1 Definicje przegród Strefy ciepine	Lp. pometazzenia/strefy [m ²] [m ²	
DANE WEJŚCIOWE COBLICZENIA CIEPLNE CERTVEIKAT		
	Report o bledsch	
	Codiviez listę błędówi	
< [6/14] >		knij

Wentylacja - rodzaj budynku c,d,e,f,h,i,j,k,m,n

Lp.	Nazwa pomieszczenia/strefy	Af [m ²]	V [m ³]	В	V _{ve,1} [m ³ /h]	b _{ve,1}	V _{ve,2} [m ³ /h]	b _{ve,2}	V _{ve,3} [m ³ /h]	b _{ve,3}	V _{ve, 4} [m ³ /h]	b _{ve,4}	H _{ve} [W/K]	Q _{ve} [kWh	/rok]	ŧ
1																Х
																P
																2

Tabelka wentylacji dla rodzajów budynków c,d,e,f,h,i,j,k,m,n

PRÓBA SZCZELNOŚCI – pole służące do wyboru jednego z dwóch sposobów obliczeń strumienia infiltracyjnego:

1.gdy wybierzemy TAK na podstawie wzoru $V_{inf}\!\!=\!\!0,\!05\cdot n_{50}\cdot$ kubatura wentylowana , 2.gdy wybierzemy NIE na podstawie wzoru $V_{inf}\!\!=\!\!0,\!2\cdot$ kubatura wentylowana.

SZCZELNOŚĆ BUDYNKU n₅₀ [1/h]– pole służące do wpisani wartości próby szczelności, użytkownik może skorzystać z podpowiedzi włączanej przyciskiem Tablice.

Wartości próby szczelności budynku 🛛 🗙								
Lp.	Typ budynku	n50 [1/h]						
1	Budynki pasywne	0,6						
2	Budynki energooszczędne	1,5						
3	Budynki tradycyjne	6						
4	Budynki z went. grawitacyjną	3						
5	Budynki z went. mechaniczną	1,5						

Wartość próby szczelności budynku n50

Podpowiedź krotność wymian n

NAZWA POMIESZCZENIA STREFY – pole do wpisywania textu przez użytkownika lub pobierania danych za pomocą przycisku … z strefy lub pomieszczeń należących do strefy (wówczas wsyawia się domyślnie pole Af i V).

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE $A_f [m^2]$ – pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

KUBATURA POMIESZCZENIA/STREFY V [**m**³] - pole do wpisywania liczb, po wybraniu pomieszczenia/strefy z listy wypełnia się automatycznie

UDZIAŁ CZASU WYKORZYSTANIA BUDYNKU W MIESIĄCU β – pole do edycji, po wciśnięciu przycisku … pojawia się nam okienko jak dla specyfikacji obliczenia współczynnika β

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU V_{ve,1,n} [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku …

UWAGA! gdy mamy rodzaj wentylacji grawitacje lub wentylacje mechaniczną wywiewną wówczas pojawia się nam podpowiedź z tabelki gdy pozostałe pojawia się okienko.

Lp.		Strefa ogrzewana	$\mathbf{V}_{\mathbf{ve},\mathbf{l},s}$ $[\mathbf{m}^{3}/(\mathbf{s}\cdot\mathbf{m}^{2})]$
1	Użyteczności publicznej	g) biurowy,h) przeznaczony na potrzeby:	0,56·10 ⁻³
		oświaty, szkolnictwa wyższego i nauki	2
2		przeznaczony na potrzeby: opieki zdrowotnej, gastronomii	0,42.10-3
3		przeznaczony na potrzeby: handlu, usług	0,33.10-3
4		przeznaczony na potrzeby: sportu	0,42.10-3
5	Zamieszkania zb	iorowego	0,42.10-3
6	Magazynowy		0,08.10-3
7	Produkcyjny		indywidualne w zależności od rodzaju produkcji i sposobu użytkowania

Tabelka 4 wartości V_{ve} wentylacji grawitacyjnej i mechanicznej wywiewnej dla rodzaju budynków: c,d,e,f,h,i,j,k,m,n

UWAGA! gdy wybrana jest wentylacja nawiewno – wywiewna lub nawiewna wówczas zamiast tabelki 4 pojawia się nam nowe okno

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

	Obliczen	ia st	rumienia	powietrza	a Vve,1,n					
Stopień zmniejszenia strumienia powietrza zewnętrznego r _n = 0,75 () Rodzaj obliczeń zgodnie z PN-B/B-03430/AZ3:2000										
L.p.	p. Urządzenia/aktywności [sz			Vsup m³/h	Vex m³/h	Vcsup m³/h	Vcex m³/h	+		
1	Kuchnia z oknem zew. wyposażona w kuchenkę gazową		1	0,00	70,00	0,00	70,00	×		
2	Os. w pom. normalnym z paleniem		2	30,00	30,00	60,00	60,00			
				Strumień objętości powietrza nawiewanego $V_{sup} = 60,00 \frac{m^3}{h}$						
Str	umień objętości powietrza usuwaneg / _{ex} = 130,00 ^{m³} / _h		Strumień objętości powietrza zewnętrznego $V_{ve,t,n}=~45,00~\frac{m^3}{h}$							
$V_{ex} = 130,00 \frac{m^2}{h}$ $V_{ve,t,n} = 45,00 \frac{m^3}{h}$										

Obliczenie strumienia powietrza dla wentylacji nawiewno-wywiewnej zgodnie z normą PN-B/B-03430/AZ3:2000

STOPIEŃ ZMNIEJSZENIA STRUMIENIA POWIETRZA ZEWNĘTRZNEGO r_n – pole do edycji przez użytkownika, wartość domyślna 0,75 użytkownik ma info z textem:

W systemach wentylacji nawiewno-wywiewnej działających ze stałem strumieniem powietrza zewnętrznego $r_n=1,0$.

W systemach wentylacyjnych działających z regulacją ręczną lub automatyczną strumienia powietrza zewnętrznego, wartość r_n oblicza się lub przyjmuje $r_n=0,75$.

Strumień powietrza zewnętrznego Vve,1,n [m³/h] – pole do edycji program domyślnie wstawia wartość $V_{sup} \cdot r_n$ do dalszych obliczeń trzeba zamienic jednostkę na m³/s, czyli podzielić 3600

Obliczenia strumier	nia powietrza Vve,1,n 🛛 🗙
Stopień zmniejszenia strumienia powietrza zewnętrznego 🛛 🕇	n = 0,75 ()
Rodzaj obliczeń Krotność wymian	^
Krotność wymian	Strumień objętości powietrza nawiewanego
n = 1,00 $\frac{1}{h}$ Tablice	$V_{sup} = 688,00 \frac{m^3}{h}$
Strumień objętości powietrza usuwanego	Strumień objętości powietrza zewnętrznego
$V_{ex} = 688,00 \frac{m^3}{h}$	V _{ve,1,n} = 516,00 $\frac{m^3}{h}$
	Anulų OK

Obliczenie strumienia powietrza dla wentylacji nawiewno-wywiewnej - krotność wymian

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 1 PODSTAWOWEGO W OKRESIE

UŻYTKOWANIA BUDYNKU b_{ve,1,n}– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 2 DODATKOWEGO W OKRESIE UŻYTKOWANIA BUDYNKU V_{ve,2,n} [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7. Obliczenia poszczególnych strumieni:

 $V_{inf} = \frac{n \cdot V}{3600} [m^3/s]$ – bez próby szczelności n = 0,2 lub 0,3

 $V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s] - z \text{ próbą szczelności}$

$$V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot u_{p50} \cdot e}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

$$V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

$$V_{\chi} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{e\chi}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 3 PODSTAWOWEGO W OKRESIE

NIE UŻYTKOWANIA BUDYNKU b_{ve,3,n}– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku … (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 3 PODSTAWOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU $V_{ve,3,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7.

CZYNNIK KOREKTY TEMPERATURY DLA STRUMIENIA 4 DODATKOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU bve,4,n– pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 użytkownik może wybrać wartość z podpowiedzi włączanej z przycisku ... (wówczas pojawiają się nam tabelki 5,6,7).

UŚREDNIONY W CZASIE STRUMIEŃ POWIETRZA DLA STRUMIENIA 4 DODATKOWEGO W OKRESIE NIE UŻYTKOWANIA BUDYNKU $V_{ve,4,n}$ [m³/s] – pole do wstawiania liczb, wartość domyślnie wstawiana na podstawie rodzaju budynku, rodzaju wentylacji i tabelki 5,6,7 . Obliczenia poszczególnych strumieni:

 $V_{inf} = \frac{n \cdot V}{3600} [m^3/s]$ – bez próby szczelności n = 0,2 lub 0,3

 $V_{inf} = \frac{0.05 \cdot n_{50} \cdot V}{3600} [m^3/s]$ - z próbą szczelności

$$V_{x,su} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{V \cdot n_{50} \cdot e}{V \cdot n_{50}} \right]^2}$$
(gdy nie ma próby szczelności n₅₀ = 4)

$$V_{x,ex} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^2} (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

$$V_{x} = \frac{V \cdot n_{50} \cdot e}{1 + \frac{f}{e} \left[\frac{0 - V_{ex}}{V \cdot n_{50}} \right]^{2}} (\text{gdy nie ma próby szczelności } n_{50} = 4)$$

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ H_{ve} [W/K] – pole do odczytu wartość wyliczana z wzoru H_{ve} = $1200 \cdot \sum_{k} b_{ve,k} \cdot V_{ve,k,n}$

WSPÓŁCZYNNIK PRZENOSZENIA CIEPŁA PRZEZ WENTYLACJĘ Q_{ve} [kWh/rok] – pole do odczytu użytkownik ma dodatkowo przycisk ... którym otwiera się okienko gdzie są pokazane miesiące od I-V i IXd-XII wartość wyliczana z wzoru $Q_{ve} = \sum_{n} Q_{ve,s,n}$

 $\begin{aligned} & \mathbf{Q}_{\text{ve,s,n}} = H_{ve} \cdot \left(\theta_{int,S,H} - \theta_{e,m}\right) \cdot t_m \cdot 10^{-3} \text{ (dla każdego miesiąca)} \\ & \text{ddzie:} \\ & \theta_{int,S,H} - \text{temperatura strefy} \\ & \theta_{e,m} - \text{temperatura danego miesiąca z bazy klimatycznej} \\ & t_m - \text{czas danego miesiąca} \end{aligned}$

Tabelka. wartości b_{ve} i V_{ve} dla rodzaju budynków o działaniu ciągłym : a,b,g,l

Podręcznik użytkownika dla programu ArCADia-TERMO

Lp.	Wentylacja	k	bve,k	V _{ve,k,n} [m ³ /s]
1	Wantulacia gravitaguina	1	1	V_0
1	wentylacja grawitacyjna	2	1	Vinf
2	Wantulasia machaniama unusiauma	1	1	V _{ex}
2	wentylacja mechaniczna wywiewna	2	1	V _{x,ex}
2	Wentylacja mechaniczna nawiewno-	1	1-ŋ _{oc}	V _{su}
3	wywiewna	2	1	V _{x,su}

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

 $\textbf{Tabelka}\text{.} wartości b_{ve} \ i \ V_{ve} \ dla \ rodzaju \ budynków \ o \ działaniu \ okresowym : c,d,e,f,h,i,j,k,m,n$

Lp.	Wentylacja	k	bve,k	V _{ve,k,n} [m ³ /s]
		1	β	\mathbf{V}_0
1	Wantulacia gravitacyina	2	β	V _{inf}
1	wentylacja grawnacyjna	3	(1-β)	$0,2 \cdot V_{inf}$
		4	(1-β)	V _{inf}
		1	β	V _{ex}
2	Wentylacja mechaniczna wywiewna	2	β	V _{x,ex}
2	działająca okresowo	3	(1-β)	$0,1 \cdot V_{ex}$
		4	(1-β)	V _{inf}
		1	$\beta \cdot (1-\eta_{oc})$	V _{su}
2	Wentylacja mechaniczna nawiewno-	2	β	V _{x,su}
3	wywiewna działająca okresowo	3	(1-β)	0
		4	(1-β)	V _{inf}

8.1.3.5 Zakładka Zyski ciepła

SPECYFIKACJA OBLICZENIA ZYSKÓW OD SŁOŃCA DLA STREF CHŁODU NOWY SPOSÓB WG RMI 2014 (tyczy się tylko nowego sposobu obliczeń ŚCHE i PCHE)

W opcjach zakładka wybór obliczeń dodajemy nowa grupę *Zapotrzebowanie na chłód budynku* (zaraz poniżej zapotrzebowanie na ciepło) i pole Norma w którym użytkownik ma do wyboru dwie metody:

- 3) Wg PN-EN 13790:2009
- 4) Wg Rozporządzenia MI z 2014

Wybór pierwszej normy pozostawia zakładkę Zyski od nasłonecznienia bez zmian, wybór drugiej opcji włącza nam nowe okno i obliczenia.

Tryby pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylacje	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	

	h												 		
Lp.	Przegroda	Symbol	Orientacja	A [m²]	с	I [kWh/(m²∙rol	k)]	fsh,with	ı	ggl+sh	Fsh,g	Fsh	ggl	Qsol [kWh/rc	ok]
1	OZ 120x150-Okno zewnętrzne	OZ 120x150	N	1,80	0,700	657,86		0,71		1,00 .	 16,24	 1,00	 0,750	454,7	
2	OZ 120x130-Okno zewnętrzne	OZ 120x130	N	1,56	0,700	657,86		0,71		1,00 .	 16,24	 1,00	 0,750	394,1	
3	OZ 185x60-Okno zewnętrzne	OZ 185x60	N	1,11	0,700	657,86		0,71		1,00 .	 16,24	 1,00	 0,750	280,4	
4	OZ 120x150-Okno zewnętrzne	OZ 120x150	w	1,80	0,700	776,74		1,32		1,00 .	 16,44	 1,00	 0,750	552,7	
5	OZ 120x130-Okno zewnętrzne	OZ 120x130	w	1,56	0,700	776,74		1,32		1,00 .	 16,44	 1,00	 0,750	479,0	
6	OZ 65x40-Okno zewnętrzne	OZ 65x40	s	0,26	0,700	928,97		1,79		1,00 .	 16,60	 1,00	 0,750	106,3	
7	OZ 120x130-Okno zewnętrzne	OZ 120x130	s	1,56	0,700	928,97		1,79		1,00 .	 16,60	 1,00	 0,750	637,6	
8	OZ 120x150-Okno zewnętrzne	OZ 120x150	S	1,80	0,700	928,97		1,79		1,00 .	 16,60	 1,00	 0,750	735,6	
9	OZ 185x60-Okno zewnętrzne	OZ 185x60	s	1,11	0,700	928,97		1,79		1,00 .	 16,60	 1,00	 0,750	453,6	

Zyski od nasłonecznenia

Rys 1 nowe okno zysków od nasłonecznienia stref chłodu

PRZEGRODA - pole służące do podglądu nazwy przegrody przezroczystej,

SYMBOL- kolumna ta służy do podglądu symbolu przegrody,

ORIENTACJA– kolumna ta służy do podglądu orientacja względem róży wiatrów, w każdym wierszu sumujemy przegrody o tym samym typie, symbolu, orientacji, współczynniku C, współczynniku ggl,

POWIERZCHNIA A $[m^2]$ - kolumna służy do podglądu sumy powierzchni przegród o tym samym typie, symbolu, orientacji, współczynniku C, współczynniku ggl,

UDZIAŁ POLA OSZKLENIA C– kolumna do edycji domyślnie program pobiera wartość z definicji przegrody z pola C

WARTOŚĆ ENERGII PROMIENIOWANIA SŁONECZNEGO I [kWh/(m²·rok)]– kolumna do podglądu wartości promieniowania słonecznego dla danej orientacji przegrody, kąta nachylenia i stacji aktynometrycznej, wartość przepisywana z bazy aktynometrycznej (podzielona przez 1000).

Lp.	Miesiąc	l [kWh/(m²∙r ok)]	Fsh,gl	Qsol [kWh/rok]		
1	Styczeń	19,38	1,00	40,7		
2	Luty	21,51	1,00	45,2		
3	Marzec	46,90	1,00	98,5		
4	Kwiecień	70,72	1,00	148,5		
5	Maj	86,54	1,00	181,7		
6	Czerwiec	104,17	1,00	218,7		
7	Lipiec	97,91	1,00	205,6		
8	Sierpień	83,29	1,00	174,9		
9	Wrzesień	57,42	1,00	120,6		
10	Październik	35,67	1,00	74,9		
11	Listopad	18,65	1,00	39,2		
12	Grudzień	15,70	1,00	33,0		
	Razem	657,9	1,0	1381,5		
				ОК		

Zyski ciepła rozp. MiIR z dnia 03.06.2014r.

PRZEGRODA - pole służące do podglądu nazwy przegrody przezroczystej,

ILOŚĆ N [szt.]-kolumna ta służy do definiowania liczby przegród o podanych wymiarach,

KIERUNEKO– orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody. Wartość wpisywana jest automatycznie z zakładki straty przez przenikanie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. Wartość wpisywana jest automatycznie z zakładki straty przez przenikanie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody przejęta z zakładki straty przez przenikanie.

OBLICZENIOWY WSPÓŁCZYNNIK ZACIENIENIA Fslub Z– współczynnik definiowany przez użytkownika lub wyliczany na podstawie danych wpisanych w oknie włączanym przyciskiem … i wyliczonych z wzoru:

Obliczenia współczynnika zacienienia	×
Korekcyjny współczynnik zacienienia od elementów poziomych	
F _h = 0,92 Tablice	
Korekcyjny współczynnik zacienienia od elementów poziomych	
F _o = 0,95 Tablice	
Korekcyjny współczynnik zacienienia od elementów pionowych	
Fr = 0,94 Tablice	
Współczynnik zacienienia	
F ₆ =0,82	
Anuluj OK	

Fs=Fh*Fo*Ff

Obliczenie współczynnika zacienienia

Obliczenia współczynnika zacien	ienia ×
Korekcyjny współczynnik zacienienia od elementów	v poziomych
F _n = 1,00	Tablice
Korekcyjny współczynnik zacienienia od elementów	v poziomych
F ₀ = 1,00	Tablice
Korekcyjny współczynnik zacienienia od elementów	v pionowych
F ₁ = 1,00	Tablice
Współczynnik zacienienia	
Z =1,00	Tablice
Anuluj	ок

Obliczenie współczynnika zacienienia PN-EN 13790:2008

 F_h – korekcyjny współczynnik zacienienia otoczeniem, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

 F_o – korekcyjny współczynnik zacienienia od wystających elementów poziomych, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

 F_{f} – korekcyjny współczynnik zacienienia od wystających elementów pionowych, wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

Z- współczynnik zacienienia wpisywany ręcznie lub wybierany przez użytkownika z podpowiedzi włączanej przyciskiem Tablice.

WSPÓŁCZYNIK RAMY F_F lub C- pole do wstawiania wartości współczynnika ramy, program domyślnie dla okien wstawia 0,8 dla drzwi 0,1. Wartość pobierana domyślnie z okna *definicje przegród*.

Z1– współczynnik zacienienia w zależności od przesłon na elewacji budynku-loggie, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem … .

Z2– współczynnik zacienienia w zależności od przesłon na elewacji budynku-balkony, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem....

Z3– współczynnik zacienienia w zależności od usytuowania przeszkody równoległej do elewacji budynku, definiowany przez użytkownika lub wstawiany z podpowiedzi wyświetlanej przyciskiem....

ZYSKI CIEPŁA OD PRZEGRODY Qs [kWh] – pole służące do podglądu i edycji wyników obliczeń zysków ciepła dla całego sezonu grzewczego.

8.1.3.6 Zakładka Wewnętrzne zyski ciepła

Zakładka ta służy do definiowani wewnętrznych zysków ciepła strefie chłodu. Możemy to zrobić na dwa sposoby:

- C. Metoda uproszczona polega na tym, że w każdym pomieszczeniu możemy zdefiniować wartość wewnętrznych zysków ciepła na podstawie podpowiedzi z tabelek z metodologii MI, wówczas na podstawie powierzchni program może nam wyliczyć średnie ważone zyski wew. dla tej strefy albo na podstawie średniej arytmetycznej lub jako sumę algebraiczną.
- D. Metoda szczegółowa pozwala na określenie indywidualnie dla każdego pomieszczenia i trybu pracy wewnętrznych zysków od ludzi, urządzeń, oświetlenia, instalacji i zasobników.

METODA UPROSZCZONA WEWNĘTRZNYCH ZYSKÓW CIEPŁA

Tryby	/ pracy	Straty przez przenikanie	Straty prze	z grur	nt Straty przez wentylację	Zyski wewnętrz	ne	Zyski od	nasłonecznie	enia	Dodatki			
Mete	oda oblic	czeń wewnętrznych zysk	ów ciepła:		Uproszczona									
Lp.		Nazwa źródła/pomiesz	czenia		Rodzaj/Funkcja	budynku		Af [m²]	P1		β	qin [W/m	t 1²]	+
1	Biuro			E	Biurowy			220,00	0,60	(),30	5,68		×
														Ψh
														D
Spo	sób oblic	czeń: Średnia ważo	na					⊂Całko Φ _{int,t}	wite, wew tot = 5,68 $\frac{W}{m^2}$	nętrz Z	ne zyski	i ciepła		

Zakładka wewnętrznych zysków ciepła metoda uproszczona

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer i pole powierzchni.

Podręcznik użytkownika dla programu ArCADia-TERMO

Opis obliczeń sezonowego zapotrzebowania na chłód na cele chłodzenia i wentylacji

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE $A_f[m^2]$ – pole do wpisywania powierzchni o regulowanej temperaturze pomieszczeń należących do danej strefy pole to będzie później wykorzystane do obliczeń średnio ważonych zysków wewnętrznych strefy.

STRUMIEŃ WEWNETRZNYCH ZYSKÓW CIEPŁA $\Phi_{int}[W/m^2]$ – wyniki obliczeń w zależności od rodzaju budynku i przeznaczenia pomieszczenia.

SPOSÓB OBLICZEŃ – pole do wybory jednego z trzech sposobów obliczeń wstawionych w tabelce wewnętrznych zysków ciepła.

- D. Średnia ważona program wylicza na podstawie powierzchni $A_f i \Phi_{int}$ wartość z wstawionych w tabeli danych,
- E. Średnia arytmetyczna wartość wyliczana z Φ_{int} i liczby wstawionych wierszy,
- F. Suma algebraiczna wartość wyliczana z sumy Φ_{int} wierszy wstawionych do tabelki.

CAŁKOWITE WEWNĘTRZNE ZYSKI CIEPŁA $\Phi_{int}[W/m^2]$ – pole do edycji przez użytkownika, na podstawie danych wypełnionych w tabelce i wybranego sposobu obliczań program wstawia w to pole wartości domyślne. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD LUDZI

Tryby	/ pracy	Straty przez	przenikanie	Straty prz	ez grun	t Straty przez w	entyla	ację Zyski wewnęt	rzne	Zyski od i	nasło	necznienia D	odatki		
Meto	oda oblic	czeń wewnę	trznych zyski	ów ciepła:		Szczegółowa									
Od I	udzi 0)d urządzeń	Od oświetleni	ia Od ins	stalacji	Od zasobników	Wy	miki							
Lp.		Nazwa źróc	lła/pomiesz	czenia		Tryb pracy		φ	[V	qi V/osoba]		n [osób]		qint,P [W]	+
1	Biuro				Sta	indard		1,00		134,00		38,000		5092,00	~
															~

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od ludzi

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam osoby przebywają tylko w czasie pracy i jeśli wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla nocnego można ograniczyć ilość osób przebywających w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i Q_{C,nd}.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent osób przebywa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

Współczynn	nik jednoczesności 🛛 🔍
Rodzaj pomieszczenia	φ
Biura, duże sale	0,75-0,95
Hotele, recepcje, pokoje wieloosobowe	0,4–0,6
Domy towarowe	0,8–0,9
Pomieszczenia technologiczne	0,9–1,0
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,0
	Anuluj OK

Podpowiedź współczynnik jednoczesności

STRUMIEŃ ZYSKÓW CIEPŁA OD LUDZI qi [W/osobę] – pole do definiowania zysków od osób przebywających w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej … w której podane są zyski od ludzi w zależności od temperatury w pomieszczeniu i stopnia aktywności.

Zyski cie	epła o	d ludz	i				×
Aktawacéć		15°C	18°C	20°C	23°C	26°C	29°C
ARtywnosc	ЧU	qi	qi	qi	qi	qi	qi
	[W]	[W]	[W]	[W]	[W]	[W]	[W]
Odpoczynek w postaci siedzącej	113	95	91	86	74	66	46
Odpoczynek w postaci stojącej	127	106	99	91	79	66	46
Praca lekka, siedząca, aktywność mała	144	116	107	96	81	66	46
Praca lekka, stojąca, aktywność mała	174	130	115	101	80	66	46
Praca lekka, stojąca, aktywność duża	193	135	120	108	85	66	46
Praca średniociężka np. malarz, mechanik	251	165	145	130	101	81	52
Praca ciężka, aktywność bardzo duża	293	181	158	141	112	95	70
Praca bardzo ciężka, szybki taniec	407	238	203	180	151	134	102
			Ar	nuluj		ОК	

Podpowiedź zyski od ludzi w zależności od aktywności

ILOŚĆ OSÓBn [osób] – pole do definiowania ilości osób przebywających w pomieszczeniu użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., w której można wykonać obliczenia w zależności od typu pomieszczenia na podstawie powierzchni lub przeznaczenia.

	Liczba o	sół)/jednostek odi	niesienia			×
Lp.	Rodzaj lokalu Przeznaczenie		Normowa liczba osób na lokal / powierzchnię	Liczba lokali	Af [m²]	Całkowita ilość osób	+
1	Mieszkanie 4 pokojowe		4,000	2,000		8,000	×
2	Butiki		0,142		23,000	3,266	
L _i =	11,27 os.				Anuluj	ок	

Okno obliczenie liczby osób

LP. – kolejna liczba porządkowa dla dodawanego wiersza

RODZAJ LOKALU / PRZEZNACZENIE – użytkownik z przycisku •••• wybiera z listy jeden z wariantów na podstawie, którego wyświetlana jest wartość **Normowa liczba osób na lokal**/.

Lp.	Wariant	Rodzaj lokalu/przeznaczenie	Normowa liczba osób na lokal/powierzchnie
1	1	Mieszkanie 1 pokojowe	1
2	1	Mieszkanie 2 pokojowe	2,5
3	1	Mieszkanie 3 pokojowe	3,5
4	1	Mieszkanie 4 pokojowe	4,0
5	1	Mieszkanie 5 pokojowe	4,5
6	1	Mieszkanie 6 pokojowe	5
7	2	Pomieszczenia biurowe klasy A	10s. na 10m ²
8	2	Pomieszczenia biurowe klasy B	10s. na 6m ²
9	2	Pomieszczenia biurowe klasy C	10s. na 2m ²
10	2	Butik	10s. na 7m ²
11	2	Sala konferencyjna	1os. na 2 m ²

NORMOWA LICZBA OSÓB NA LOKAL/POWIERZCHNIE – wartość przepisywana z powyższej tabeli na podstawie wybranego **Rodzaj lokalu/przeznaczenie**.

LICZBA LOKALI – wartość podawana przez użytkownika.

POWIERZCHNIA Af [m²]- wartość podawana przez użytkownika.

CAŁKOWITA ILOŚĆ OSÓB – pole do edycji, domyślnie wstawiana wartość obliczana z kolumn dla wariantu 1 k3 x k4, dla wariantu 2 k3 x k5

CAŁKOWITA ILOŚĆ OSÓB Li– pole do edycji, domyślnie wstawiana wartość sumy wszystkich kolumn *CAŁKOWITA ILOŚĆ OSÓB*.

ZYSKI CIEPŁAOD LUDZI $\Phi_{int,P}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,P} = \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD URZADZEŃ

Tryby	pracy	Straty przez	przenikanie	Straty przez	grunt	Straty przez w	enty	lację	Zyski wev	vnętrzr	ne Zyski od r	nasłor	necznienia	Dodatki		
Meto	da oblic	czeń wewnę	trznych zyskó	ow ciepła:	Sz	czegółowa										
Od lu	udzi O	d urządzeń	Od oświetleni	a Od instal	acji (Od zasobników	W	yniki								
Lp.		Nazwa źró	ódła/pomieszcz	enia		Tryb pracy			φ		qi [W/sztuk]		n [sztuk]		qint,U [W]	+
1	Komp	uter			Stand	dard			0,95		530,00		3	0	15105,00	~
	-															~

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od urządzeń

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam większość urządzeń włączonych jest tylko w czasie pracy i jeśli wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla nocnego można ograniczyć ilość włączonych urządzeń w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i Q_{C,nd}.

 $WSPÓŁCZYNNIK JEDNOCZESNOŚCI \varphi$ - pole do określania ile procent urządzeń włączonych jest jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

Współczynn	nik jednoczesności 🛛 🗙
Rodzaj pomieszczenia	φ
Biura, duże sale	0,75-0,95
Hotele, recepcje, pokoje wieloosobowe	0,4–0,6
Domy towarowe	0,8–0,9
Pomieszczenia technologiczne	0,9–1,0
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,0
	Anuluj OK

Podpowiedź współczynnik jednoczesności

STRUMIEŃ ZYSKÓW CIEPŁA OD URZĄDZEŃ qi [W/sztuk] – pole do definiowania zysków od urządzeń w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej …, w której podane są zyski dla najczęściej występujących urządzeń biurowych i innych pomocniczych.

	Zy	ski ciepła oc	l urządzeń		×
Zyski ciepła od urządzeń wg A SHRAI	E Fundamental	s Handbook 19	89 r.		
Nazwa urządzenia	Wydajność	Maks. moc doprowadzo na	Moc pobierana w czuwaniu	Zalecany strumień do bilansu zysków ciepła	^
[-]	[-]	[W]	[W]	[W]	
	Ur	ządzenia komp	outerowe		
Urządzenia komunikacji i transportu		1800-4600	1640-2810	1640-2810	
Napędy dysków/ pamięci masowej		1000-10000	1000-6600	1000-6600	
Komputer/ jednostka centralna		2200-6600	2200-6600	2200-6600	
Minikomputer/ komputer osobisty		100-600	90-530	90-530	
Drukarki laserowe	8 str./min.	850	180	300	
Drukarka wierszowa bardzo szybka	>5000 str./min.	1000-5300	500-2550	1000-4700	
Terminal		90-200	80-180	80-180	
		Kopiarki, dru	karki		
Światłokopiarka		1150-12500	500-5000	1150-12500	
Kserokopiarka (duża)	30-65 kopi/min	1700-6600	900	1700-6600	
Kserokopiarka (mała)	30-65 kopi/min	1700-6600	900	1700-6600	
Drukarka fotograficzna		1725		1520	
	Urządzer	nia do obsługi k	korespondencj	i	
Sortowaczka	3600-6800 str./min	600-3300		390-2150	
Etykieciarka	1500-30000 str./min	600-6600		390-4300	
		Inne			
Kasa rejestrująca		60		48	
Witryna z zimnymi przekąskami i napojami		1150-1920		575-960	
Ekspres do kawy	10 filiżanek	1500		1050	~
				Anuluj OK	

Podpowiedź zyski od urządzeń wg ASHRAE

	Zysł	ci ciepła od ur	ządzeń			×
Recknagel Poradnik Ogrzewanie+Kli	imatyzacja					\$
	Mee	6300	Wudzielanie	Zys	k ciepła	^
Rodzaj urządzenia	zainstalowana W	użytkowania min/h	wody g/h lub zyski wilgoci	Ciepło jawne W	Całkowite zyski W	
Elektryczna maszyna do pisania	50	60	-	50	50	
Komputer osobisty(PC)	100-150	60	-	100-150	100-150	
Terminal	60-90	60	-	60-90	60-90	
Drukarka	20-30	15	-	5-7	5-7	
Ploter	20-60	15	-	5-15	5-15	
Piec elektryczny	3000	60	2100	1450	3000	
FIEL EIEKTI YCZIIY	5000	60	3600	2500	5000	
Odkurzacz	200	15	-	50	50	
Dealling and an advance	3000	60	2100	1450	3000	
Praika automatyczna	6000	60	4200	2900	6000	
Wirówka do bielizny	100	10	-	15	15	
Chłodziarka sprężarkowa 100 1	100	60	-	300	300	
Chłodziarka sprężarkowa 200 1	175	60	-	500	500	
Żelazko	500	60	400	230	500	
Radio	40	60	-	40	40	
"Słoneczko" do nagrzewania	1000	60	-	1000	1000	
Telewizor	175	60	-	175	175	
Ekonroo do parzonia kouru	500	30	100	180	250	
Ekspres do parzenia kawy	3000	30	500	1200	1500	
Opickasz (do obloba)	500	30	70	200	250	
Opiekacz (do chieba)	2000	30	300	800	1000	
Suprarka do włogów	500	30	120	175	250	
Suszarka uo wiosow	1000	30	240	350	500	
Plutka do gotowania	500	30	200	120	250	
Piytka do gotowania	1000	30	400	250	500	
Ruszt do smażenia	3000	30	500	1200	1500	
Aparat do trwałej ondulacji	1500	15	120	300	375	¥
				Anuluj	ОК	

Podpowiedź zyski od urządzeń wg Poradnika Recknagel

ILOŚĆ n [sztuk] – pole do definiowania przez użytkownika ilości sztuk danego urządzenia.

ZYSKI CIEPŁA OD URZĄDZEŃ $\Phi_{int,U}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,u} = \varphi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD OŚWIETLENIA

Tryby	pracy	Straty przez	z przenikanie	Straty przez g	grunt	Straty przez we	entylację	Zyski wewnętr	zne Zyski od n	asłonecznienia	Dodatki		
Metod	da oblic	zeń wewne	ętrznych zyskó	w ciepła:	Szc	zegółowa							
Od lu	dzi O	d urządzeń	Od oświetlenia	a Od instala	icji Od	d zasobników	Wyniki						
Lp.		Nazwa źro	ódła/pomieszcz	enia		Tryb pracy		φ	qi [W/m²]	Af [m²]		qint,L [W]	+
1	Biuro							0,95	14,00	220	00	2926,00	×

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od oświetlenia

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer i powierzchnia A_f pomieszczenia.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski. Informacja ta przydatna jest szczególnie w budynkach użyteczności publicznej i biurowych ponieważ tam większość urządzeń oświetlenia włączonych jest tylko w czasie nocnym, wprowadzimy np. dwa tryby dzienny i nocny po 12 h każdy wówczas dla dziennego można ograniczyć ilość włączonych urządzeń oświetlenia w budynku co spowoduje zmniejszenie wewnętrznych zysków ciepła i Q_{C,nd}.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent urządzeń oświetlenia włączonych jest jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej ..., która zawiera współczynniki w zależności od przeznaczenia budynku.

STRUMIEŃ ZYSKÓW CIEPŁA OD URZĄDZEŃOŚWIETLENIA qi [W/m²] – pole do definiowania zysków od urządzeń oświetlenia w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej ••••, w której podane sa zyski dla najczęściej występujących typów i natężenia oświetlenia.

		Emisja	a energii w odı	niesieniu do po	wierzchni pod	logi qi [W/m2]			
	Lampy żarowe		Lampy wy	ladowcze	Świetlów	etle 65 W			
	Lumpy Lurono		rtęciowe	sodowe	0111011011	in o blaight oth	0.00 00 11	Świetlówki z	
Natężenie oświetlenia w luksach	Otwarte oprawy przemysłow e	Oświetlenie ogólne rozproszone	Otwarte przem	oprawy ysłowe	Barwione tworzywo sztuczne wbudowana	Zamknięta, z wypełnienie m rozpraszając ym	Panel sufitowy z żaluzjami	politostorową warstwą fluorescencyjną ś W	
150	19-28	28-36	4-7	2-4	4-5	6-8	6-8	4-8	
200	28-36	36-50	-	-	6-7	8-11	9-11	6-10	
300	38-55	50-69	7-14	4-8	9-11	12-16	12-17	10-16	
500	66-88	-	13-25	7-14	15-25	24-27	20-27	14-26	
750	-	-	18-35	10-20	-	-	-	-	
1000	-	-	-	-	32-38	48-54	43-57	30-58	
1.Większe v	vartości w zakr	esach odnosza	a się do małycł	Uwagi: n pomieszczeń strat.	, które zazwyc	zaj wymagają 3	0 do 50 % ener	gii więcej z powod	

Podpowiedź strumień zysków od oświetlenia wg W.P. Jones

POWIERZHNIA $A_f[m^2]$ – pole do definiowania przez użytkownika powierzchni pomieszczenia, program wstawia domyślnie wartość na podstawie wybranego pomieszczenia.

ZYSKI CIEPŁA OD OŚWIETLENIA $\Phi_{int,L}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,u} = \varphi \cdot A_f \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD INSTALACJI

Tryby	pracy	Straty przez	przenikanie	Straty przez	grunt Stra	aty przez we	entyla	icję Zyski w	ewnętrzne	Zyski od nas	łonec	znienia Do	datki		
Meto	Aetoda obliczeń wewnętrznych zysków ciepła: Szczegółowa														
Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyr								niki							
Lp.	Lp. Nazwa źródła/pomieszczenia		Try	/b pracy		DN [mm]	L [m]	φ		qi [W/m]		qint,I [W]	+		
1	1 Biuro		Standard			20	. 70,0	0 0,95	i	5,90		392,35	×		

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od instalacji

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent rurociągów działa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej …, która zawiera współczynniki w zależności od przeznaczenia budynku.

DN [mm] – średnica przewodów, wartość wybierana przez użytkownika z listy: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100.

L [m] – długość przewodów o zadanej średnicy, wartość wpisywana przez użytkownika.

STRUMIEŃ ZYSKÓW CIEPŁA OD INSTALACJI qi [W/m] – pole do definiowania zysków od instalacji w strefie wartość można wpisać samemu lub skorzystać z podpowiedzi uruchamianej …, w której podane są zyski od grubości izolacji i średnicy rurociągu.

		Zyski cie	pła od instal	lacji wg Roz	porządzenia	MI 06.11.20	08 r.		
	Izolacja termiczna	Na ze	wnątrz osłony	izolacyjnej bu	dynku	١	Vewnątrz osło	ny izolacyjnej b	udynku
Parametry *C	przewodów	DN 10-15	DN 20-32	DN 40-65	DN 80-100	DN 10-15	DN 20-32	DN 40-65	DN 80-100
	nieizolowane	39,3	65,0	106,8	163,2	34,7	57,3	94,2	144,0
00/7000 -4-1-	1/2 grubości wg WT	20,1	27,7	38,8	52,4	17,8	24,4	34,2	46,2
90/70°C state	grubość wg WT	10,1	12,6	12,1	12,1	8,9	11,1	10,7	10,7
	2x grubość wg WT	7,6	8,1	8,1	8,1	6,7	7,1	7,1	7,1
	nieizolowane	24,3	40,1	66,0	100,8	19,6	32,5	53,4	81,6
90/70°C	1/2 grubości wg WT	12,4	17,1	24,0	32,4	10,1	13,9	19,4	26,2
regulowane	grubość wg WT	6,2	7,8	7,5	7,5	5,0	6,3	6,0	6,0
	2x grubość wg WT	4,7	5,0	5,0	5,0	3,8	4,0	4,0	4,0
	nieizolowane	18,5	30,6	50,3	76,8	13,9	22,9	37,7	57,6
70/55°C	1/2 grubości wg WT	9,5	13,0	18,3	24,7	7,1	9,8	13,7	18,5
regulowane	grubość wg WT	4,7	5,9	5,7	5,7	3,6	4,4	4,3	4,3
	2x grubość wg WT	3,6	3,8	3,8	3,8	2,7	2,8	2,8	2,8
	nieizolowane	14,4	23,9	39,3	60,0	9,8	16,2	26,7	40,8
55/45°C	1/2 grubości wg WT	7,4	10,2	14,3	19,3	5,0	6,9	9,7	13,1
regulowane	grubość wg WT	3,7	4,6	4,4	4,4	2,5	3,1	3,0	3,0
	2x grubość wg WT	2,8	3,0	3,0	3,0	1,9	2,0	2,0	2,0
	nieizolowane	8.1	13.4	22.0	33.6	3.5	5.7	9.4	14.4
35/28°C	1/2 grubości wg WT	4.1	5.7	8.0	10.8	1.8	2.4	3.4	4.6
regulowane	grubość wg WT	2.1	2.6	2.5	2.5	0.9	1.1	1.1	1.1
	2x grubość wg WT	1.6	1.7	1.7	1.7	1.7	0.7	0.7	0.7
								Anuluj	ОК

Podpowiedź strumień zysków od instalacji wg Rozporządzenia MI.

ZYSKI CIEPŁA OD INSTALACJI $\phi_{int,I}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,I} = \phi \cdot L \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA ZYSKI OD ZASOBNIKÓW

Т	iyby p	pracy	Straty przez	z przenikanie	Straty prz	ez grunt	Straty przez w	entylac	ję Zyski wewn	ętrzne	Zyski od n	asłonecznienia	Dodatki		
I	letod	la oblic	zeń wewnę	etrznych zyskó	ów ciepła:	5	Szczegółowa								
	Od ludzi Od urządzeń Od oświetlenia Od instalac						Od zasobników	Wyn	iki						
	Lp. Nazwa źródła/pomieszczenia			Tryb pracy		φ		V [dm³]	qs [W/dm³]		qint,V [W]	+			
	1 Kotłownia		Star	ndard		0,95		1500,00	0,18		256,50	×			

Zakładka wewnętrznych zysków ciepła metoda szczegółowa zyski od zasobników

NAZWA ŹRÓDŁA/POMIESZCZENIA – pole do edycji przez użytkownika, dodatkowo można skorzystać z listy pomieszczeń należących do tej strefy wciskając … - wówczas program wstawi do tabelki nazwę pomieszczenia numer.

TRYB PRACY – pole do wyboru dla, którego trybu pracy wyliczamy zyski.

WSPÓŁCZYNNIK JEDNOCZESNOŚCI φ - pole do określania ile procent rurociągów działa jednocześnie w pomieszczeniu, użytkownik może wpisać własną wartość lub skorzystać z podpowiedzi uruchamianej …, która zawiera współczynniki w zależności od przeznaczenia budynku.

POJEMNOŚĆ ZASOBNIKA V [dm³] – pojemność zasobnika, wartość podawana przez użytkownika w zakresie (0-2000),

STRUMIEŃ ZYSKÓW OD ZASOBNIKÓW qs [W/dm³]- pole do edycji przez użytkownika, dodatkowo użytkownik może skorzystać z podpowiedzi wyświetlanej poprzez wciśnięcie przycisku ...

Jednostkowe straty ciepła przez zasobniki ci 🗙										
Pośrednio podg zasobniki elektr	jrzewane, biwale ryczne całodobo	entne zas we	obniki so	larne,						
Lokalizacja zasobnika	Pojemność [dm³]	Pośrednio podgrzewane, biwalentne zasobniki solarne, zasobniki elektryczne całodobowe								
		Izolacja 10 cm	Izolacja 5 cm	Izolacja 2 cm						
	25	0,68	1,13	2,04						
	50	0,54	0,86	1,58						
Na zownatra	100	0,43	0,65	1,23						
osłony	200	0,34	0,49	0,95						
izolacyjnej	500	0,25	0,34	0,68						
budynku	1000	0,20	0,26	0,53						
	1500	0,18	0,22	0,46						
	2000	0,16	0,20	0,41						
	25	0,55	0,92	1,66						
	50	0,44	0,70	1,29						
Wewnatrz	100	0,35	0,53	1,00						
osłony	200	0,28	0,40	0,78						
izolacyjnej	500	0,21	0,28	0,56						
budynku	1000	0,17	0,21	0,43						
	1500	0,14	0,18	0,37						
	2000	0,13	0,16	0,33						
	Anu	ıluj	C	K						

Podpowiedź strumień zysków od zasobników.

ZYSKI CIEPŁA OD ZASOBNIKÓW $\Phi_{int,V}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,V} = \phi \cdot V \cdot q_s$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

METODA SZCZEGÓŁOWA WEWNĘTRZNYCH ZYSKÓW CIEPŁA ZAKŁADKA WYNIKI DLA POSZCZEGÓLNYCH TRYBÓW

Tryby	pracy Straty przez przenikanie	Straty prz	ez grunt Strat	y przez wentylację	Zyski wewnętr	zne Zyski od n	asłonecznienia	Dodatki			
Metod	da obliczeń wewnętrznych zysk	ów ciepła:	Szczeg	ółowa							
Od lu	Od ludzi Od urządzeń Od oświetlenia Od instalacji Od zasobników Wyniki										
Lp. Tryb pracy			qint,P [W]	qint,U [W]	qint,L [W]	qint,I [W]	qint,V [W]	qint [W]			
1	1 Standard		5092,00	15105,00	0,00	392,35	256,50		20845,85		

Zakładka wewnętrznych zysków ciepła metoda szczegółowa wyniki

TRYB PRACY – pole do podglądu dla jakiego trybu pracy budynku są cząstkowe wyniki wewnętrznych zysków ciepła.

ZYSKI CIEPŁAOD LUDZI $\Phi_{int,P}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,P} = \Sigma \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD URZĄDZE $\acute{N} \Phi_{int,U}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,u} = \Sigma \phi \cdot n \cdot q_i$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

ZYSKI CIEPŁA OD OŚWIETLENIA $\Phi_{int,L}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{int,u} = \Sigma \phi \cdot A_f \cdot q_i. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.$

ZYSKI CIEPŁA OD INSTALACJI $\Phi_{int,I}$ [W] – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{\text{int,I}} = \Sigma \phi \cdot L \cdot q_i. \text{ Wartość ta wykorzystana będzie w obliczeniach } Q_{\text{int}} \text{ (Zysków wewnętrznych) dla danej strefy.}$

ZYSKI CIEPŁA OD ZASOBNIKÓW $\Phi_{int,v}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru $\Phi_{int,v} = \Sigma \phi \cdot V \cdot q_s$. Wartość ta wykorzystana będzie w obliczeniach Q_{int} (Zysków wewnętrznych) dla danej strefy.

WEWNĘTRZNE ZYSKI CIEPŁA $\Phi_{int}[W]$ – pole do edycji przez użytkownika, program wylicza domyślnie na podstawie wzoru

 $\Phi_{\text{int}} = \Sigma \Phi_{\text{int},P} + \Sigma \Phi_{\text{int},U} + \Sigma \Phi_{\text{int},L} + \Sigma \Phi_{\text{int},I} + \Sigma \Phi_{\text{int},V}.$

8.1.3.7 Zakładka *Dodatki*

Zakładka ta służy do podglądu i edycji obliczeń pomocniczych na podstawie, których wyliczone będzie sezonowe zapotrzebowanie na ciepło.

Okno dodatki dla rozp. MIiR z dnia 03.06.2014r.

STREFA OGRZEWANA W CIĄGU DOBY – użytkownik wybiera jeden z dwóch wariantów:

- Więcej niż 12 h na dobę wtedy do wzorów podstawiamy $a_0=1$ i $\tau_0=15$

- Mniej niż 12 h na dobę wtedy do wzorów podstawiamy $a_0=0.8$ i $\tau_0=70$

WEWNĘTRZNA POJEMNOŚĆ CIEPLNA BUDYNKU/STREFY C – wartość wstawiana przez użytkownika, domyślnie program wylicza tę wartość na podstawie wzoru: $\mathbf{C} = \sum_{j} \sum_{i} \rho_{ij} \cdot \mathbf{c}_{jj} \cdot \mathbf{d}_{ij} \cdot \mathbf{A}_{j}$

STAŁA CZASOWA BUDYNKU/STREFY τ - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru: $\tau = C/H$

STOSUNEK ZYSKÓW DO STRAT γ - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru (w oknie widoczna wartość dla sum z całego roku): $\gamma = Q_g/Q_L$ gdzie:

 Q_g – wartość całkowitych zysków ciepła wyliczana z wzoru $Qg = \Phi_{i,h} + Qs$

 Q_L – całkowita strata ciepła wyliczana z wzoru $Q_L = \sum_{j=1}^{N} N_j H_j (\theta_{iad,j} - \theta_e) t_j$

WSPÓŁCZYNNIK WYKORZYSTANIA ZYSKÓW CIEPŁA η - wartość podawana przez użytkownika lub wyliczana domyślnie na podstawie wzoru:

Dla $\gamma \neq 1$ $\eta = 1 - \gamma^a / 1 - \gamma^{a+1}$ Dla $\gamma = 1$ $\eta = a/a + 1$

CIEPŁO ODZYSKANE Z URZĄDZEŃ POMOCNICZYCH, SYSTEMÓW OGRZEWANIA I PRZEGOTOWANIA CIEPŁEJ WODY Qr – wartość wpisywana przez użytkownika,

CAŁKOWITE STRATY CIEPŁA PRZEZ SYSTEM GRZEWCZY Z UWZGLĘDNIENIEM STRAT SYSTEMU REKUPERACJI Q_{th} - wartość wpisywana przez użytkownika,

CIEPŁO ODZYSKANE Z POMOCNICZEGO WYPOSAŻENIA, INSTALACJI OGRZEWCZEJ I OTOCZENIA Qr – wartość wpisywana przez użytkownika,

Zakładka do definiowania sposobu obliczeń współczynnika wewnętrznej pojemności cieplnej, a także podglądu wyników stałej czasowej, udziału potrzeb ogrzewania i czasu trwania sezonu grzewczego.

Tryby pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	
Metoda obl	iczenia wewnętrznej poje	emności cieplnej Cm	Szczegółowa				
			Wewnętrzna pojer	nność cieplna			
			C _= 861681671,	14 <u>J</u>	Raport		
Stała cza	isowa		Udział graniczny p	otrzeb ogrzewani	a		
1 T = 1	7,4 h		1,5 Y = 1,5				
Paramet	tr numeryczny		Czas trwania sezo	nu grzewczego			
1 a _H = 2	,2		1 L _h = 9,000 m-c		Tablice		
				_			

Zakładka Dodatki metoda obliczeń Cm szczegółowa rozp. MIiR z dnia 03.06.2014r.

*WEWNĘTRZNA POJEMNOŚĆ CIEPLNA*Cm [J/K] – pole do edycji przez użytkownika program wylicza tą wartość na podstawie wstawionych przegród, które mają wypełnione informacje odnośnie C_p i ρ . Wyliczenia odbywają się zgodnie z normą PN EN 13790:2008 wg jednego z trzech sposobów (program wybiera ten który się pierwszy pojawi):

- D. Metoda 10 cm w głąb przegrody od strony wewnętrznej,
- E. Metoda do połowy grubości przegrody,
- F. Metoda do pierwszej warstwy izolacji termicznej.

Tryby pracy	Straty przez przenikanie	Straty przez grunt	Straty przez wentylację	Zyski wewnętrzne	Zyski od nasłonecznienia	Dodatki	
Metoda ob	iczenia wewnętrznej poje	emności cieplnej Cm	Uproszczona				
Klasa bi	udynku/strefy		Wewnętrzna pojer	nność cieplna			
1 Śrec	Ini		C _= 676698000,	00 <u>J</u>			
Stała cz	asowa		Udział graniczny p	otrzeb ogrzewania	a		
0 t = 1	3,7 h		Ο Υ = 1,5				
Parame	tr numeryczny		Czas trwania sezo	nu grzewczego			
0 a _H =1	1,9		1 L _h = 9,000 m-c		Tablice		

Zakładka dodatki metoda obliczeń Cm uproszczona PN-EN 13790:2008

KLASA BUDYNKU/STREFY- pole do wyboru ciężaru budynku na tej podstawie wybrany będzie odpowiedni wzór na policzenie C_m. Do wyboru mamy budynki bardzo lekkie, lekkie, średnie, ciężkie, bardzo ciężkie.

 $\label{eq:weighted_stress} \begin{array}{l} \textit{WEWNETRZNA POJEMNOŚĆ CIEPLNA} \ \mathrm{Cm} \ [J/K] - \text{pole do edycji przez użytkownika program wylicza tą wartość na podstawie wybranego ciężaru budynku i pola strefy A_f. Wyliczenia odbywają się zgodnie z normą PN EN 13790:2008 wg poniższych wzorów: Budynek bardzo lekki C_m=80 000 \cdot A_f Budynek lekki C_m=110 000 \cdot A_f Budynek średni C_m=165 000 \cdot A_f Budynek ciężki C_m=260 000 \cdot A_f Budynek bardzo ciężki C_m=370 000 \cdot A_f \end{array}$

STAŁA CZASOWAτ [h] – pole do podglądu wyników obliczeń stałej czasowej budynku wyliczanej z wzoru $\tau = \frac{Cm}{2 c00.(Um adi + Um)}$

 $\tau = \frac{1}{3600 \cdot (\text{Htr,adj+Hve})}$

 $UDZIAŁ POTRZEB OGRZEWANIA \gamma_(H,lim)$ – pole do podglądu wyników obliczeń udziału potrzeb chłodzenia budynku wyliczanej z wzoru $\gamma_{H,lim} = \frac{a_H + 1}{a_H}$

PARAMETR NUMERYCZNY a_H– pole do podglądu wyników obliczeń parametru numerycznego budynku wyliczanej z wzoru $a_H = a_{H,o} + \frac{\tau}{\tau_{H,o}}$

CZAS TRWANIA SEZONU GRZEWCZEGO L_H- pole do podglądu wyników obliczeń czasu trwania sezonu chłodniczego wyliczanej z wzoru L_H= $\sum_{m=1}^{m=12} f_{H,m}$

Opis okna wyników obliczeń

Wyniki obliczeń rozp. MIiR z 03.06.2014r.

 $\eta_{H,gn}$ – współczynnik wykorzystania zysków

8.1.4 Opis okna wyników obliczeń

Okno to służy do podglądu wyników obliczeń poszczególnych współczynników strat ciepła od poszczególnych typów przegród, zysków ciepła i sezonowego zapotrzebowania na chłód na cele wentylacji i chłodzenia.

Wyniki obliczeń
$$H_{D,\bar{i}}$$
25,11 $\frac{W}{K}$ Wyniki dla miesiąca $H_{zy,i}$ $\frac{W}{K}$ $Q_{C,gn}$ $Q_{c,gn}$ $H_{u,\bar{i}}$ $0,77 \frac{W}{K}$ $Q_{C,h\bar{t}}$ $208,55 \frac{kWh}{m-c}$ $H_{g,\bar{i}}$ $2,15 \frac{W}{K}$ $Q_{C,h\bar{t}}$ $542,30 \frac{kWh}{m-c}$ $H_{g,\bar{i}}$ $215 \frac{W}{K}$ $\eta_{C,gn}$ $0,38$ $H_{tr,adj}$ $28,03 \frac{W}{K}$ $f_{C,m}$ 0 $H_{ve}^{=}$ $0,19 \frac{W}{K}$ $f_{C,m}$ 0 H $=28,22 \frac{W}{K}$ $Q_{C,nd,n}$ $=2,70 \frac{kWh}{m-c}$

Wyniki obliczeń

 $H_{D,i}$ [W/K]– współczynnik strat ciepła przez przenikanie na zewnątrz sumowana z kolumn H_x z tabeli *Strata przez przenikanie* dla wszystkich przegród zewnętrznych.

 $H_{u,i}[W/K]$ – współczynnik strat ciepła przez przenikanie z strefami nieogrzewanymi sumowana z kolumn H_{xz} tabeli *Strata przez przenikanie* dla wszystkich przegród sąsiadujących z strefą nieogrzewaną.

 $H_{zy,i}$ [W/K]– współczynnik strat ciepła przez przenikanie z inną strefą sumowana z kolumn H_x z tabeli *Strata przez przenikanie* dla wszystkich przegród sąsiadujących z inną strefą.

 $H_{g,i}[W/K]$ - współczynnik strat ciepła przez grunt sumowana z kolumn H_x z tabeli Strata przez grunt.

 $H_{tr,adj}$ [W/K]– współczynnik strat ciepła przez przenikanie wyliczane z wzoru: $H_{tr,adj} = H_{D,i} + H_{u,i} + H_{g,i}$

 $H_{Ve}[W/K]$ – współczynnik strat ciepła na podgrzanie powietrza wentylacyjnego wyliczane z wzoru: $H_{V,i} = 0,34$ · V_i^*

H[W/K] – współczynnik strat ciepła strefy wyliczany z wzoru: $H = Hv_e + H_{tr,adj}$

Q_{c,nd}**[kWh]**– ilość chłodu niezbędna na pokrycie potrzeb chłodzenia budynku wartość wyliczana na podstawie wzoru (metoda miesięczna):

$$\mathbf{Q}_{c,nd} = \sum_{m=1}^{m=12} \mathbf{Q}_{c,gn} - \eta_c \cdot \mathbf{Q}_{C,ht}$$

9 WYDRUKI OBLICZEŃ

Program posiada dwa rodzaje raportów. Pierwszy jest pomocniczym służącym jedynie do szybkiego podglądu wyników, zestawień strat i zysków ciepła. Drugi typ raportu jest generowany w formacie RTF zgodnym MS Office (Microsoft WORD 2003/2010) lub Microsoft Viewer), pozwala on na wydruk gotowych obliczeń dla części definiowania przegród, obliczeń strat w pomieszczeniu, sezonowego zapotrzebowania na ciepło.

ArC ArC	ADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 01. Szkoła wyższa (chłód) 🛛 🚽 🧧 💌
<u>P</u> lik <u>R</u> aporty Ustawienia	
PODGLĄD PROJEKTU	Obliczenia cieplne - Świadectwo charakterystyki energetycznej 2014, WT 2014
Dane ogóine Wyniki ogóine Wyniki ogóine P··· Przegrody Prieszczenia W·· Strefy cieplne	DANE OGÓINE Miejscowość: Łódź
	Stacja meteorologiczna: Łódź - Lublinek Stacja aktynometryczna: Łódź - Lublinek
	Temperatura zewnętrzna: -20.0 °C Strefa kimatyczna: III
	Przeznaczenie budynku: Szkolno-oświatowe Typ budynku: Dom jednorodzinny
•	Charakter budynku: Nowo projektowany Rok budowy: 2009
	Norma do obliczeń współczynnika przenikania: PN-EN ISO 6946
	Norma do obliczeń strat ciepła w pomieszczeniu: PN-EN 12831
Obliczenia cieplne Obliczenia chłodu Certyfikat	Norma do obliczeń sezonowego zapotrzebowania na ciepło budynku: Wg rozp. MilR 2014
DANE WEJŚCIOWE	Norma do obliczeń strat ciepla przez grunt: PN-EN 12831
CERTYFIKAT	
🔾 PODGLĄD PROJEKTU	Raport o bledach
WYDRUKI	Lp. Typ Ops ^ 1 Ostrzeterie Parametr "Współczynnik przenkania Uc" w przegrodaie 'PG 1", powinien znajdować się w przedziałe od 0,00 do 0,301 v
〈 [12/15] 〉	🕞 📴 📴 🕎 🗮 🗮 🗮 🗮 🛓 🛓 🛓 🖓 🦓 🖓 🖨 Zamknij

Raport Dane ogólne

Raport Wyniki ogólne. Dane BREEAM

ArC.	ADia-TERMO PRO 6.0 Licencja	a dla: Test - ArCADia-TERMO	PRO 6 [L01] - 01. Szkoła wyższ	za (chłód) 🛛 🗕 🗖 🗙							
<u>P</u> lik <u>R</u> aporty Ustawienia	🗎 🇳 🖻 🐟 🔻 🔶 🗧	?									
PODGLĄD PROJEKTU	Obliczenia cieplne - Świadect	wo charakterystyki energetyc:	znej 2014, WT 2014								
Dane ogólne Wyniki ogólne	ZESTAWIENIE PRZEGRÓD	ZESTAWIENIE PRZEGRÓD									
Zestawienie przeg	NAZWA			Uc [W/m2·K]							
Zestawienia strat ;	Ściana na gruncie gr. 40cm	SG-40	Ściana na gruncie	0.23							
Strefy cieplne	Podłoga na gruncie	PG 1	Podłoga na gruncie	0.70							
	Ściana na gruncie gr. 25cm	SG-25	Ściana na gruncie	3.15							
	Okno zewnętrzne	OZ 1	Okno zewnętrzne	1.80							
	Ściana zewnętrzna gr. 40 cm	SZ-40	Ściana zewnętrzna	0.23							
	Ściana wewnętrzna gr. 25cm	SW-25	Ściana wewnętrzna	1.71							
	Drzwi wewnętrzne	DW 1	Drzwi wewnętrzne	2.60							
	Ściana na gruncie gr. 51cm	SG-51	Ściana na gruncie	0.23							
	Ściana na gruncie gr. 60cm	SG-60	Ściana na gruncie	0.28							
	Ściana zewnętrzna gr.60 cm	SZ-60	Ściana zewnętrzna	0.28							
	Ściana zewnętrzna gr. 48 cm	SZ-48	Ściana zewnętrzna	2.21							
	Ściana na gruncie gr. 48cm	SG-48	Ściana na gruncie	2.21							
	Ściana wewnętrzna gr. 48 cm	SW-48	Ściana wewnętrzna	1.84							
Obliczenia cieplne	Ściana wewnętrzna gr. 12cm	SW-12	Ściana wewnętrzna	2.40							
Obliczenia chłodu	Ściana zewnętrzna gr. 58 cm	SZ-58	Ściana zewnętrzna	1.96							
Certyfikat	Ściana zewnętrzna gr. 52 cm	SZ-52	Ściana zewnętrzna	0.31							
DANE WEJŚCIOWE	Drzwi zewnętrzne	DZ 1	Drzwi zewnętrzne	2.60							
OBLICZENIA CIEPLNE											
CERTYFIKAT											
LQ PODGLĄD PROJEKTU	Raport o blędach										
	Lp. Typ 1 Ostrzeżenie Parametr "V	Vspółczynnik przenikania Uc" w przegrod	Opis zie "PG 1", powinien znajdować się w prz	edziale od 0,00 do 0,30!							
< [12/15] >			<u> </u>	🛱 🛱 🚍 Zamknij							

Raport zestawienie przegród

ArC/	ADia-TERMO PRO	6.0 Licencja dla:	Test - ArCADia-T	ERMO PRO 6 [L0	1] - 01. Szkoła wy	yższa (chłód)		×		
Plik Raporty Ustawienia		▼ /* ▼ ?		: 2014	WT 2014					
PODGLĄD PROJEKTU	Obliczenia ciepin	e - Swiadectwo cr	larakterystyki ene	ergetycznej 2014,	WI 2014					
Wyniki ogólne	ZESTAWIENIA STRAT PRZEGROD DLA POMIESZCZEN									
Przegrody Przegrody Zestawienie przeg Zestawienia strat (Zestawienia strat (Zestawienie strat p	rzez przegrody do	obliczeń zapotrzeb	oowania na ciepło p	omieszczeń			^		
Pomieszczenia	NAZWA									
	Ściana na gruncie gr. 25cm	SG-25	3.15	150.40	2.20	2596.02	2.46			
	Podłoga na gruncie	PG 1	0.70	845.10	12.38	2881.92	2.73			
	Ściana zewnętrzna gr. 40 cm	SZ-40	0.23	1714.73	25.12	15345.93	14.55			
	Okno zewnętrzne	OZ 1	1.80	641.27	9.39	45724.86	43.36			
▶ I	Ściana na gruncie gr. 40cm	SG-40	0.23	206.90	3.03	559.07	0.53			
	Ściana wewnętrzna gr. 25cm	SW-25	1.71	1248.70	18.29	92.72	0.09			
< >>	Drzwi wewnętrzne	DW 1	2.60	91.02	1.33	63.96	0.06			
Obliczenia cieplne Obliczenia chłodu	Ściana na gruncie gr. 60cm	SG-60	0.28	15.90	0.23	57.96	0.05			
	Ściana zewnętrzna gr.60 cm	SZ-60	0.28	237.84	3.48	2635.12	2.50	~		
LO, PODGLĄD PROJEKTU	Raport o błędach									
WYDRUKI	Lp. Typ	Descents Dillor (he	and an electron to the		Opis		2.201	^		
	1 Ostrzezenie	Parametr Współcz	ynnik przenikania Uc" w	przegrodzie "PG-1", po	winieri znajdować się w	przedziale od 0,00 do	0,301	~		
〈 [12/15] 〉						à là là	📇 Zaml	nij		

Raport zestawienie przegród w pomieszczeniach

ArC.	ADia-TERMO PRO	6.0 Licencja dla:	Test - ArCADia-1	FERMO PRO 6 [LC	01] - 01. Szkoła w	yższa (chłód)		×			
<u>P</u> lik <u>R</u> aporty Ustawienia	🗎 🌣 🖻 🔦	▼ /⇒ ₹ ?									
PODGLĄD PROJEKTU	Obliczenia ciepln	e - Świadectwo cł	narakterystyki en	ergetycznej 2014	, WT 2014						
Wyniki ogólne Wyniki ogólne Tzegrody Zestawienie przeg Zestawienia strat j	ZESTAWIENIA STRA	zestawienie strat przez przegrody do obliczeń zapotrzebowania na ciepło stref									
Pomieszczenia	NAZWA										
Strey clephie	Ściana na gruncie gr. 25cm	SG-25	3.15	150.40	2.20	60.83	2.30				
	Podłoga na gruncie	PG 1	0.70	845.10	12.38	68.00	2.57				
	Ściana zewnętrzna gr. 40 cm	SZ-40	0.23	1714.73	25.12	387.16	14.64				
	Okno zewnętrzne	OZ 1	1.80	641.26	9.39	1154.28	43.65				
Þ	Ściana na gruncie gr. 40cm	SG-40	0.23	206.90	3.03	13.10	0.50				
	Ściana wewnętrzna gr. 25cm	SW-25	1.71	1248.70	18.29	0.00	0.00				
< >	Drzwi wewnętrzne	DW 1	2.60	91.02	1.33	0.00	0.00				
Obliczenia ciepine Obliczenia chłodu Costufikat	Ściana na gruncie gr. 60cm	SG-60	0.28	15.90	0.23	1.36	0.05				
	Ściana zewnętrzna gr.60 cm	SZ-60	0.28	237.84	3.48	65.88	2.49	~			
IQ. PODGLĄD PROJEKTU	Raport o blędach										
	Lp. Typ 1 Ostrzeżenie	Parametr "Współcz	zynnik przenikania Uc" v	v przegrodzie "PG 1", p	Opis owinien znajdować się v	r przedziale od 0,00 do	0,30!	- Û			
〈 [12/15] 〉						ର ଜି ଜି	😑 Zan	nknij			

Raport zestawienie przegród w strefach cieplnych

ArC ArC	ADia-	TERMO P	RO 6.0 Licencja dla	a: Test - A	rCADia-T	ERMO PR	O 6 [L01]	- 01. Szko	oła wyższ	a (chłód)			×
<u>P</u> lik <u>R</u> aporty Ustawienia		\$ B ·	€ ₹ / * ₹ ?										
PODGLĄD PROJEKTU	Oblic	zenia cie	plne - Świadectwo	charakter	ystyki ene	rgetyczne	ej 2014, V	/T 2014					
	POM	ESTC ZENIA	OGPZEWANE										
	POM	LOZCELINDA	OGIZEWANE										
Przegrody Przegrody Pomieszczenia		-		0.000							0.00		
Pomieszczenia ogi		NR	NAZWA	o ⁱ [.c]	STREFA	V" [m*/h]	Ψ _V [w]	Ψ _T [vv]	A [m*]	V [m³]	Ψ _{HL} [vv]	Ψ _%	^
Pomieszczenia nie Strefy cieplne		1.0	informatyki	20.0	Strefa O1	11.8	157.3	3389.4	63.5	244.5	3546.7	8.6	
		1.02	Sala VR	20.0	Strefa O1	15.5	206.9	2572.8	83.5	321.5	2779.7	6.8	
		1.03	Sala laboratoryjna	20.0	Strefa O1	22.3	296.8	4242.8	119.8	461.2	4539.6	11.0	
		1.04	Magazyn	20.0	Strefa O1	4.0	52.8	472.2	21.3	82.0	525.0	1.3	
		1.07	Zaplecze	20.0	Strefa O1	1.4	18.3	424.5	7.4	28.5	442.8	1.1	
		1.08	Bufet	20.0	Strefa O1	1.5	19.6	0.0	7.9	30.4	19.6	0.0	
		1.09	Bufet	20.0	Strefa O1	4.1	54.8	675.0	22.1	85.1	729.8	1.8	
		1.17	Ochroniaż	20.0	Strefa O1	1.3	17.8	191.5	7.2	27.7	209.4	0.5	
		1.18	Wiatrołap	16.0	Strefa O1	0.0	0.0	176.0	6.8	26.2	176.0	0.4	
		1.19	Przedsionek	16.0	Strefa O1	0.0	0.0	-202.2	6.2	23.9	-202.2	-0.5	
		1.20	Przedsionek	16.0	Strefa 01	0.0	0.0	1001.7	9.8	37.7	1001.7	2.4	
1		1.22	Komunikacja	20.0	Strefa 01	0.0	0.0	295.5	20.3	78.2	295.5	0.7	
	0	1.24 Zostawio	Klatka schodowa	10.0	Streta OT	61.0	0.0	38.0	20.5	1525.0	58.0	24.2	
		Zestawie	nie dia: wydział			01.8	824.4	13277.8	390.3	1020,8	14102.1	34.3	
	a	Aula											
< >	T.	NR	NAZWA	θ, [°C]	STREFA	V [*] [m³/h]	Φ _V [W]	Φ _τ [W]	A (m ²)	V (m ³)	Φ _{ΗΙ} [W]	Φ	
Obliczenia cieplne	L P	1.05	Aula	20.0	Strefa O1	78.0	1039.6	9640.6	129.8	463.4	10680.2	26.0	
Obliczenia chłodu	r	1.06	Magazyn	20.0	Strefa O1	1.3	17.9	3040.7	7.8	27.8	3058.6	7.4	
Certyfikat		1.10	Magazyn	20.0	Strefa O1	2.3	30.7	290.0	12.4	47.7	320.7	0.8	
DANE WEJŚCIOWE		1.11	WC	20.0	Strefa O1	0.9	11.4	165.7	4.6	17.7	177.0	0.4	~
OBLICZENIA CIEPLNE			niepernosprawnych	1									
CERTYFIKAT													
🛕 PODGLĄD PROJEKTU	Rapor	o błędach											
🖶 WYDRUKI	Lp.	Тур					0;	xis					^
	1	Ostrzeżenie	Parametr "Wspó	łczynnik prze	nikania Uc" w	przegrodzie '	'PG 1", powi	nien znajdow	ać się w prze	dziale od 0,0	0 do 0,301		~
〈 [12/15] 〉	₿				E	E.	E I		G	G.	Q E	Zaml	knij

Raport zestawienie strat w pomieszczeniach

Arc Arc	ADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 01. Szkoła wyższa (chłód) 🦳 – 🗖 🗙					
<u>P</u> lik <u>R</u> aporty Ustawienia	8 \$ ₽ ₹	<i>/</i> ⇒ ₹ ?				
PODGLĄD PROJEKTU	Obliczenia cieplne -	Świadectwo charakt	terystyki energetycz	nej 2014, WT 2014		
Dane ogólne	STREFY OGRZEWANE					
Przegrody					_	
Pomieszczenia Strefy cieplne	NAZWA					Q _H [%]
Strefy ogrzewane	Strefa O1	19.750	4101.200	15159.999	54840.707	100.000
Strety neogrzewa						
< >						
Obliczenia cieplne						
Obliczenia chłodu						
Certyfikat						
DANE WEJŚCIOWE						
OBLICZENIA CIEPLNE						
CERTYFIKAT						
O PODGLĄD PROJEKTU	Raport o bledach					
🖶 WYDRUKI	Lp. Typ			Opis		^
	1 Ostrzeżenie	Parametr "Współczynnik p	rzenikania Uc" w przegrodzi	e "PG 1", powinien znajdowi	ić się w przedziale od 0,00	do 0,301 🗸 🗸
< [12/15] >	B B B] ฏ ฏ _	👌 🚍 Zamknij

Raport zestawienie sezonowego zapotrzebowania stref cieplnych

ArCAD	ERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód) 6.0	D. – 🗆 🗙
Plik Ustawienia Pomoc	∃ ⊅ ₨ ♠ ₹ / ?	
WYDRUKI	sta raportów - Świadectwo charakterystyki energetycznej 2014, WT 2014	
Cartyfikat Cref Mat Cref Mat Cref Cref Mat Cref Cref Mat C		Nazna tabel Świedectwo charakterystyki energetycznej 🗹
Lista raportów DANE WEJŚCIOWE	Image: Control of the contro	GENERUJ RAPORT
OBLICZENIA CIEPLNE CERTYFIKAT ODGLAD PROJEKTU		
	ageor 6 seledent De Typ Opis 1 Ostrzezeree Przegroda SZ-44 nie jest zaprojektowana prawidłowo. Brak odprowadzenia kondensatu w okresie letnim.	Û
< [13/16] >		👌 [Q] [Q] 📇 Zamknij

Wydruki. Podgląd raportu świadectwa energetyczynego

WYDRUKI					
🖃 🔤 Certyfikat					
🖃 🖷 🚉 Certyfikat					
🔛 🔛 Część mieszkalna					
🔛 🔛 Cześć usługowa					
🖃 🖙 🖹 Dane wejściowe źródeł					
🖃 🔤 Certyfikat					
Część mieszkalna					
🔛 🕎 Cześć usługowa					
🖃 🛲 Analiza środowiskowo-ekonomiczna					
🔤 Analiza środowiskowo-ekonomiczna					
🖻 🔤 🛄 Obliczenia cieplne					
🖹 Zapotrzebowanie na ciepło w pomieszo					
Zapotrzebowanie na ciepło w budynku					
🔤 Uproszczone wyniki obliczeń					
Dobór grzejników					
🖹 Raport doboru odbiorników ciepła					
📄 Wyniki wykropleń dla przegród					
🐨 🕸 Obliczenia chłodu					
Zapotrzebowanie na chłód w budynku					
Raport obliczeń zysków ciepła pomiesz					

Wydruki. Drzewko raportów

Wydruki. Przyciski wydruku oraz zapisu raportu do formatu RTF i PDF

Praca z modułem Audyt

$10\ PRACAZMODUŁEM AUDYT$

Praca z modułem Audyt

10.1 Opis elementów modułu Audyt

Przykładowe okno dialogowe w module Audyt.

Po lewej stronie okna znajdują się zakładki wyboru okien dialogowych modułu Audyt oraz umieszczone ponad przyciskami okien dialogowych pole zawierające, zależnie od wybranego okna, drzewa przegród, pomieszczeń lub wariantów.

Moduł audyt składa się z 6 odrębnych okien dialogowych służących do podania przez audytora wszystkich koniecznych danych służących do prawidłowego wykonania audytu energetycznego zgodnie z rozporządzeniem.

Poszczególne okna dialogowe to:

- Dane ogólne,
- System grzewczy,
- Ciepła woda użytkowa,
- Ściany, stropy, stropodachy,
- Okna, drzwi, wentylacja,
- Warianty termomodernizacyjne.

W centralnej części znajduje się okno służące do wprowadzania danych do programu:
Wytwarzanie Rodzaj paliwa:	Ciepło sieciowe z kogeneracji - Węgiel	Tablice
Rodzaj źródła ciepła:		Baza
Regulacja	Elektryczne ogrzewanie podłogowe z	Tablice
Rodzaj instalacji:	regulatorem dwustawnym	Baza
Przesył		
	Ogrzewanie mieszkaniowe (wytwarzanie	Tablice
Rodzaj instalacji ogrzewiczej:	ciepła w przestrzeni lokalu mieszkalnego)	Baza
Akumulacja ciepła		_
Parametry zasobnika buforowego:	System ogrzewczy bez zbiornika buforowego	Tablice Baza
Przerwy w ogrzewaniu		
Czas ogrzewania w tygodniu	: 7 dni	
Przerwy w okresie doby:	Bez przerw	
Informacje uzupełniające:		
Przeprowadzono mod	ernizację systemu grzewczego po 1984 roku	
Zakres modernizacji:		

Okno służące do charakterystyki systemu grzewczego.

Prawa strona interfejsu z reguły zawiera wyniki doboru parametrów lub wyniki obliczeń:

sprawnosc wyt	warzania
η _{H.g} =0,98	
Sprawność reg	ulacji
η _{H,e} =0,80	
Sprawność prze	esyłu
η _{H,d} =1,00	
Sprawność aku	mulacji
η _{H,s} = 1,00	
Współczynnik p	rzerw
w _t = 1,00	tygodniowy
w _d = 1,00	dobowy
Sprawność całk	owita
η _{tot} =0,78	

Okno z wynikami doboru sprawności systemu grzewczego.

Dolna część okna zarezerwowana jest dla *RAPORTU O BŁĘDACH*, w którym wyświetlane są podpowiedzi, sugestie oraz komunikatypowstałe podczas wprowadzania przez audytora danych do programu.

Lp.	Тур	Opis	^
1	Ostrzeżenie	Parametr "Współczynnik przenikania Uc" w przegrodzie "STW 1", powinien znajdować się w przedziale od 0,00 do 0,25!	
2	Ostrzeżenie	Parametr "Współczynnik przenikania Uc" w przegrodzie "PG 1", powinien znajdować się w przedziale od 0,00 do 0,30!	
3	Ostrzeżenie	Parametr "Współczynnik przenikania Uc" w przegrodzie "SZ 1", powinien znajdować się w przedziale od 0,00 do 0,25!	
A	Octrzażania	Daramatr "Menólezunnik orzanikania I Ie" w orzanrodzie "07.1", nowinien znajdować cie w orzadziale od 0.00 do 1.301	×

Okno raportu o błędach.

10.2 WPROWADZANIE DANYCH DO OKIEN DIALOGOWYCH

10.2.1 ETAP Dane ogólne

Etap i *DANE OGÓLNE* składa się z trzech elementów: okna z *drzewkiem pomieszczeń* oraz zakładek: *DANENE OGÓLNE, KOSZTY ENERGII, DANE DO AUDYTU*.

🛠 ArCADia-TERMO PRO 6.0 Lice	encja dla: Test	- ArCADia-TERI	MO PR	O 6 [L01] - 05. Au	idyt - I	Comple	eksowa	moder	nizacja z	ograni	czenien	n śr –	×
<u>P</u> lik <u>R</u> aporty Ustawienia	8 2 2	4 , ₹ / 2 ?												
AUDYT	Dane ogólne -	Audyt energety	czny, V	/T 2014										
Inne	Dane	ogólne		Koszt	y energii			Dane	do audy	u				
Cokale užytkowe oraz ime i Rkita sechdova bu i Rkita	Dane uzupełn Rodzaj system: Sposób przygo Typ budynku Inne dane chara Ogrzewani 270,00 [©]	ające grzewczego budyni owania cieplej wody ikteryzujące budynek zużycie ciepła o	cer Cer Clę E Ciep 40,0	Centraline Centraline Ciężki O E Cepie wode użytkowa 40.00 ^C nk Wijcioważ dłoż ciężki				0	ą					
15 Kuchnia M2 9 Pokój M1 16 Łazienka M2 Wieogrzewane	Moc zamów Ogrzewani 0,0500 MW Zestawienie p	viona e iomieszczeń	Ciep 0,02	Ciepia woda użytkowa 0,0200 MW										
Dane ogólne	Lp.	Grupa por	ieszczeł				Powierzc	hnia	0.00					
System grzewczy	2 Lokale už	dkowe oraz inne por	ieszczei	nia niemies:	rkalne			4	0.75					
Ciepła woda użytkowa	3 Mieszkaln	e						25	1.72					
Sciany, stropy, stropodachy	4 Nieogrzev	vane							0,00					
Warianty termomodernizacyjne														
	Liczba lokali mie	szkalnych:	4,00)										
	Liczba osób uży	tkuiseveb budunak	12.0	10										
	CI0200 0800 02)	anopy of our our yildk.	,2,0											
C PODGLĄD PROJEKTU	Raport o blędach													
WYDRUKI	Lp. Typ							Opis						
	1 Ostrzeżenie	Parametr "W	spółczyn	nik przenika	nia Uc" w pr	zegrodzi	e "STW 1"	, powinier	n znajdov	vać się w prz	edziale od	l 0,00 do 0),25!	~
〈 [7/15] 〉			R	E	1Q	íQ,	tQ.	tQ	tQ	1Q	G	Q	-	Zamknij

Etap Dane ogólne. Zakładka Dane ogólne

ArCADia-TERMO PRO 6.0 Li	cencja d	lla: Test	ArCAE	Dia-TER	MO PRO	6 [L01]	- 05. Audyl	t - Kom	plekso	wa mod	ernizacja z	z ograni	czenien	n śr 🗕	
Plik Raporty Ustawienia	Dane o	orólne -	N ▼ / Audvte	nerσetv	Z Z NV WT	2014									
Inne		Dane	ogólne			Koszty e	nergii		1	Dane do au	id y tu				
Cokale uzytkowe oraz inne Cokale uzytkowe oraz inne	Lp.	kowe prac	Rodzi	owe niez aj robót	wiązane z t	ermomo Ilość robót	dernizacją bu Cena jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zf]	Uzası	adnienie pr	zyjętych k	osztów	+
	1 4	udyt i/lub ir	nna dokum	nentacja te	chniczna	. 1,00	0,00	0,00	23	0,00					×
15 Kuchnia M2 9 Pokój M1 16 Łazienka M2															
Nieogrzewane															
Dane ogólne System grzewczy Ciepła woda użytkowa															
Ściany, stropy, stropodachy Okna, drzwi, wentylacja Warianty termomodernizacyin	6														
DANE WEJŚCIOWE															
ICA PODGLĄD PROJEKTU	Raport o	blędach Typ							Op	ois					
	1 0	strzeżenie	Pa	arametr "V	Vspółczynnik	przenikani	a Uc" w przegr	odzie "ST\	// 1", pov	vinien znajo	łować się w pr.	zedziale od	1 0,00 do 0	,25!	
< [7/15] >	B						10 IG	i tā							Zamknij

Etap Dane ogólne. Zakładka Dane do audytu.

10.2.1.1 Drzewko pomieszczeń

Okno z drzewkiem pomieszczeń

Funkcją drzewka pomieszczeń jest przyporządkowanie zdefiniowanych pomieszczeń do dwóch grup:

- *INNE* grupa do której domyślnie zostaną przyporządkowane wszystkie pomieszczenia, które następnie należy przyporządkować do grup wymienionych powyżej. Po przyporządkowaniu pomieszczeń do w/w grup w grupie *Inne* pozostaną pomieszczenia których ze względu na ich funkcję nie można przypisać do żadnej z w/w grup pomieszczeń
- LOKALE UŻYTKOWE ORAZ INNE POMIESZCZENIA NIEMIESZKALNE do której muszą zostać podporządkowane pomieszczenia składające się na powierzchnię użytkową lokali użytkowych oraz inne pomieszczeń niemieszkalnych.
- *MIESZKALNE* do której muszą zostać przyporządkowane pomieszczenia składające się na powierzchnię użytkową części mieszkalnej
- NIEOGRZEWANE w której znajdą się pomieszczenia nieogrzewane

Wartości powierzchni z 2 pierwszych grup stanowią element karty audytu energetycznego. Suma powierzchni wszystkich trzech grup stanowiła będzie powierzchnię netto budynku.

Uwaga: konieczne jest przyporządkowanie pomieszczeń do poszczególnych grup, aby możliwe było prawidłowe wypelnienie przez program karty audytu energetycznego.

10.2.1.2 Zakładka Dane ogólne

Zakładka *DANE OGÓLNE*służy do wprowadzenia danych niezbędnych w audycie energetycznym, zgodnie z wymaganiami rozporządzenia.

Zakładka składa się z trzech pól do wprowadzania danych:. DANE UZUPEŁNIAJĄCE, MOC ZAMÓWIONA, ZUŻYCIE CIEPŁA oraz ZESTAWIENIA POMIESZCZEŃ zgrupowanych w drzewku pomieszczeń

Dane ogólne	Koszty energii	Dane do au	dytu
Dane uzupełniające			
Rodzaj systemu grzewczego budynku	Centralne		Zapotrzebowanie budynku na moc cieplna
Sposób przygotowania ciepłej wody	Centraine		q ₀ = 38217,59 W
	Cinàki	•	
iyp budynku	Cięzki	•	q ₀ = 38,22 kW
nne dane charakteryzujące budynek	Ŧ		q_=0,0382 MW
			Zapotrzebowanie budynku na ciepło
			Q_= 32703,71 kWh
Zmierzone zuzycie ciepia	Ciania wada whitikawa	0	,
ogrzewanie	Gepta woda uzytkowa	Wprowadz	Q ₀ = 117,73 GJ
270,00 rok	40,00 rok	dane	
T stars over fortenes			
Moc zamowiona			
Ogrzewanie	Ciepła woda użytkowa		
Ogrzewanie 0,0500 MW	Ciepła woda użytkowa 0,0200 MW		
Ogrzewanie 0,0500 MW	Ciepła woda użytkowa 0,0200 MW		
Ogrzewanie 0,0500 MW Zestawienie pomieszczeń	Ciepła woda użytkowa 0,0200 MW		
Ogrzewanie 0,0500 MW Zestawienie pomieszczeń Lp. Grupa pomie	Ciepła woda użytkowa 0,0200 MW szczeń	Powierzchnia	
g moc zamownona Ogrzewanie 0,0500 MW Zestawienie pomieszczeń Lp. Grupe pomie 1 Inne	Ciepla woda użytkowa 0,0200 MW szczeń	Powierzchnia 0,00	
Orzczanowania Ogrzewania Ogrzewania O,0500 MW Zestawienie pomieszczeń Lp. Grupa pomie Inne Lokale użytkowe oraz inne pomie	Ciepła woda użytkowa 0,0200 MW szczeń szczenia niemieszkalne d	Powierzchnia 0.00 40,75	
Ogrzewale Ogrzewale	Ciepla woda użytkowa 0,0200 MW szczeń szczenia niemieszkalne	Powierzchnia 0,00 40,75 251,72	

Zakładka do wprowadzania danych ogólnych

10.2.1.2.1 Dane uzupełniające

Dane uzupełniające		
Rodzaj systemu grzewczego budynku	Centralne	
Sposób przygotowania ciepłej wody	Centralne	
Typ budynku	Ciężki	0
Inne dane charakteryzujące budynek	Ē	

Pole dane uzupełniające

W polu DANE UZUPEŁNIAJĄCE audytor ma za zadanie podać:

- SPOSÓB PRZYGOTOWANIA CIEPŁEJ WODY
- RODZAJ SYSTEMU GRZEWCZEGO
- TYP BUDYNKU
- *INNE DANE CHARAKTERYZUJĄCE BUDYNEK* pole do wypełnienia przez audytora, opis zostanie umieszczony w raporcie

10.2.1.2.2 Moc zamówiona

✓ Moc zamówiona		
Ogrzewanie	Ciepła woda użytkowa	
0,0500 MW	0,0200 MW	

Pole do wprowadzania mocy zamówionej

Jeżeli w analizowanym budynku występują moce zamówione u dostawcy ciepła, obowiązkiem audytora jest podanie tych wartości.

Aby podać wartości mocy zamówionych należy zaznaczyć pole wyboru *MOC ZAMÓWIONA*, co spowoduje uaktywnienie się pól edycyjnych do podania mocy zamówionej dla centralnego ogrzewania i ciepłej wody użytkowej. Wartości należy podawać w MW na miesiąc, na podstawie danych, przekazanych właścicielowi budynku lub zarządcy, od dostawcy ciepła.

10.2.1.2.3 Zużycie ciepła

Zmierzone zużycie ciepła			_
Ogrzewanie	Ciepła woda użytkowa		0
270,00 GJ rok	40,00 GJ rok	Wprowadz dane	

Pole do wprowadzania zużycia ciepła

Jeżeli zużycie ciepła w budynku jest opomiarowane należy podać w karcie audytu wartość zmierzonego zużycia ciepła na ogrzewanie, przeliczonego na warunki sezonu standardowego oraz do celów ciepłej wody użytkowej. Aby możliwe było dokonanie obliczeń należy zgromadzić dane dotyczące wartości zmierzonego ciepła, liczby dni ogrzewanych oraz temperatur rzeczywistych występujących w miesiącach, w których występuje ogrzewanie i wprowadzić je do programu.

Dane do obliczeń można wprowadzić do tabeli *RZECZYWISTE ZUŻYCIE CIEPŁA*, która uruchamia się po naciśnięciu przycisku *WPROWADŹ DANE* oraz wcześniejszym zaznaczeniu pola wyboru *ZUŻYCIE CIEPŁA*.

Okno do wprowadzania rzeczywistego zużycia ciepła.

W tabeli *RZECZYWISTE ZUŻYCIE CIEPŁA* audytor podaje następujące dane:

- **TEMPERATURA ZEWNĘTRZNA** rzeczywista temperatura w danym miesiącu podawana na fakturze za ciepło lub na podstawie danych meteorologicznych dla analizowanego sezonu grzewczego.
- *LICZBA DNI OGRZEWANIA* liczba dni ogrzewania w danym miesiącu. Jeżeli w danym miesiącu rozliczeniowym nie występowały dni grzewcze należy podać wartość 0.
- **ZUŻYCIE CIEPŁA OGRZEWANIA** rzeczywiste zużycie ciepła na ogrzewanie w danym okresie rozliczeniowym na podstawie faktur przekazanych przez dostawcę ciepła.
- **ZUŻYCIE CIEPŁA WODA** rzeczywiste zużycie ciepła na cele ciepłej wody użytkowej. Wartości należy podać dla każdego miesiąca rozliczeniowego w roku na podstawie faktur przekazanych przez dostawcę ciepła.

Po prawidłowym wprowadzeniu kompletnych danych program dokona obliczeń i obliczoną wartość poda w karcie audytu energetycznego.

10.2.1.3 Zakładka: Koszty energii

Dane	ogólne - Aud	yt energe	tyczny, WT 2	014								
	Dane ogóln	e		Koszty en	nergii	Dane d	lo audytu					
Kos Zmie Stał Abo Kos Kos	szty energii enne Oz e miesięczne Om namentowe Ab szty uzupełniają zt 1 m³ zimnej wo szt podgrzania ciej	Centraln przed mod $34,00 \frac{2i}{GJ}$ $9879,00 \frac{2i}{M}$ $0 \frac{2i}{m-c}$ ce dy <u>6.50 $\frac{2i}{m^3}$</u>	e ogrzewanie emizacją po mode 34,00 ²¹ / _{GJ} 9879,00 ⁷ / _m 0 ²¹ / _{m-c} przed cytkowej 29,09 -	ernizacji <u>zł</u> /₩·m-c moderniza	Ciepła woda u przed modernizu 34,00 G J 9879,00 Zł 0 MW m.c 0 Zł 0 Zł 0 bł acją po m	iżytkowa cją po modernizac 34,00 ^{Zł} 5 9879,00 ^{Zł} 0 ^{Zł} 0 ^{Zł} icz koszty odernizacji ^{Zł}						
Kos	szt ogrzania powie	erzchni użyt	kowej 4,06 m	<u>zł</u> ² ·m-c	2,08	<u>zł</u> m ² ·m-c						
Inn	e	noraiiwa	0 zł	wania in	0 zł							
	aikulator ceny e	energii w p	zypadku ogrze	wania in	dywiduainego							1
Lp.	Rodzaj p	aliwa	opałowa	Jedn.	EER/COP	pomocnicze	Kos: pa	ztjedn. aliwa	Jedn.	Udział [%]	Koszt energii [zł/GJ]	
1	Paliwo - Olej opa	łowy	. 0,03629	GJ/I				1,51	zł∕I	100	41,73	×
												1
												÷
							Suma:	100,00 %	Średn	ia cena en	ergii: 41,73 <u>Zł</u> GJ	

Zakładka Koszty energii

Zakładka **KOSZTY ENERGII**służy do podania danych dotyczących kosztów energii które posłużą do obliczeń optymalizacyjnych (**KOSZTY ENERGII**) oraz do uzupełnienia karty audytu energetycznego (**KOSZTY UZUPEŁNIAJĄCE**). W zakładce znajduje się także **KALKULATOR KOSZTÓW ENERGII W PRZYPADKU OGRZEWANIA INDYWIDUALNEGO**, służący pomocą audytorowi w przypadku gdy konieczne jest obliczenie jednostkowych kosztów energii na podstawie wykorzystywanego rodzaju paliwa.

10.2.1.3.1 Koszty energii

Pole do wprowadzania kosztów energii

W grupie KOSZTY ENERGII audytor ma za zadanie podanie następujących kosztów energii:

- Koszty ZMIENNE OZ koszty zmienne audytor podaje uzupełniając pola edycyjne. Koszty te należy podać dla CENTRALNEGO OGRZEWANIA i CIEPŁEJ WODY UŻYTKOWEJ dla stanu przed i po modernizacji.
- Koszty *STAŁE MIESIĘCZNE OM* koszty stałe audytor podaje uzupełniając pola edycyjne. Koszty te należy podać dla *CENTRALNEGO OGRZEWANIA i CIEPŁEJ WODY UŻYTKOWEJ* dla stanu *przed i po modernizacji.*
- Koszty *ABONAMENTOWE AB* audytor podaje uzupełniając pola edycyjne. Koszty te należy podać dla *CENTRALNEGO OGRZEWANIA i CIEPŁEJ WODY UŻYTKOWEJ* dla stanu *przed i po modernizacji.*

Konieczne jest podanie kosztów energii, gdyż ich brak nie pozwoli na wykonanie jakichkolwiek obliczeń optymalizacyjnych w programie.

10.2.1.3.2 Koszty uzupełniające

Pole do wprowadzania kosztów uzupełniających.

Audytor może podać także *KOSZTY UZUPEŁNIAJĄCE*które mogę występować w analizowanym budynku, a posłużą one do uzupełnienia karty audytu energetycznego. Dane podane w grupie *KOSZTY UZUPEŁNIAJĄCE*nie służą do żadnych obliczeń w programie.

Na koszty uzupełniające składają się:

- **KOSZT PODGRZANIA CIEPŁEJ WODY UŻYTKOWEJ** audytor podaje dane uzupełniając pole edycyjne dla stanu przed i po modernizacji.
- **KOSZT OGRZANIA POWIERZCHNI UŻYTKOWEJ** audytor podaje dane uzupełniając pole edycyjne dla stanu przed i po modernizacji.
- *INNE KOSZTY* audytor podaje dane uzupełniając pole edycyjne dla stanu przed i po modernizacji. Możliwe jest także podanie własnej nazwy kosztów poprzez edycję pola edycyjnego *Inne*

10.2.1.3.3 Kalkulator kosztów energii

Lp.	Rodzaj paliwa		Wartość opałowa	Jedn.	Wskaźnik EER/COP	Urządzenia pomocnicze	Koszt jedn. paliwa	Jedn.	Udział [%]	Koszt energii [zł/GJ]
1	Paliwo – Węgiel kamienny		0,02772	GJ/kg			0,80	 zł∕kg	50	28,86
2	Paliwo – Kolektory słoneczne					1,00	0,50	 zł∕kWh	50	0,50
	SIUTICULIIC									
					·					
					<u> </u>		-			

Kalkulator kosztów energii.

Opis funkcjonalności przycisków:

dodawanie nowych rodzajów paliwa,

usuwanie rodzajów paliwa,

przesuwanie do góry,

przesuwanie do dołu,

kalkulator

Aby uaktywnić kalkulator należy zaznaczyć pole wyboru *KALKULATOR KOSZTÓW ENERGII W PRZYPADKU OGRZEWANIA INDYWIDUALNEGO.*

Audytor może dodawać dowolną liczbę paliw, które są wykorzystywane w budynku. Aby dokonać stosownych obliczeń audytor musi podać następujące informacje:

- **RODZAJ PALIWA** wybierany za pomocą listy rozwijalnej lub podawany samodzielnie przez audytora
- *WARTOŚĆ OPAŁOWA* dobierana automatycznie przez program lub podawana samodzielnie przez audytora.
- KOSZT JEDN. PALIWA koszt jednostkowy paliwa podawany samodzielnie przez audytora.
- % UDZIAŁ– procentowy udział danego paliwa (lub źródła ciepła zasilanego danym paliwem) podawany w polu edycyjnym przez audytora. Należy pamiętać, aby Sumaprocentowych udziałów była równa 100%.

Po podaniu wszystkich danych do obliczeń program oblicza:

- [zł/GJ] –cenę 1GJ energii dla danego paliwa
- **ŚREDNIA CENA ENERGII** średnia cena energii obliczona z uwzględnieniem jednostkowych kosztów energii dla każdego z paliw oraz procentowych udziałów.

Wartość ŚREDNIEJ CENY ENERGII obliczonej na kalkulatorze możemy wykorzystać do podania KOSZTÓW ZMIENNYCH OZw grupie KOSZTY ENERGII.

10.2.1.4 Zakładka Dane do audytu

Zakładka *DANE DO AUDYTY* służy do wprowadzenia danych zwiazncyh z kosztami dodoatkowych robót przeprowadoznych podczas modernizacji budynku oraz kosztów poniesionych przez audytora związanych w audytu.

Zakładka składa się z tabeli, do której należy wstawić odpowiednie dane. Dane te pojawią się w etapie Warianty Termomodernizacyjne dla każdego wariantu.

A ArCADia-TERMO PRO 6.0 Lice	encja dla	a: Test - J	ArCADia	-TERMO	PRO 6	[L01] ·	- 05. Audy	t - Kom	plekso	wa mod	lernizacja z	ogranic:	zeniem	śr –	×
<u>P</u> lik <u>R</u> aporty Ustawienia	₿ \$	R 🕈	\ ₹ />	₹?											
AUDYT	Dane og	gólne - Aι	udyt enei	rgetyczn	y, WT 2	2014									
: 🕋 Inne		Dane og	jólne			Koszty e	nergii			Dane do au	idytu				
E- Cokale użytkowe oraz inne	Dodatko	owe prace	remotowe	e niezwiąz	ane z te	rmomod	dernizacją bi	udynku							
O Klatka schodowa bu O Klatka schodowa bu O Klatka schodowa b O Mieszkalne	Lp.		Rodzaj ro	obót		llość robót	Cena jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	Uzası	adnienie przy	/jętych ko	sztów	+
5 Pokoj M1	1 Au	dyt i/lub inn	a dokument	acja technic	zna	1,00	0,00	0,00	23	0,00					×
2 Kuchnia M1															49
3 Przedpokój M1															
6 Kuchnia M2															
7 Przedpokój M2															
🛁 11 Pokój M2															
15 Kuchnia M2															
🔁 9 Pokój M1															
🔁 16 Łazienka M2															
17 Przedpokój M2															
Nieogrzewane >															
Dane ogólne															
System grzewczy															
Ciepła woda użytkowa															
Ściany, stropy, stropodachy															
Okna, drzwi, wentylacja															
Warianty termomodernizacyjne															
DANE WEJŚCIOWE															
OBLICZENIA CIEPLNE															
DA AUDYT															
🛕 PODGLĄD PROJEKTU	Raport o t	olędach													
🖶 WYDRUKI	Lp.	Тур							Op	is					^
	1 Ost	rzeżenie	Paran	netr "Współ	czynnik p	rzenikania	a Uc" w przegi	odzie "ST\	W 1", pov	vinien znajo	dować się w pr	zedziale od (),00 do 0,	25!	~
< [7/15] >	B	B					ណ៍ ជ	i fa) f	a (i (ii	G.	G,	Θ	Zamknij

Zakładka Dna edo audytu.

10.2.2 Okno dialogowe System grzewczy

Okno dialogowe *SYSTEM GRZEWCZY* składa się z 3. zakładek: *OCENA SPRAWNOŚCI, OCENA STANU TECHNICZNEGO, OCENA OPŁACALNOŚCI* oraz z uaktywnianego, po wybraniu jednego z wariantów termomodernizacyjnych okna wariantów.

	System grzewczy - Audy	vt energetyc	znv WT 2014							
XDD	Ocena sprawności		Ocena stanu technicznego	00	ena opłacalnoj	ści				
Ocena opłacalności W Wariant 1	Wytwarzanie Rodzaj paliwa: Rodzaj źródła ciepła:	Ciepło sieci	owe z kogeneracji - Węgiel	Tat Br	vlice Iza	Sprawnoś n _{H.g} =0,9	ć wytwa 8	arzania		
	Regulacja Rodzaj instalacji:	Elektryczne regulatoren	ogrzewanie podłogowe z a dwustawnym	Tat	Nice Iza	Sprawnoś n _{H.e} =0,80	ć regula 0	icji		
	Przesył Rodzaj instalacji ogrzewczej	j Ogrzewanie ciepła w prz	mieszkaniowe (wytwarzar estrzeni lokalu mieszkalne	tie go) Br	vlice Iza	Sprawnoś n _{H,d} =1,0	ć przes 0	yłu		
	Akumulacja ciepła Parametry zasobnika buforowego:	System ogr buforowego	zewczy bez zbiornika	Tat	vlice Iza	Sprawnoś n _{H,s} =1,0	ć akumi 0	ulacji		
Dane ogólne System grzewczy Ciepła woda użytkowa	Przerwy w ogrzewaniu Czas ogrzewania w tygodni Przerwy w okresie doby:	iu: 7 dni Bez przerw				Współczyn w _t = 1,00	nnik prz	erw tygodnio	wy	
Ściany, stropy, stropodachy Okna, drzwi, wentylacja Warianty termomodernizacyji	Informacje uzupelniające:	 dernizację sys	temu grzewczego po 1984 i	oku		w _d = 1,00 Sprawnoś) ć całkov	dobowy wita		
DANE WEJŚCIOWE	Zakres modernizacji:	E.				η _{tot} =0,78				
AUDYT PODGLĄD PROJEKTU	Raport o bledach									
WYDRUKI	Lp. Тур			Opi	s					

Okno System grzewczy wg Rozporządzenia MI z 17.03.2009.

ArCADia-TERMO PRO 6.0 Lic	encja dla: Test - ArCADia-TERM	IO PRO 6 [L01] - 05. Audyt - Kor	npleksowa modernizacja	a z ograniczeniem śr 🗕 🗖 🗙
<u>P</u> lik <u>E</u> dycja <u>R</u> aporty	😬 🗢 🖻 🐟 🔻 🥐 🔻 ?			
AUDYT	System grzewczy - Audyt energ	etyczny, WT 2014		
+ × ħ 🖻	Ocena sprawności	Ocena stanu technicznego	Ocena opłacalności	
B - E S Ocena opłacalności	Wakazanie do oceny oplacalnoś Ocena stanu technicznego Instalacja w zmistanie techniczne termomodernizacyjnych	ci ym - konieczne przeprowadzenie dzia	Dokum tan + X	nticja fotograficzna O
Dane ogólne System grzewczy				: :
Ciepła woda użytkowa				
Ściany, stropy, stropodachy				
Warianty termomodernizacyine				
				: :
OBLICZENIA CIEPLNE				
TQ AUDYT				
Q PODGLĄD PROJEKTU				
wydruki	Haport o bredach		Onis	•
	1 Ostrzeżenie Parametr "Ws	oółczynnik przenikania Uc" w przegrodzie "S	TW 1", powinien znajdować się w	przedziale od 0,00 do 0,25! v
< [8/15] >	D D D E		बे बि बि बि	🗌 🛱 🛱 Zamknij

Zakładka Ocena stanu technicznego dla systemu grzewczego

Pole do dodania dokumentacji fotograficznej.

Audytor ma możliwość dodania do programu fotografii dotyczących ocenianego systemu grzewczego w grupie *DOKUMENTACJA FOTOGRAFICZNA*. Wczytane fotografie nie będą wyświetlane w raporcie. Opis funkcjonalności przycisków:

dodawanie nowej fotografii,

usuwanie fotografii,

Pierwszy wariant temomodernizacyjny systemu grzewczego utworzny jest automatycznie po zaznaczeniu opcji*Wskazanie do oceny opłacalności*. Pozostałe warianty tworzy się przy użyciu zielonego krzyżyka.

Arcadia-TERMO PRO 6.0 Lic	encja dla: Test - ArCADia-TERMO P	RO 6 [L01]	- 05. Audyt - Komp	oleksowa mode	ernizacja z ograniczeniem śr	- 🗆 🗙
Plik Edycja Raporty		WT 20	14			_
+ × Tr ⓑ □ III Cena oplacalności → W Warant (System grzewczy – kudy energecy Spraność nytrazana Sprawnóś regulacji Wytwarzania Rodzaj źródła ciębia: Kotły weglowe wy Opis zastosowanych ulepszeń zmniejsz E	zzny, WT 20 Sprawność pr. rzanie energii produkowane zających roczn	14 zesylu Sprawność akun w budynku - T po 2000r. e zapotrzebowanie na	rabilee Przerwy w op Spraw Fabilee Przed Baza Po mo a ciepło	grzevaniu Wynki wność wytwarzania modemizację n _{ikaj} =0,82 demizacji n _{ikaj} =0,90	
	Zestawienie wykazu prac remontowych Lp. Rodzaj robót	llość robót	Cena jedn. Koszty netto [zł]	VAT Koszty [%] [zf]	Uzasadnienie przyjętych kosztów	+
Dane ogólne System grzewczy Clepla woda uzytkowa Sciany, stropy, stropodachy Okra, drzwi, wertyłacja Wariany termomodernizacyne D ANE WEJŚCIOWE CONTROLOWIE CONTROLAD PROJEKTU	1 (vy)maña kona Report o biedech	J 1,00	5000.00	22 6100,00		\$
H WYDRUKI	Lp. Тур			Opis		
< [8/15] >			6 6 6	66		Zamknij

Warianty temomodernizacyjne systemu grzewczego

Opis funkcjonalności przycisków:

usuwanie wariantu,

10.2.2.1 Warianty temomodernizacyjne systemu grzewczego

W zakładce *OCENA OPŁACALNOŚCI* audytor ma za zadanie scharakteryzować system grzewczy oraz dokonać oceny sprawności całego systemu grzewczego.

10.2.2.1.1 Sprawność wytwarzania

System grzewczy - Audyt energetyczny, WT 2014													
Spraw	vność wytwarzania	Sprawność regulacji	Spra	wność prz	zesyłu Sprav	vność aku	ımulacji	Przerwy v	w ogrzewaniu	Wyniki			
Wyt	warzanie					_		Sp	orawność wy	twarzan	ia		
Rodz	zaj paliwa:	Miejscowe wytwarzanie energii w budynku - Tablice						Prz	Przed modernizacją n _{H,g} =0,82				
Rodz	zaj źródła ciepła:	Kotły węglowe wyp	orodu	kowane	po 2000r.		Baza	Po	modernizacji	Л _{На}	= 0,90		
Zes	Opis zastosowanych ulepszeń zmniejszających roczne zapotrzebowanie na ciepło												
Lp.	R	odzaj robót		llość robót	Cena jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	Uza	sadnienie	e przyjętych I	kosztów	+
1	Wymiana kotła			1,00	5000,00	5000,00	22	6100,00					×
				·									۲

Pola do charakterystyki wytwarzania ciepła wg Rozporządzenia MI z 17.03.2009.

W kolejnych grupach dotyczących kolejnych sprawności systemu grzewczego audytor ma za zadanie podać *RODZAJ USPRAWNIENIA* wpływającego na dany rodzaj współczynnika sprawności oraz *NAKŁADY* na jego przeprowadzenie.

Opis funkcjonalności przycisków:

+× @

dodawanie nowego rodzaju usprawnienia,

usuwanie rodzaju usprawnienia,

dostęp do obliczeń programu Ceninvest

Baza

-przycisk dostępu do bazy sprawności

		Baza sprawności					×
Znajdź Szukaj: 🛛 🖪 Wyniki wyszukiwania aktualnie niedostępr	ne.	Wyczyść	Sprawno	y wynik ość:4,10	min	Q	max
⊦┽╳≫ҧ҇҇ҏҏ	Lp.	Nazwa	Sprawność minimalna	Sprawność maksymalna			^ .
HDG Bavaria Biomasa Viessmann	1	Pompa ciepła solanka/woda o mocy grzewczej 6,4-9,6 kW typu Vitocal 200-G BWP 106/108/110	4,000	4,200	Pompa		:
 Pompa ciepla Stiebel Eltron Pompa ciepla Pompa ciepla Vikersønn Pompa ciepla Danfoss Pompa ciepla Pompa ciepla Pompa ciepla Pompa ciepla Stut ENERGY Stut ENERGY Stut ENERGY Nowo projektowane 	2	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,0 kW typu Vitocal 222-G	4,200	4,300	Pompa		[
	3	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,0 kW typu Vitocal 242-G	4,200	4,300	Pompa		1
	4	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 333-G	4,600	4,700	Pompa		
	5	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 343-G	4,600	4,700	Pompa		
	6	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 333-GNC	4,600	4,700	Pompa		
	7	Pompa ciepła solanka/woda o mocy grzewczej 6,2-17,6 kW typu Vitocal 300-G BW 106/108/110/112/114/117	4,400	4,700	Pompa		
		Pompa ciepła solanka/woda o mocy grzewczej 6,2-17,6 kW typu Vitocal 300-G BWC 106/108/110/112/114/117	4,400	4,700	Pompa		v
Przywróć domyślne wartości Wybór wers	sji bazy da	nych: 6.0		Anul	uj	c	ж

Baza sprawności

W grupie *WYTWARZANIE* należy wybrać zlisty rozwijalnej *RODZAJ PALIWA* oraz wybrać występujący w budynku *TYP KOTŁA/PIECA*. Wartości możliwe do wyboru w listach rozwijalnych określone są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora. Dodatkowo audytor ma możliwość podania *INFORMACJI UZUPEŁNIAJĄCYCH*, które charakteryzują system wytwarzania ciepła w budynku.

Na podstawie wybranych w grupie *WYTWARZANIE* informacji z list rozwijalnych w grupie *SPRAWNOŚĆ WYTWARZANIA* zostanie dobrana **odpowiednia** sprawność wytwarzania. Audytor będzie miał również możliwość podania własnej wartości.

W przypadku gdy rozporządzenie przewiduje zakres sprawności, audytor za pomocą suwaka będzie miał możliwość ustawienia **odpowiedniej** wartości sprawności.

Rodzaj paliwa:

Paliwo stałe (węgiel, koks) Paliwo gazowe lub płynne Paliwo gazowe Paliwo stałe Energia elektryczna Paliwo stałe (słoma) Paliwo stałe (drewno, polana, brykiety drewniane, pelety, zrębki drewniane) Paliwo stałe (węgiel) Paliwo stałe (słoma, drewno, pelety Źródło zdalaczynne Inne

Typ kotła/pieca:

Paliwo stałe (węgiel,	Kotły wyprodukowane przed 1980r.	0,50-0,65
koks)	Kotły wyprodukowane po 1980 r.	0,65-0,75
Paliwo gazowe lub płynne	Kotły z palnikami atmosferycznymi i regulacją włącz/wyłącz	0,65-0,86

	Kotły z palnikami wentylatorowymi i ciągłą regulacją procesu spalania	0,75-0,88
Paliwo gazowe	Kotły kondensacyjne	0,95-1,00
Paliwo stałe	Piece ceramiczne (kaflowe)	0,25-0,40
	Piece metalowe	0,55-0,65
Energia elektryczna	Kotły elektryczne przepływowe	0,94
	Kotły elektryczne	0,97
	Kotły elektrotermiczne	1,00
Paliwo stałe (słoma)	Kotły wrzutowe z obsługą ręczną o mocy do 100kW	0,57-0,63
	Kotły wrzutowe z obsługą ręczną o mocy powyżej 100kW	0,65-0,70
	Kotły automatyczne o mocy powyżej 100kW do 600kW	0,65-0,75
Paliwo stałe (drewno, polana,	Kotły wrzutowe z obsługą ręczną o mocy do 100kW	0,65-0,72
brykiety drewniane, pelety, zrębki drewniane)	Kotły wrzutowe z obsługą ręczną o mocy powyżej 100kW	0,77-0,83
	Kotły automatyczne o mocy powyżej 100kW do 600kW	0,80-0,85
Paliwo stałe (węgiel)	Kotły z paleniskiem retortowym	0,80-0,85
Paliwo stałe (słoma, drewno, pelety)	Kotły automatyczne z mechanicznym podawaniem paliwa o mocy powyżej 500kW	0,85
Źródło zdalaczynne	Węzeł cieplny	1,00
Inne		

Sprawność wytwarzania					
Przed modernizacją	η _{H,g} =0,82				
Po modernizacji	η _{H,g} =0,90				

Pola do charakterystyki wytwarzania ciepła wg Rozporządzenia MIiR z 03.06.2014.

RODZAJ PALIWA – użytkownik ma do wyboru następującą listę:

Nr.	Rodzaj paliwa
1	Paliwo- olej opałowy
2	Paliwo- gaz ziemny
3	Paliwo- gaz płynny
4	Paliwo- węgiel kamienny
5	Paliwo- węgiel brunatny
6	Paliwo- biomasa
7	Ciepło z kogeneracji- węgiel kamienny
8	Ciepło z kogeneracji- gaz ziemny
9	Ciepło z kogeneracji- gaz biogaz
10	Ciepło z kogeneracji- biomasa
11	Ciepło z ciepłowni węglowej
12	Ciepło z ciepłowni gazowej/olejowej
13	Ciepło z ciepłowni na biomasę
14	Energia elektryczna- produkcja mieszana
15	Energia elektryczna- system PV

16 Paliwo-Kolektory słoneczne termiczne

RODZAJ ŹRÓDŁA CIEPŁA – użytkownik ma do wyboru listę, do której dopięte są współczynniki nu.g.

Lp.	Rodzaj źródła ciepła	η _{H,g}
1	Kotły węglowe wyprodukowane po 2000 r.	0,82
2	Kotły węglowe wyprodukowane w latach 1980-2000r.	0,65-0,75
3	Kotły węglowe wyprodukowane przed 1980r.	0,50-0,65
4	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy do 100kW	0,63
5	Kotły na biomasę (drewno) wrzutowe z obsługą ręczną o mocy do 100kW	0,72
6	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy powyżej 100kW	0,70
7	Kotły na biomasę (słoma) automatyczne o mocy 100-600kW	0,75
8	Kotły na biomasę (drewno) automatyczne o mocy 100-600kW	0,85
9	Kotły na biomasę (słoma, drewno) automatyczne z	0,85
	mechanicznym podawaniem paliwa o mocy powyżej 500kW	
10	Podgrzewacze elektryczne-przepływowe	0,94
11	Podgrzewacze elektrotermiczne	1,00
12	Elektryczne grzejniki bezpośrednie: konwektorowe,	0,99
	płaszczyznowe, promiennikowe i podłogowe kablowe	
13	Ogrzewanie podłogowe elektryczno-wodne	0,95
14	Piece kaflowe	0,60-0,70
15	Piece olejowe pomieszczeniowe	0,84
16	Piece gazowe pomieszczeniowe	0,75
17	Kotły na paliwo gazowe lub płynne z otwartą komorą spalania i dwustawną regulacją procesu spalania	0,86
18	Kotły niskotemperaturowe na paliwo gazowe lub płynne z zamkniętą komorą spalania i palnikiem modulowanym do 50kW	0,87-0,91
19	Kotły niskotemperaturowe na paliwo gazowe lub płynne z zamkniętą komorą spalania i palnikiem modulowanym do 50- 120kW	0,91-0,97
20	Kotły niskotemperaturowe na paliwo gazowe lub płynne z zamkniętą komorą spalania i palnikiem modulowanym do 120- 1200kW	0,94-0,98
21	Kotły gazowe kondensacyjne do 50kW (70/55°C)	0,91-0,97
22	Kotły gazowe kondensacyjne do 50kW (55/45°C)	0,94-1,00
23	Kotły gazowe kondensacyjne do 50-120kW (70/55°C)	0,91-0,98
24	Kotły gazowe kondensacyjne do 50-120kW (55/45°C)	0,95-1,01
25	Kotły gazowe kondensacyjne do 120-1200kW (70/55°C)	0,92-0,99
26	Kotły gazowe kondensacyjne do 120-1200kW (55/45°C)	0,96-1,02
27	Pompy ciepła woda/woda w nowych budynkach	3,80
28	Pompy ciepła woda/woda w istniejących budynkach	3,50
29	Pompy ciepła glikol/woda w nowych budynkach	3,50
30	Pompy ciepła glikol/woda w istniejących budynkach	3,30
31	Pompy ciepła powietrze/woda w nowych budynkach	2,70
32	Pompy ciepła powietrze/woda w istniejących budynkach	2,50
33	Węzeł cieplny kompaktowy z obudową do 100kW	0,91
34	Węzeł cieplny kompaktowy z obudową do 100-300kW	0,93
35	Węzeł cieplny kompaktowy z obudową powyżej 300kW	0,95
36	Węzeł cieplny kompaktowy bez obudowy do 100kW	0,91
37	Wezer creptny kompaktowy bez obudowy do 100-300kW	0,93
38	wezer creptny kompaktowy bez obudowy powyżer 300kW	0,95

10.2.2.1.2 Sprawność przesyłu

Przesył Sprawność przesy Rodzaj instalacji ogrzewczej: C.o. wodne z lokalnego źródła ciepła usytuowanego w ogrzewanym budynku z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w Tablice Przed modernizacją Po modernizacji Po modernizacji Po modernizacji	u n _{H,d} =0,80 n _{H,d} =0,96
Rodzaj instalacji ogrzewczej: C.o. wodne z lokalnego źródła ciepła usytuowanego w ogrzewanym budynku z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w Tablice Przed modernizacją	n _{H.d} =0,80 n _{H.d} =0,96
z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w Baza Po modernizacji	η _{H,d} =0,96
Opis zastosowanych ulepszeń zmniejszających roczne zapotrzebowanie na ciepło	
Ē	
Zestawienie wykazu prac remontowych	
Lp. Rodzaj robót Ilość robót Cena jedn. retto VAT Koszty Uzasadr	ienie przyjętych kosztów
	×
1 poliuretanowej 1,00 600,00 600,00 22 732,00	(7)
	49

Pola do charakterystyki przesyłu ciepła wg Rozporządzenia MI z 17.03.2009.

- dostęp do programu Ceninwest

W grupie *PRZESYŁ* należy wybrać za pomocą listy rozwijalnej *RODZAJ OGRZEWANIA*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Dodatkowo audytor ma możliwość podania *INFORMACJI UZUPEŁNIAJĄCYCH*które charakteryzują system przesyłu ciepła w budynku.

Na podstawie wybranych w grupie *PRZESYŁ*, informacji z list rozwijalnych w grupie *SPRAWNOŚĆ PRZESYŁU* zostanie dobrana **odpowiednia** sprawność wytwarzania. Audytor będzie miał także możliwość podania własnej wartości.

W przypadku gdy rozporządzenie przewiduje **podanie** zakresu sprawności , audytor za pomocą suwaka będzie miał możliwość wybrania **odpowiedniej** wartości sprawności.

Przesył			Sprawność przes	yłu
Podzaj jostalacij ogrzewczej:	C.o. wodne z lokalnego źródła ciepła usytuowanego w ogrzewanym budynku	Tablice	Przed modernizacją	η _{H,d} =0,80
Rouzaj instalacji ogrzewiczej.	z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w	Baza	Po modernizacji	η _{H,d} =0,96

Pola do charakterystyki przesyłu ciepławg Rozporządzenia MI z 17.03.2009.

RODZAJ INSTALACJI OGRZEWCZEJ – użytkownik ma do wyboru listę, do której dopięte są współczynniki µн,а.

Lp.	Rodzaj instalacji ogrzewczej	η _{H,d}
1	Źródło ciepła w pomieszczeniu (ogrzewanie elektryczne, piec kaflowy)	1,00
2	Ogrzewanie mieszkaniowe (kocioł gazowy lub miniwęzeł)	1,00
3	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w pom. ogrzewanych	0,96-0,98

4	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w pom. nieogrzewanych	0,92-0,95
5	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, bez izolacji na przewodach, armaturze i urządzeniach, które są zainstalowane w pom. nieogrzewanych	0,87-0,90
6	Ogrzewanie powietrzne	0,95

Dodatkowo użytkownik przy pomocy przycisku ma możliwość obliczyć współczynnik $\eta_{H,d}$ indywidualnie.

					Parametry wody	ŀ	90/70°C	reg	ulowa	ne
L.p.	Di [mr	l n]	L [m]	Lokalizacja przewodów	Typ izolacji		ql [VV/]	n]	tsq [h]	∆QH,d [kWh/rok]
1	15		14,00	Na zewnątrz osłony izolacyjnej budynku	 ½ grubości wg WT		12,40		5328	924,94
2	25		25,00	Wewnątrz osłony izolacyjnej budynku	 2 x grubość WT		4,00		5328	532,80
								ΣΔΟ	2 _{H,d} = 1	457,74 <u>kWh</u> rok
								ΣΔα	Ω _{н,d} = 1⁄	457,74 <u>kWh</u> rok

Okno umożliwiające obliczenie sprawności przesyłu

PARAMETRY WODY – wariant na podstawie, którego wstawiane będą wartości ql: 90/70 °C stałe, 90/70 °C regulowane, 70/55 °C regulowane, 55/45 °C regulowane, 35/28 °C regulowane.

Lp. – kolejna liczba porządkowa dla dodawanego wiersza.

DN [mm] – średnica przewodów centralnego ogrzewania, wartość wybierana przez użytkownika z listy: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100.

L[*m*] – długość przewodów centralnego ogrzewania o zadanej średnicy, wartość wpisywana przez użytkownika.

LOKALIZACJA PRZEWODÓW- użytkownik w kolumnie tej wybiera jeden z dwóch wariantów lokalizacji przewodów: NA ZEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU, WEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU.

TYP IZOLACJI – użytkownik w tym oknie wybiera z listy jeden z kilku wariantów izolacji cieplnej: *NIEIZOLOWANE, ½ GRUBOŚCI WG WT, GRUBOŚĆ WT, 2 X GRUBOŚĆ WT. ql [W/m]*- jednostkowa strata ciepła przewodów centralnego ogrzewania, wstawiana na podstawie tabelki wyświetlanej poprzez wciśnięcie przycisku ••••.

Danamatra 90	Izolacja termiczna	nu zen	budy	nku	lacyjnej	budynku			
Parametry °C	przewodów	DN 10-15	DN 20-32	DN 40-65	DN 80-100	DN 10-15	DN 20-32	DN 40-65	DN 80-10
	nieizolowane	39,3	65,0	106,8	163,2	34,7	57,3	94,2	144,0
00/70 %C atala	½ grubości wg WT 1)	20,1	27,7	38,8	52,4	17,8	24,4	34,2	46,2
90/70 °C stałe	grubość wg WT	10,1	12,6	12,1	12,1	8,9	11,1	10,7	10,7
	2x grubość wg WT	7,6	8,1	8,1	8,1	6,7	7,1	7,1	7,1
	nieizolowane	24,3	40,1	66,0	100,8	19,6	32,5	53,4	81,6
90/70 °C	½ grubości wg WT 1)	12,4	17,1	24,0	32,4	10,1	13,9	19,4	26,2
regulowane	grubość wg WT	6,2	7,8	7,5	7,5	5,0	6,3	6,0	6,0
	2x grubość wg WT	4,7	5,0	5,0	5,0	3,8	4,0	4,0	4,0
	nieizolowane	18,5	30,6	50,3	76,8	13,9	22,9	37,7	57,6
70/55 °C	½ grubości wg WT 1)	9,5	13,0	18,3	24,7	7,1	9,8	13,7	18,5
regulowane	grubość wg WT	4,7	5,9	5,7	5,7	3,6	4,4	4,3	4,3
	2x grubość wg WT	3,6	3,8	3,8	3,8	2,7	2,8	2,8	2,8
	nieizolowane	14,4	23,9	39,3	60,0	9,8	16,2	26,7	40,8
55/45 °C	½ grubości wg WT 1)	7,4	10,2	14,3	19,3	5,0	6,9	9,7	13,1
regulowane	grubość wg WT	3,7	4,6	4,4	4,4	2,5	3,1	3,0	3,0
	2x grubość wg WT	2,8	3,0	3,0	3,0	1,9	2,0	2,0	2,0
	nieizolowane	8,1	13,4	22,0	33,6	3,5	5,7	9,4	14,4
35/28 °C	½ grubości wg WT 1)	4,1	5,7	8,0	10,8	1,8	2,4	3,4	4,6
regulowane	grubość wg WT	2,1	2,6	2,5	2,5	0,9	1,1	1,1	1,1
	2x grubość wg WT	1,6	1,7	1,7	1,7	0,7	0,7	0,7	0,7

Tabela z wartościami jednostkowych strat ciepła przez przewody centralnego ogrzewania

$t_{SG}[h]$ - czas trwania sezonu grzewczego.

 $\Delta Q_{H,d} [kWh/rok]$ – jednostkowa sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią).

 $\sum \Delta Q_{H,d} [kWh/rok]$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią).

 $\eta_{H,d}$ – średnia sezonowa sprawność transportu nośnika ciepła w obrębie budynku (osłony bilansowej lub poza nią).

$$\eta_{H,d} = \frac{Q_{H,nd} + \Delta Q_{H,e}}{Q_{H,nd} + \Delta Q_{H,e} + \Sigma \Delta Q_{H,d}}$$

Gdzie:

 $\mathbf{Q}_{H,nd}$ – zapotrzebowanie energii użytkowej przez budynek, wartość pobierana z stref cieplnych. Wartość wyliczana z sumy z każdej strefy wartości Qh

 $\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} - \text{uśrednione sezonowe straty ciepła w wyniku niedoskonałej regulacji i przekazania ciepła budynku wartość wyliczana z wzoru: <math display="block">\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} = \mathbf{Q}_{\mathbf{H},\mathbf{nd}} \cdot \left(\frac{\eta_{H,e}}{1} - 1\right), \text{ gdzie } \eta_{H,e} \text{ jest pobierane z grupy} REGULACJA.$

 $\sum \Delta Q_{H,S}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku, wartość wyliczana w poprzednim polu.

10.2.2.1.3 Sprawność regulacji

praw	ność wytwarzania	Sprawność regulacji	Sprav	vność przesył	u Sprav	vność aku	mulacji	Przerwy w	ogrzewaniu	Wyniki			
Regi	ulacja							Spi	awność reg	ulacji			
Rodz	aj instalacij:	Ogrzewanie członowymi	wodn lub pł	e z grzejnik ytowymi w	ami przypad	ku	Tablice	Prz	ed moderniza	cją n _{H,}	e = 0,77		
		zaworem te	rmost	atycznym o	vej z działani	u	Baza	Pol	nodernizacji	Л н)	= 0,89		
Ē	zastosowanych	ulepszen zmniejsz	ającyc	h roczne za	potrzeb	owanie n	a ciepło						
Zest	awienie wykazu	ulepszen zmniejsz prac remontowych	ającyc	h roczne za	potrzeb	owanie n	a ciepło						
Zest	zastosowanych tawienie wykazu R	ulepszen zmniejsz prac remontowych odzaj robót	ającyc	llość robót Ce	na jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	Uza	sadnieni	e przyjętych	kosztów	
Lp.	tawienie wykazu R Termostaty	ulepszen zmniejsz prac remontowych odzaj robót		h roczne za llość robót Ce 20,00	na jedn. 150,00	Koszty netto [24] 3000,00	VAT [%]	Koszty brutto [zł] 3000,00	Uza	sadnieni	e przyjętych	kosztów	

Pola do charakterystyki regulacji systemu grzewczegowg Rozporządzenia MI z 17.03.2009.

W grupie *REGULACJA* należy wybrać za pomocą listy rozwijalnej *RODZAJ OGRZEWANIA*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje również możliwość podania własnych wartości przez audytora.

Dodatkowo audytor ma możliwość podania *INFORMACJI UZUPEŁNIAJĄCYCH*, które charakteryzują system regulacji ciepła w budynku.

Na podstawie wybranych w grupie regulacja, informacji z list rozwijalnych w grupie *WSPÓŁCZYNNIK REGULACJI*(nie mylić ze sprawnością regulacji, która obliczana jest na podstawie współczynnika regulacji) zostanie dobrana wartość współczynnika regulacji. Audytor będzie miał także możliwość podania własnej wartości.

W przypadku gdy rozporządzenie przewiduje zakres wartości współczynnika audytor za pomocą suwaka będzie miał możliwość wybrania odpowiedniej wartości.

Pola do charakterystyki regulacji systemu grzewczegowg Rozporządzenia MI z 17.03.2009.

RODZAJ INSTALACJI – użytkownik ma do wyboru listę, do której dopięte są współczynniki $\eta_{H,e}$.

Lp.	Rodzaj instalacji	ηн,е
1	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i promiennikowe	0,98
2	Podłogowe: kablowe, elektryczno-wodne	0,95
3	Elektryczne grzejniki akumulacyjne: konwektorowe i podłogowe kablowe	0,90
4	Elektryczne ogrzewanie akumulacyjne bezpośrednie	0,91-0,97
5	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej	0,75-0,85
6	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji miejscowej	0,86-0,91
7	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej adaptacyjnej i miejscowej	0,98-0,99
8	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P-1K)	0,97
9	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P-2K)	0,93
10	Ogrzewanie podłogowe w przypadku regulacji centralnej	0,94-0,96
11	Ogrzewanie podłogowe lub ścienne w przypadku regulacji centralnej i miejscowej	0,97-0,98
12	Ogrzewanie miejscowe przy braku regulacji automatycznej w pomieszczeniu	0,80-0,85

10.2.2.1.4 Sprawność akumulacji

Syster	m grzewczy -	Audyt energetyd	zny, WT 2014								
Sprawn	ość wytwarzania	Sprawność regulacji	Sprawność przesyłu	J Sprawr	ność aku	ımulacji	Przerwy	w ogrzewaniu	Wyniki		
Parame	Akumulacja ciepła Sprawność akumulacji Parametry zasobnika: System ogrzewczy bez zbiornika buforowego Tablice Przed modernizacją n _{H,s} =1,00 Baza Po modernizacji n _{H,s} =1,00										
Opis z	zastosowanych	ulepszeń zmniejsz	ających roczne zaj	potrzebo	wanie n	a ciepło	D				
Zesta	wienie wykazu	prac remontowych									
Lp.	R	odzaj robót	llość Cer robót	na jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	Uzi	asadnieni	e przyjętych kosztów	+
											— ×
											Ð

Pola do charakterystyki wykorzystania ciepławg Rozporządzenia MI z 17.03.2009.

Akumulacja ciepła			Sprawność akumulacji
December en electre	System ogrzewczy bez zbiornika	Tablice	Przed modernizacją n _{H,s} = 1,00
Parametry zasobnika:	buforowego	Baza	Po modernizacji $\eta_{H,s}$ = 1,00

Pola do wyboru sprawności akumulacji ciepławg Rozporządzenia MI z 17.03.2009.

PARAMETRY ZASOBNIKA BUFOROWEGO – użytkownik ma do wyboru listę, do której dopięte są współczynniki n_{H,s}

Lp.	Parametry zasobnika buforowego	ηн,s
1	Bufor w systemie grzewczym o parametrach 70/55 °C wewnątrz osłony termicznej	0,93-
1	budynku	0,97
2	Bufor w systemie grzewczym o parametrach 70/55 °C na zewnątrz osłony termicznej	0,91-
2	budynku	0,95
2	Bufor w systemie grzewczym o parametrach 55/45 °C wewnątrz osłony termicznej	0,95-
5	budynku	0,99
4	Bufor w systemie grzewczym o parametrach 55/45 °C na zewnątrz osłony termicznej	0,93-
4	budynku	0,97
5	Brak zasobnika buforowego	1,00

Dodatkowo użytkownik przy pomocy przycisku \square ma możliwość obliczyć współczynnik $\eta_{H,s}$ indywidualnie.

L.p. 1 35 2 50	V [dm³] 35,000 50,000	qs [W/dm ²] 0,800 1,100	tsg [h] 5328,000 5328,000 :	ΔQhs [kWh/rok] 149,184 293,040	+ ×
1 35 2 50	35,000 50,000	0,800 ***	5328,000 5328,000	149,184 293,040	X
2 50	50,000	1,100	5328,000 :	293,040	*
510			kWh		

01	. 1	1 1	, .	1 1
()kno	11mozl1w1a1ace	obliczanie	sprawnosci	akumulacu
OKIIO	uniozniwiająci		sprawnoser	akumulaeji

Lp. – kolejna liczba porządkowa dla dodawanego wiersza.

Vs [dm³] – pojemność zbiornika buforowego, wartość podawana przez użytkownika w zakresie (0-1000000).

qs [W/dm³]- jednostkowa strata ciepła zbiornika buforowego, wartość podawana przez użytkownika lub wstawiana na podstawie tabelki wyświetlanej poprzez wciśnięcie przycisku ••••.

Wariant A Parametry termiczne 70/55 °C i wyżej

Jednostkowe straty ciepła przez zbiornik buf									
Parametry termiczne 70/55 °C i wyżej 🗸 🗸									
Lokalizacja	Pojemność	Param 70/	etry tern 55 °C i wy	niczne rżej					
bufora	[dm³]	Izolacja 10 cm	Izolacja 5 cm	Izolacja 2 cm					
	100	0,7-0,9	1,1-1,4	2,0-2,7					
Na zewnątrz	200	0,5-0,7	0,8-1,1	1,6-2,1					
izolacvinei	500	0,4-0,5	0,6-0,8	1,2-1,6					
budynku	1000	0,3-0,4	0,5-0,6	1,0-1,3					
	2000	0,2-0,3	0,4-0,5	0,8–1,0					
	100	0,5-0,7	0,8-1,1	1,5-2,2					
Wewnątrz	200	0,4-0,6	0,6-0,9	1,2–1,7					
izolacvinei	500	0,3-0,4	0,5-0,7	0,9–1,3					
budynku	1000	0,2-0,3	0,4-0,5	0,7–1,0					
	2000	0,2	0,3-0,4	0,6-0,8					

Tabela jednostkowych strat ciepła przez zbiornik buforowy

Wariant B Parametry termiczne 55/45 °C i niżej

Jednostkowe straty ciepła przez zbiornik buf									
Parametry termiczne 55/45 °C i niżej									
Parametry termiczn Lokalizacja Pojemność 55/45 °C i niżej									
bufora	[dm³]	Izolacja 10 cm	Izolacja 5 cm	Izolacja 2 cm					
	100	0,3-0,5	0,5-0,8	0,9–1,6					
Na zewnątrz	200	0,2-0,4	0,4-0,7	0,7-1,3					
osłony	500	0,2-0,3	0,3-0,5	0,5-1,0					
budynku	1000	0,1-0,2	0,2-0,4	0,4-0,8					
	2000	0,1-0,2	0,2-0,3	0,3-0,6					
	100	0,1-0,4	0,2-0,6	0,4-1,1					
Wewnątrz	200	0,1-0,3	0,2-0,4	0,3-0,9					
osłony	500	0,1-0,2	0,1-0,3	0,2-0,6					
budynku	1000	0,1-0,2	0,1-0,3	0,2-0,5					
	2000	0,0-0,1	0,1-0,2	0,1-0,4					

Tabela jednostkowych strat ciepła przez zbiornik buforowy

tsg [*h*] - czas trwania sezonu grzewczego, wartość pobierana z części strefy cieplne z parametrów Ld (dla normy PN B 02025) t (dla norm PN EN 832 i 13790).

 $\Delta Q_{H,S}$ [*kWh/rok*]– jednostkowa sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią) $\Delta Q_{H,S} = (Vs \cdot qs \cdot t_{SG}) \cdot 10^{-3}$

 $\sum \Delta Q_{H,S} [kWh/rok]$ – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią). $\sum \Delta Q_{H,S} = \sum (\Delta Q_{H,S})$

 $\eta_{H,S}$ – średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią).

$$\eta_{H,S} = \frac{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d}}{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d} + \sum \Delta Q_{H,S}}$$

Gdzie:

Q H,nd – zapotrzebowanie energii użytkowej przez budynek, wartość pobierana z stref cieplnych.

 $\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} - \text{uśrednione sezonowe straty ciepła w wyniku niedoskonałej regulacji i przekazania ciepła budynku wartość wyliczana z wzoru: <math display="block">\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} = \mathbf{Q}_{\mathbf{H},\mathbf{nd}} \cdot \left(\frac{\eta_{H,e}}{1} - 1\right), \text{ gdzie } \eta_{H,e} \text{ jest pobierane z grupy } \boldsymbol{REGULACJA},$

 $\Delta Q_{H,d}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku, wartość pobierana z grupy *PRZESYL* z wyliczonej wartości pod przyciskiem oblicz (w przypadku nie wyliczenia tej wartości program powinien wyświetlić komunikat, że aby obliczyć $\eta_{H,s}$ należy najpierw obliczyć $\Delta Q_{H,d}$).

 $\sum \Delta Q_{H,S}$ – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku

10.2.2.1.5 Przerwy w ogrzewaniu

System grzewczy - Audyt energ	etyczny, WT 2014								
Sprawność wytwarzania Sprawność regu	lacji Sprawność przesy	łu Sprawnoś	ść akumulacji	Przen	wy w ogrzewaniu	Wyniki			
Przerwy w ogrzewaniu: Współczynnik przerw:									
Czas ogrzewania w tygodniu: 7 dni					Przed moderniza	cją F	o modernizacj	į	
Przerwy w okresie doby: Bez prze	erw				w _t = 1,00		v _t = 1,00	tygodniowy	
					w _d = 1,00	,	v _d = 1,00	dobowy	
Zestawienie wykazu prac remontov	rych								_
Lp. Rodzaj robót	llość robót	Ko: na jedn. ne [:	szty etto [xł] VAT [%]	Kos: brut [zł	zty tto Uza fj	sadnier	ie przyjętych I	kosztów	+
									~
									£?

Pola charakteryzujące przerwy w ogrzewaniu

W grupie *PRZERWY W OGRZEWANIU*należy wybrać za pomocą listy rozwijalnej liczbę dnie ogrzewania w tygodniu w pozycji *PRZERWY W OKRESIE TYGODNIA* oraz wybrać wartość *PRZERW W OKRESIE DOBY*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia.

Istnieje także możliwość podania własnych wartości przez audytora. Dodatkowo audytor ma możliwość podania *INFORMACJI UZUPEŁNIAJĄCYCH*które charakteryzują

stosowane w budynku przerwy w ogrzewaniu.

Na podstawie wybranych w grupie przerwy w ogrzewaniu, informacji z list rozwijalnych w grupie *WSPÓŁCZYNNIK PRZERW* zostaną dobrane wartości współczynników. Audytor będzie miał także możliwość podania własnej wartości.

7 dni		
5 dni		
Inne		

Ilości dni ogrzewania w okresie tygodnia

Bez przerw	
4 godziny	
8 godzin	
12 godzin	
16 godzin	
Inne	

Przerwy w ogrzewaniu w okresie doby

Przeprowadzono modernizację systemu grzewczego po 1984 roku						
Zakres modernizacji:	W 1996 roku wymieniono węzęł cieplny					

Pole do określenia zakresu modernizacji systemu grzewczego po 1984 roku

W przypadku gdy w budynku była przeprowadzana modernizacja systemu grzewczego po1984 roku należy zaznaczyć pole wyboru *PRZEPROWADZONO MODERNIZACJĘ SYSTEMU GRZEWCZEGO W LATACH PO 1984 ROKU* oraz koniecznie podać w polu edycyjnym *ZAKRES MODERNIZACJI*.

10.2.2.1.7 Wyniki

W zakładce Wyniki należy podać wartości kosztów zmiennych, stałych i abonamentowych energii dla c.o.

Spraw	ność wytwarzania	Sprawność regulacji	Sprawność prz	esyłu Sprav	vność aku	mulacji	Przerwy	w ogrzewaniu	Wyniki	
✓ Indywidualne kosztý energii Kalkulator kosztów przed modernizacją po modernizacji Zmienne O2: 34,00 $\frac{zi}{GJ}$ Stałe miesięczne Om: 9879,00 $\frac{zi}{m \cdot c}$ Abonamentowe Ab: 0 $\frac{zi}{m \cdot c}$ Informacje uzupełniające: ፪								Wyniki oblicz Przed modern Sprawność N _{0H,01} = 0,5 Obliczeniow Q ₀₀₀ = 233,0 Obliczeniow q ₀₀₀ = 38,2 Wyniki optym Roczne oszcz SPBT: 7,29 Ia	eń ilizacją całkowita i1 re zapotrz 2 kW alizacji . kosztów: 4	Po modernizacji systemu c.o. $\eta_{1H,txt} = 0,77$ tebowanie ciepła $Q_{1co} = 153,11 \frac{GJ}{rok}$ tebowanie mocy $q_{1co} = 38,22 \text{ kW}$ $\Delta O_{rco} = 2719,05 \frac{2!}{rok}$
Lp.	R	odzaj robót	llość robót	Cena jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	ı	Uzasadnier	nie przyjętych kosztów
1	Wymiana kotła		1,00	5000,00	5000,00	22	6100,00)		
2	Założenie otuliny i poliuretanowej	zolacyjnej z pianki	1,00	600,00	600,00	22	732,00			
3	Termostaty		20,00	150,00	3000,00	0	3000,00)		
4	Wymiana grzejnikó	iw	20,00	500,00	10000,0 0	0	10000,0 0			
	Całkowity koszt modernizacji systemu grzewczego: 19832,00 zł									

10.2.2.2 Zakładka Ocena opłacalności

'lik Edycja Kaporty	💾 🌮 🖻	• 🕈 🔻 🄶 🗄	₹ ?								
TYDL	System grze	ewczy - Audyt	energetycz	ny, WT 201	4						
·×ћÔ	Ocen	a sprawności	0	cena stanu teo	hnicznego	Ocer	na opłaca	Iności			
Ocena opłacalności	Dane główne	e do optymalizad	iji					Wynil	ki optymalizac	ji	
····· W Wariant 1	Wariant	η 0,1 [-]	wt [-]	wd [-]	Nakłady [zł]	SPBT [lat]	+	Wari	ant optymalny:	Wariant 1	
	Istniejący	0,51	1,00	1,00							
	Wariant 1	0,77	1,00	1,00	19832,00	7,29	×	Kosz	t: 19832,00 zł		
								SPB	T: 7.29 lat		
								Zakr	es moderniza	cji	
								Lp.	Rodzaj us	sprawnienia	Nakłady
								1	Wymiana kotła		6100,00
								2	Założenie otulir pianki poliureta	ny izolacyjnej z nowei	732,00
								3	Termostaty		3000,00
								4	Wymiana grzej	ników	10000,00
Dane ogólne System grzewczy Clepła woda użytkowa Sciany, stropy, stropodachy Okna, drzwi, wentyłacja Warianty termomodernizacyjn DANE WEJŚCIOWE Obliczenia creji Ne											
AUDYT											
PODGLĄD PROJEKTU	Raport o bledad	th									
WYDRUKI		vo				Onis					
	Lp. Typ Opis Opis A										

Zakładka Ocena opłacalności

10.2.2.2.1 Dane główne do optymalizacji

Pole z danymi do optymalizacji.

W grupie *DANE GŁÓWNE DO OPTYMALIZACJI* znajdują dane wprowadzone przez audytora w oknie wariantów. Audytor ma możliwość analizowania określonej przez siebie ilości wariantów poprzez dodawanie kolejnych. Po wybraniu wariantu z drzewa *OCENA OPŁACALNOŚCI* otwarte zostanie okno, w którym audytor poda wszystkie konieczne dane do przeprowadzenia oceny opłacalności. Opis funkcjonalności przycisków:

dodawanie nowego wariantu,

10.2.2.2.2 Informacje dodatkowe, uzasadnienie przyjęcia nakładów

Informacje dodatkowe, uz	asadnienie przyjęcia nak	ładów	
Nakłady na podstawie wyce	eny wykonawcy		

Pole do podania informacji dodatkowych oraz uzasadnienia przyjęcia nakładów.

W grupie *INFORMACJE DODATKOWE, UZASADNIENIE PRZYJĘCIA NAKŁADÓW* w polu edycyjnym audytor mam możliwość podania wszystkich informacji dodatkowych oraz uwag związanych z optymalnym wariantem termomodernizacyjnym. W polu edycyjnym należy podać także uzasadnienia przyjętych nakładów na inwestycję.

10.2.2.2.3 Wyniki optymalizacji

Wynil	ki optymalizacji							
Wariant optymalny: Wariant 1								
Koszt: 19832,00 zł								
SPB	F: 7,29 lat							
Zakr	es modernizacii							
Lp.	Rodzaj usprawnienia	Nakłady						
1	Wymiana kotła	6100,00						
2	Założenie otuliny izolacyjnej z pianki poliuretanowej 732,00							
3	3 Termostaty 3000,00							
4	4 Wymiana grzejników 10000,00							
	•							

Pole z wynikami optymalizacji.

W grupie *WYNIKI OPTYMALIZACJI* podawane są najważniejsze parametry optymalnego wariantu przedsięwzięcia termomodernizacyjnego tj. *KOSZT, SPBT, ZAKRES MODERNIZACJI*. Program automatycznie wybiera *WARIANT OPTYMALNY* zgodnie z rozporządzeniem, czyli taki który posiada najniższą wartość SPBT. Audytor ma możliwość samodzielnego wyboru wariantu.

	Sprawności wytwarzania ciepła (dla ogrzewania) w źródłach η H,g		×
Lp.	Rodzaj źródła ciepła	η H,g (ε H,g)	^
1	Kotły węglowe wyprodukowane po 2000 r.	0,82	
2	Kotły węglowe wyprodukowane w latach 1980-2000	0,65-0,75	
3	Kotły węglowe wyprodukowane przed 1980 r.	0,50-0,65	
4	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy do 100 kW	0,63	
5	Kotły na biomasę (drewno: polana, brykiety, palety, zrębki) wrzutowe z obsługą ręczną o mocy do 100 kW	0,72	
6	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy powyżej 100 kW	0,70	
7	Kotły na biomasę (słoma) automatyczne o mocy powyżej 100 kW do 600 kW	0,75	
8	Kotły na biomasę (drewno: polana, brykiety, palety, zrębki) automatyczne o mocy powyżej 100 kW do 600 kW	0,85	
9	Kotły na biomasę (słoma, drewno) automatyczne z mechanicznym podawaniem paliwa o mocy powyzej 500 kW	0,85	
10	Podgrzewacze elektryczne - przepływowe	0,94	
11	Podgrzewacze elektrotermiczne	1,00	
12	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe, promiennikowe i podłogowe kablowe	0,99	
13	Ogrzewanie podłogowe elektryczno-wodne	0,95	
14	Piece kaflowe	0,60-0,70	
15	Piece olejowe pomieszczeniowe	0,84	
16	Piece gazowe pomieszczeniowe	0,75	
17	Kotły na paliwo gazowe lub płynne z otwartą komorą spalania (palnikami atmosferycznymi) i dwustawną regulacją procesu spalania	0,86	
	Kotły niskotemperaturowe na paliwo gazowe lub płynne z zamkniętą komorą spalania i palnikiem modulowanym		
	- do 50 kW	0,87-0,91	
18	- 50-120 kW	0,91-0,97	
	- 120-1200 kW	0,94-0,98	
	Kotły gazowe kondensacyjne 1)		¥
	Anulų	ОК	

Tabela ze wartościami sprawności przesyłania ciepła

Tab	ela sprawności regulacji i wykorzystania ciepła	η H, e 🛛 ×
Lp.	Rodzaj instalacji	η Н,е
1	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i promiennikowe	0,98
2	Podłogowe: kablowe, elektryczno-wodne	0,95
3	Elektryczne grzejniki akumulacyjne: konwektorowe i podłogowe kablowe	0,90
4	Elektryczne ogrzewanie akumulacyjne bezpośrednie	0,91-0,97
5	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej, bez regulacji miejscowej	0,75-0,85
6	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji miejscowej	0,86-0,91
7	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej adaptacyjnej i miejscowej	0,98-0,99
8	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 1K)	0,97
9	Centralne ogrzewanie z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 2K)	0,93
10	Ogrzewanie podłogowe w przypadku regulacji centralnej, bez miejscowej	0,94-0,96
11	Ogrzewanie podłogowe lub ścienne w przypadku regulacji centralnej i miejscowej	0,97-0,98
12	Ogrzewanie miejscowe przy braku regulacji automatycznej w pomieszczeniu	0,80-0,85
	Anuluj	OK

Tabela z wartościami współczynników regulacji

Tabela z wartościami sprawności akumulacji ciepła

Po wprowadzeniu rodzajów usprawnień oraz ich kosztów należy podać wartości sprawności po ich przeprowadzeniu. Audytor ma możliwość podglądu wartości sprawności w stanie istniejącym. Audytor w polach edycyjnych podaje wartości sprawności po modernizacji samodzielnie lub wykorzystując pomocnicze tabele w których znajdują się wartości sprawności zgodnie z rozporządzeniem. Domyślne wartości sprawności po modernizacji są identyczne jak w stanie istniejącym i do zadań audytora należy ewentualna ich zmiana wynikająca z proponowanych usprawnień termomodernizacyjnych.

10.2.3 ETAP Audyt - Ciepła woda użytkowa

ArCADia-TERMO PRO 6.0 Lic	encja dla: Test - ArCADia	a-TERMO PRO 6 [L01] - 05. Audyt - I	Kompleksowa moder	nizacja z ograniczeniem śr 🗕 🗖 🗙
<u>P</u> lik <u>E</u> dycja <u>R</u> aporty	🗎 🌣 🖻 🔦 🔻 🔻 🌶	₹ ?		
AUDYT	Ciepła woda użytkowa -	Audyt energetyczny, WT 2014		
+×ħ0	Ocena sprawności	Ocena stanu technicznego	Ocena opłacalni	ości
Ocena oplacalności W Wariant 1	Wytwarzanie Rodzaj paliwa:	Ciepło sieciowe z kogeneracji - Węgiel	Tablice	Sprawność wytwarzania n _{Wg} =0,89
	Rodzaj źródła ciepła:	Węzeł cieplny kompaktowy z obudową	Baza	
	Przesył Typ instalacji ciepłej wody:	Centralne podgrzewanie wody – systen z obiegami cyrkulacyjnymi z pionami instalacyjnymi i przewodami	Tablice	Sprawność przesyłu ∩ _{W,d} =0,60
	Rodzaj instalacji ciepłej wody:	Liczba punktów poboru ciepłej wody powyżej 30 do 100	Baza	
	Akumulacja ciepła	Zasobnik cieplei wody użytkowej		Sprawność akumulacji
	Parametry zasobnika:	wyprodukowany po 2005 r.	Tablice	n _{W.s} =0,86
	Roczne zapotrzebowanie	ciepła użytkowego		Wyniki obliczeń
	Metoda obliczeń: Wg n	ormy PN-92/B-01706		Roczne zapotrzebowanie ciepła użytkowego
	Temperatura ciepłej wody:	55		Q _{W,rd} =4588,05 <u>kWh</u> rok
	Liczba dni użytkowania:	t _{uz} = 365,00 <u>dni</u> rok	Tablice	Obliczeniowe zapotrzebowanie ciepła
Dane ogólne	Czas użytkowania:	1 T = 24,00 h		Q _{oow} =35,97 GJ rok
System grzewczy	Liczba jednostek odniesienia:	L _i = 30,00	Oblicz	Q _{00w} =9990,53 <u>kWh</u> rok
Ciepła woda użytkowa	Jednostkowa dobowa ilość	V = 8.00 dm ³	Tablice	Obliczeniowe zapotrzebowanie mocy
Okna drzwi wentylacia	Rzeczywista dobowa ilość	o*24		q ₀₀ ≓ 2,13 kW
Warianty termomodernizacyjne	wody do podgrzania:	V _{CW/} = 8,00 <u>0*24</u>		Roczne zużycie ciepłej wody
DANE WEJŚCIOWE	$O_{G_{a}} = 240,00 \frac{dm^{3}}{24}$	G G = 10,00 dm ³ G G = 4	0,64b	V _{cw} =87,60 m ³
OBLICZENIA CIEPLNE		1, at 11 10 as		
TQ AUDYT				
Q PODGLĄD PROJEKTU	Rapot o bladach			
H WYDRUKI			Onis	^
	1 Ostrzeżenie Parar	metr "Współczynnik przenikania Uc" w przegrodz	ie "STW 1", powinien znajdow	vać się w przedziale od 0,00 do 0,25! 🗸
< [9/15] >			<u> </u>	ta là là 🗐 Zamknij

Etap Audyt-->Ciepła woda użytkowa.Obliczenia wg normy PN-92/B-01706

ArCA	ADia-TERMO PRO 6.1 Li	cencja dla: Test - ArCADia-TERMO P	RO 6 [L01] - Audyt szk	olna do wydruku 🛛 🗕 🗖 🗙
Plik Edycja Ustawienia		⊳ ₹ ?		
AUDYT	Ciepła woda użytkowa	- Audyt energetyczny, WT 2014		
+×ħÔ	Ocena sprawności	Ocena stanu technicznego	Ocena opłacalno	ści
⊡	Wytwarzanie Rodzaj paliwa:	Ciepło sieciowe z ciepłowni lokalnej - Wę kamienny	giel Tablice	Sprawność wytwarzania n _{W.g} =0,98
	Rodzaj źródła ciepła:	Węzeł cieplny kompaktowy bez obudowy (ogrzewanie i ciepła woda użytkowa), o m	Baza	
	Przesył Typ instalacji ciepłej wody:	Centralne podgrzewanie wody — system obiegami cyrkulacyjnymi z pionami instal nieizolowanymi i izolowanymi przewodar	y z Icyjnymi ni	Sprawność przesyłu n _{w.s} =0,60
	Rodzaj instalacji cieplej wody:	Liczba punktów poboru ciepłej wody do 3	Baza	
	Akumulacja ciepła		_	Sprawnosc akumulacji
	Parametry zasobnika:	Zasobnik ciepłej wody użytkowej wyprodukowany po 2005 r.	Tablice	η _{W,5} =0,65
329,74 k\//h/(m²rok)	Roczne zapotrzebowani	e ciepła użytkowego		Wyniki obliczeń
200 400 600 800 1000 > 1000	Metoda obliczeń: Wg	metody świadectwa charakterystyki energ	etycznej budynku	Roczne zapotrzebowanie ciepła użytkowego
*	Powierzchnia o regulowane	ej temperaturze: A _f = 2941,00 m ²		Q _{W/rd} =13751,15 KW/r rok
Dane ogólne	Rodzaj budynku:	Biurowy		Obliczeniowe zapotrzebowanie ciepła
System grzewczy Ciepła woda użytkowa	Jednostkowe dobowe zapo	otrzebowanie na c.w.u.: V _{WI} = 0,36 <u>dm³</u> m ² dzień	Tablice	Q _{00w} =99,05 <u>cok</u> Q _{00w} =27513,31 <u>kWh</u>
Ściany, stropy, stropodachy Okna, drzwi, wentylacja	Współczynnik korekcyjny z przerwy w użytkowaniu c.	e względu na k _R =0,70 w.u.:	Tablice	Obliczeniowe zapotrzebowanie mocy
Warianty termomodernizacyj	Czas użytkowania:	18 h		q _{cc=} 5,08 kW
DANE WEJŚCIOWE	Współczynnik godzinowej r	ierównomierności: Nh = 1,70	Tablice	Roczne zużycie ciepłej wody
OBLICZENIA CIEPLNE				V _{cw} =263,00 m ³
C AUDYT				
C PODGLAD PROJEKTU	Raport o bledach			
💾 WYDRUKI	Lp. Typ		Opis	^
	1 Ostrzeżenie Par	ametr "Współczynnik przenikania Uc" w przegrod:	ie "SZ 1", powinien znajdować	się w przedziałe od 0,00 do 0,25! 🗸
< [11/18] >				ta a a a Zamknij

Etap Audyt → Ciepła woda użytkowa. Obliczenia wg Metody obliczeń świadecwta charakterystyki energetycznej budynku

Okno dialogowe *CIEPŁA WODA UŻYTKOWA*składa się z pola z drzewkiem wariantów, zakładek *OCENA SPRAWNOŚCI, OCENA STANU TECHNICZNEGO, OCENA OPŁACALNOŚCI*oraz z wywoływanego, po naciśnięciu nazwy wariantu w drzewku wariantów, *okna wariantu*, w którym to audytor wprowadza dane dotyczące wariantu termomodernizacyjnego.

Pierwszy wariant temomodernizacyjny systemu grzewczego utworzny jest automatycznie po zaznaczeniu opcji *Wskazanie do oceny opłacalności*. Pozostałe warianty tworzy się przy użyciu zielonego krzyżyka.

Warianty temomodernizacyjne

Opis funkcjonalności przycisków:

10.2.3.1 Zakładka Sprawność wytwarzania

Zakładka *OCENA SPRAWNOŚCI*służy do wprowadzenia informacji dotyczących ciepłej wody użytkowej istotnych w zakresie doboru sprawności wytwarzania oraz przesyłu ciepłej wody w analizowanym budynku.

prawn	ość wytwarzania	Sprawność przesyłu	Spra	wność ak	umulacji Ob	oliczenia Q	w,nd i wyr	niki			
Wytwa	arzanie					_		Sp	rawność wytwa	irzania	
Rodzaj	j paliwa:	Energia elektryczna	a - Sie	ć elektro	oenergetyc	zna	Tablice	Prz	ed modernizacją	η _{W,g} = 0,89	
Rodza	j źródła ciepła:	Elektryczny podgrz	ewac	z przepł	ywowy		Baza	Po	modernizacji	η _{W,g} =0,99	
E	zastosowanych	ulepszen zmilejsza	ајąсус	en roczni	e zapotrzek	owanie r	ia ciepło				
Wykaz	zastosowanych z prac remonto	wych	ającyc	n roczni	e zapotrzek	oowanie r	na ciepło				
Wykaz	zastosowanych z prac remonto R	wych odzaj robół	ającyc	llość robót	e zapotrzek Cena jedn.	Koszty retto [zł]	VAT [%]	Koszty brutto [zł]	Uzasad	Inienie przyjętych ko	sztów

Zakładka oceny sprawności wytwarzania ciepłej wody użytkowej wg rozporządzenia MI z 17.03.2009 r.

Zakładka składa się z grup:

- WYTWARZANIE oraz powiązanej z nią grupy SPRAWNOŚĆ WYTWARZANIA.
- *PRZESYŁ* oraz powiązanej z nią grupy *SPRAWNOŚĆ PRZESYŁU*
- WYNIKI OBLICZEŃ
- *INFORMACJE UZUPEŁNIAJĄCE* służące do obliczeń zapotrzebowania na ciepło oraz moc do celów ciepłej wody użytkowej.

Opis funkcjonalności przycisków:

dodawanie nowego rodzaju robót,

usuwanie istniejącegorodzaju robót

Grupy WYTWARZANIE oraz SPRAWNOŚĆ WYTWARZANIA służą do wprowadzenia danych dotyczących systemu wytwarzania ciepłej wody użytkowej.

Za pomocą listy rozwijalnej **RODZAJ PALIWA** oraz listy rozwijalnej **TYP KOTŁA/PIECA** audytor charakteryzuje źródło ciepła w jakim wytwarzana jest ciepła woda użytkowa. Po wybraniu stosownych wartości program dobierze odpowiednią wartość sprawności wytwarzania która następnie posłuży do obliczeń zapotrzebowania na moc oraz ciepło na cele cwu.

Audytor ma możliwość także podania w polu edycyjnym *INFORMACJE UZUPEŁNIAJĄCE* informacji, które dodatkowo charakteryzują system wytwarzania cwu.

Wytwarzanie			Sprawność wytwa	irzania
Rodzaj paliwa:	Energia elektryczna - Sieć elektroenergetyczna	Tablice	Przed modernizacją	η _{W.g} = 0,89
Rodzaj źródła ciepła:	Elektryczny podgrzewacz przepływowy	Baza	Po modernizacji	η _{W,g} =0,99

Pola do charakterystyki wytwarzania ciepłej wody użytkowej wg rozporządzenia MI z 17.03.2009 r.

RODZAJ PALIWA – użytkownik ma do wyboru następującą listę:

Sprawności wytwarzania ciepła (dla przygotowania ciepłej w 🗙									
Lp.	Rodzaj źródła ciepła	η W,g (ε W,g)							
1	Przepływowy podgrzewacz gazowy z zapłonem elektrycznym	0,84-0,99							
2	Przepływowy podgrzewacz gazowy z zapłonem płomieniem dyżurnym	0,16-0,74							
3	Kotły stałotemperaturowe (tylko ciepła woda)	0,40-0,72							
4	Kotły stałotemperaturowe dwufunkcyjne (ogrzewanie i ciepła woda)	0,65-0,77							
5	Kotły niskotemperaturowe o mocy do 50 kW	0,83-0,90							
6	Kotły niskotemperaturowe o mocy ponad 50 kW	0,88-0,92							
7	Kotły gazowe kondensacyjne o mocy do 50 kW 1)	0,85-0,91							
8	Kotły gazowe kondensacyjne o mocy ponad 50 kW	0,88-0,93							
9	Elektryczny podgrzewacz akumulacyjny (z zasobnikiem bez strat)	0,96-0,99							
10	Elektryczny podgrzewacz przepływowy	0,99-1,00							
11	Pompy ciepła woda/woda	3,0-4,5							
12	Pompy ciepła glikol/woda	2,6-3,8							
13	Pompy ciepła powietrze/woda	2,2-3,1							
14	Węzeł cieplny kompaktowy z obudową	0,88-0,90							
15	Węzeł cieplny kompaktowy bez obudowy	0,80-0,85							
16	Węzeł cieplny kompaktowy z obudową (ogrzewanie i ciepła woda)	0,94-0,97							
17	Węzeł cieplny kompaktowy bez obudowy (ogrzewanie i ciepła woda)	0,88-0,96							
1) uv cało u	sprawność odniesiona do wartości opałowej paliwa, 2) współczynnik wydajności grzejnej pompy ciepła (S lwaga: przyjąta sprawność dla rozpatrywanego przypad vzględniać stan kotła i jego średniosezonowe obciążeni roczny tryb pracy w układzie centralnego ogrzewania i żytkoweji w przypadku trudności ceny stanu faktyczne przyjmować wartość średnią z podanego zakresu spra	sezonowy PF) ku powinna e cieplne, ciepłej wody go należy wności.							
	Anuluj	ОК							

W przypadku wybrania wartości "*PALIWO-KOLEKTORY SŁONECZNE TERMICZNE*" wzór do obliczeń: $Q_{P,W} = 3 \cdot E_{el,pom,W}$

-przycisk dostępu do bazy sprawności

Baza

		Baza sprawności					- 0		×
Znajdź Szukaj: Ē		Wybrany wy Wyczyść Sprawność 4,			/ wynik ość: 4,10	rynik :4,10			
Wyniki wyszukiwania aktualnie niedostępne.						min		n	nax
+ +∔ × ≫ ҧ 🖻 🛱 🛱	Lp.	Nazwa	Spra min	awność imalna	Sprawność maksymalna			^	+
Biomasa	1	Pompa ciepła solanka/woda o mocy grzewczej 6,4-9,6 kW typu Vitocal 200-G BWP 106/108/110		4,000	4,200	Pompa			×
Stiebel Eltron	2	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,0 kW typu Vitocal 222-G		4,200	4,300	Pompa			יה D
Biawar Biawar Pompa ciepła Vikersønn	3	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,0 kW typu Vitocal 242-G		4,200	4,300	Pompa			\$
Danfoss	4	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 333-G		4,600	4,700	Pompa			
SUN ENERGY Pompa ciepła Węzły cieplne	5	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 343-G		4,600	4,700	Pompa			
Nowo projektowane	6	Pompa ciepła solanka/woda o mocy grzewczej 5,9-10,3 kW typu Vitocal 333-GNC		4,600	4,700	Pompa			
	7	Pompa ciepła solanka/woda o mocy grzewczej 6,2-17,6 kW typu Vitocal 300-G BW 106/108/110/112/114/117		4,400	4,700	Pompa			
	8	Pompa ciepła solanka/woda o mocy grzewczej 6,2-17,6 kW typu Vitocal 300-G BWC 106/108/110/112/114/117		4,400	4,700	Pompa		~	
Przywróć do myślne wartości Wybór wersji b	, azy da	nych: 6.0			Anul	uj	(эк	

Baza sprawności

10.2.3.1.1 Przesył

Prze Typ i	e sył nstalacji ciepłej wo	dy: z	entralne poo obiegami cy graniczenier	dgrz /rkul m pr	ewanie acyjnym acy, z pie	wody — sys i z onami	tem	Tablice	Sp Prz	rawność przes ed modernizacją	yłu n _{W,d} = 0,60	
Rodz	aj instalacji ciepłej	wody: Li 30	iczba punktó)	ów p	oboru ci	epłej wody	do	Baza	Po	modernizacji	η _{W,d} =0,80	
Wvk	az prac remonto	wych										
Wyk Lp.	az prac remonto	wych odzaj robć	ot		liość robót	Cena jedn.	Koszty netto [zł]	VAT [%]	Koszty brutto [zł]	Uzasad	Inienie przyjętych kosztów	
Wyk Lp. 1	az prac remonto R Izolacja pionów	wych odzaj robć	it		liość robót 1,00	Cena jedn. 1500,00	Koszty netto [zł] 1500,00	VAT [%]	Koszty brutto [zł] 1500,00	Uzasad	Inienie przyjętych kosztów	
Wyk Lp. 1 2	az prac remonto R Izolacja pionów Pompa cyrkulacyji	wych odzaj robó na	it		llość robót 1,00 1,00	Cena jedn. 1500,00 500,00	Koszty netto [zł] 1500,00 500,00	VAT [%] 0	Koszty brutto [zf] 1500,00 500,00	Uzasad	Inienie przyjętych kosztów	

Pola do charakterystyki przesyłu ciepłej wody użytkowej wg rozporządzenia MI z 17.03.2009

W grupie *PRZESYŁ*audytorma za zadanie scharakteryzować system przesyłu ciepłej wody użytkowej. Dokonuje tego poprzez wybranie odpowiednich wartości z list rozwijalnych *RODZAJ INSTALACJI*. Audytor w tym punkcie charakteryzuje rodzaj systemu przegotowania cwu, rodzaj przewodów cyrkulacyjnych oraz wielkość instalacji. Na podstawie wybranych informacji program automatycznie dobierze wartość sprawności przesyłu ciepłej wody użytkowej.

r.

Dodatkowo w polu edycyjnym **OPIS ZASTOSOWANYCH ULEPSZEŃ...** audytor ma możliwość uzupełnienia informacji dotyczących systemu przesyłu ciepłej wody użytkowej.

Sprawność przesyłu wody ciepłej η W,d	×
Rodzaje instalacji ciepłej wody	Sprawność przesyłu wody ciepłej η W,d
1. Miejscowe przygotowanie ciepłej wody, instalacje ciepłej wody bez obiegów cyrkulacyjnych	
Miejscowe przygotowanie ciepłej wody bezpośrednio przy punktach poboru wody ciepłej	1,0
Miejscowe przygotowanie ciepłej wody dla grupy punktów poboru wody ciepłej w jednym pomieszczeniu sanitarnym, bez obiegu cyrkulacyjnego	0,8
2. Mieszkaniowe węzły cieplne	
Kompaktowy węzeł cieplny dla pojedynczego lokalu mieszkalnego, bez obiegu cyrkulacyjnego	0,85
3. Centralne przygotowanie ciepłej wody, instalacja cieplej wody bez obiegów cyrkulacyjnych	
Instalacje ciepłej wody w budynkach jednorodzinnych	0,6
 Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi, piony instalacyjne nieizolowane, przewody rozprowadzające izolowane 	
Instalacje małe, do 30 punktów poboru ciepłej wody	0,6
Instalacje średnie, 30-100 punktów poboru ciepłej wody	0,5
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,4
5. Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi, piony instalacyjne i przewody rozprowadzające izolowane 1)	
Instalacje małe, do 30 punktów poboru ciepłej wody	0,7
Instalacje średnie, 30-100 punktów poboru ciepłej wody	0,6
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,5
6. Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi z ograniczeniem czasu pracy 2), piony instalacyjne i przewody rozprowadzające izolowane	
Instalacje małe, do 30 punktów poboru ciepłej wody	0,8
Instalacje średnie, 30-100 punktów poboru ciepłej wody	0,7
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,6
Objaśnienia: 1) Przewody izołowane wykonane z rur stałowych lub miedzianych, lub przewody nieizołowane w z rur z tworzyw sztucznych. 2) Ograniczenie czasu pracy pompy cyrkulacyjnej do ciepłej wody w godzinach nocnych lub zasto pomp obiegowych ze sterowaniem za pomocą układów termostatycznych.	vykonane osowanie
Anuluj	ОК

Wartości sprawności przesyłu ciepłej wody

Przesył	Centralne podarzewanie wody - system		Sprawność przesyłu		
Typ instalacji ciepłej wody:	z obiegami cyrkulacyjnymi z ograniczeniem pracy, z pionami	Tablice	Przed modernizacją	η _{W,d} = 0,60	
Rodzaj instalacji ciepłej wody:	Liczba punktów poboru ciepłej wody do 30	Baza	Po modernizacji	η _{W,d} =0,80	

Pola do charakterystyki przesyłu ciepłej wody użytkowej wg rozporządzenia MI z 17.03.2009 r.

TYP INSTALACJI CIEPŁEJ WODY - użytkownik w polu tym wybiera jeden z wariantów wg poniższej tabeli:

Lp.	Typ instalacji ciepłej wody
1	Miejscowe przygotowanie ciepłej wody, instalacja ciepłej wody bez obiegów cyrkulacyjnych
2	Mieszkaniowe węzły ciepła
3	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody bez obiegów cyrkulacyjnych
4	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi, piony
	instalacyjne nie izolowane, przewody rozprowadzające izolowane
5	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi, piony
	instalacyjne i przewody rozprowadzające izolowane
6	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi z
	ograniczeniem czasu pracy, piony instalacyjne i przewody rozprowadzające izolowane

RODZAJ INSTALACJI CIEPŁEJ WODY - użytkownik w polu tym wybiera jeden z wariantów wg poniższej tabeli:

Lp.	Rodzaj instalacji ciepłej wody	ηw,d
1	Miejscowe przygotowanie ciepłej wody bezpośrednio przy punktach poboru wody ciepłej	1,00
2	Miejscowe przygotowanie ciepłej wody dla grupy punktów poboru wody ciepłej w jednym pomieszczeniu sanitarnym, bez obiegu cyrkulacyjnego	0,80
3	Kompaktowy węzeł cieplny dla pojedynczego lokalu mieszkalnego, bez obiegu cyrkulacyjnego	0,85
4	Instalacja ciepłej wody w budynkach jednorodzinnych	0,60
5	Instalacje małe, do 30 punktów poboru ciepłej wody	0,60
6	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,50
7	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,40
8	Instalacje małe, do 30 punktów poboru ciepłej wody	0,70

Podręcznik użytkownika dla programu ArCADia–TERMO

Praca z modułem Audyt

9	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,60
10	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,50
11	Instalacje małe, do 30 punktów poboru ciepłej wody	0,80
12	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,70
13	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,60

Dodatkowo po tego współczynnika dorobiony jest przycisk \square , który otwiera poniższe okno (wówczas współczynnik η w, wyliczany jest z poniższego okna):

Okno certyfikatu obliczenie sprawności przesyłu

PRZEWODY CIEPŁEJ WODY O TEMPERATURZE – wybór jednego z wariantów podstawie, którego wstawiane będą wartości ql: 55 °C przepływ stały, 55 °C przepływ zmienny **LP.** – kolejna liczba porządkowa dla dodawanego wiersza

DN [mm] – średnica przewodów ciepłej wody, wartość wybierana przez użytkownika z listy.

L [m] – długość przewodów ciepłej wody o zadanej średnicy, wartość wpisywana przez użytkownika,

LOKALIZACJA PRZEWODÓW- użytkownik w kolumnie tej wybiera jeden z dwóch wariantów lokalizacji przewodów: NA ZEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU, WEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU,

TYP IZOLACJI – użytkownik w tym oknie wybiera z listy jeden z kilku wariantów izolacji cieplnej: *NIEIZOLOWANE, ½ GRUBOŚCI WG WT, GRUBOŚĆ WT, 2 X GRUBOŚĆ WT,* **qi [W/m]**- jednostkowa strata ciepła przewodów ciepłej wody, wstawiana na podstawie tabelki wyświetlanej

poprzez wciśnięcie przycisku, edytowalna przez użytkownika. Wartość domyślna jest wstawiana na podstawie listy rozwijanej "**Parametry wody**", kolumny "**DN**", kolumny "**Lokalizacja przewodów**", kolumny" **Typ izolacji". Na podstawie poniższej tabelki:**

Przewody		Na zewnątrz osłony izolacyjnej				Wewnątrz osłony izolacyjnej				
0	Izolacja termiczna		bud	ynku			bu	dynku		
temperaturze	przewodów	DN	DN	DN	DN	DN	DN	DN	DN	
°C		10-15	20-32	40-65	80-100	10-15	20-32	40-65	80-100	
Przewody	nieizolowane	24,9	33,2	47,7	68,4	14,9	19,9	28,6	41,0	
ciepłej wody	1/2 grubości wg WT	5,7	8,8	13,5	20,7	3,4	5,3	8,1	12,4	
użytkowej –	grubość wg WT	4,1	4,6	4,6	4,6	2,5	2,7	2,7	2,7	
przepływ										
zmienny	2x grubość wg WT	3,0	3,4	3,2	3,2	1,8	2,0	1,9	1,9	
55°C										
Przewody	nieizolowane	53,5	71,3	102,5	147,1	37,3	49,8	71,5	102,6	
cyrkulacyjne	1/2 grubości wg WT	12,3	18,9	29,0	44,6	8,6	13,2	20,2	31,1	
– stały	grubość wg WT	8,8	9,8	9,8	9,8	6,1	6,8	6,8	6,8	
przepływ	2x grubość wg WT	6,5	7,2	6,9	6,9	4,5	5,1	4,8	4,8	
55°C	_									

 $t_{\rm CW}$ [h] - czas trwania sezonu grzewczego.

 $\Delta Q_{w,d} [kWh/rok]$ – jednostkowa sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią). Wartość wyliczana domyślnie z wzoru: $\Delta Q_{w,d} = (L \cdot qi \cdot t_{Cw}) \cdot 10^{-3}$

 $\sum \Delta \mathbf{Q}_{w,d} [\mathbf{k}W\mathbf{h}/\mathbf{rok}]$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią). Wartość wyliczana z sumy kolumny $\Delta \mathbf{Q}_{w,d}$: $\sum \Delta \mathbf{Q}_{w,d} = \sum (\Delta \mathbf{Q}_{w,d})$

H_{w,d}– średnia sezonowa sprawność transportu nośnika ciepła w obrębie budynku (osłony bilansowej lub poza nią). Wartość domyślnie obliczana z wzoru:

$$\eta_{W,d} = \frac{Q_{W,nd}}{Q_{W,nd} + \Sigma \Delta Q_{W,d}}$$

Gdzie:

Q w,nd - zapotrzebowanie ciepła użytkowego do podgrzewu ciepłej wody,

 $\sum \Delta Q_{W,d}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku,

10.2.3.1.2 Sprawność akumulacji

Sprawność wytwarzania	Sprawność przesyłu	Sprawność ak	umulacji	Obliczenia Q	w,nd i wy	miki		
Akumulacja ciepła				_		S	prawność akumulacji	
Parametry zasobnika:	System przygotowania ciepłej wody użytkowej bez zasobnika ciepłej wody				Tablice Przed modernizacją η _{W,s} =0,86			
					Baza	P	o modernizacji n _{W,6} =1,00	
Opis zastosowanych	ulepszeń zmniejsz	ających roczn	e zapotrz	ebowanie n	a ciepło	,		
=								
Wykaz prac remonto	wych							
Lp. F	łodzaj robót	llość robót	Cena jedr	n. netto	VAT [%]	Koszty brutto	/ Uzasadnienie przyjętych kosztów	+
				[21]		[21]		×
								42
J								

Pola do charakterystyki akumulacji ciepłej wody użytkowej wg rozporządzenia MI z 17.03.2009.

PARAMETRY ZASOBNIKA CIEPŁEJ WODY - na podstawie listy program wstawia odpowiedni współczynnik $\eta_{W,s}$ wg następującego schematu:

Sprawność akumulacji c.w.u.

10.2.3.1.3 Obliczenia Q_{W,nd} i wyniki

Pola do charakterystyki obliczeń ciepłej wody użytkowej wg rozporządzenia MI z 3.06.2014 r.

Aby program mógł wykonać obliczenia zapotrzebowania na moc oraz ciepło na cele ciepłej wody użytkowej należy podać dane:

- **TEMPERATURA CIEPŁEJ WODY** audytor tą wartość może podać samodzielnie, na podstawie analizy zużycia ciepłej wody użytkowej w analizowanym budynku lub wybrać wartość stabelaryzowaną po uruchomieniu tabeli z danymi za pomocą przycisku **Tabela**.
- LICZBA DNI UŻYTKWOWANIA CIEPŁEJ WODY audytor pojade ilość dni użytkwoania ciepłej wody w ciągu roku

Profile użytkowania wybranych budynków 🏼 🎽			
Lp.	Rodzaj usługi	h/dobe	dni/rok
1.	Biura	11	250
2.	Handel/usługi	12	300
3.	Klasy szkolne	7	200
4.	Sale wykładowe	10	150
5.	Sale łóżkowe	24	365
6.	Hotele - pokoje	11	365
7.	Kantyny	7	250
8.	Restauracje	14	300
9.	Kuchnie	13	300
10.	Komunikacja	11	250
11.	Magazyny	11	250
12.	Serwerownie	24	365
13.	Warsztaty, montaż	9	250
14.	Biblioteka, czytelnia	Biblioteka, czytelnia 12 300	
Anuluj OK			

Czas użytkowania instalacji ciepłej wody

• *LICZBA JEDNOSTEK ODNIESIENIA* – w polu edycyjnym audytor podaje liczbę jednostek odniesienia, natomiast za pomocą listy rozwijalnej charakteryzuje samą jednostkę odniesienia.

W grupie *WYNIKI OBLICZEŃ*uwidocznione są wartości, obliczone na podstawie wprowadzonych danych, *OBLICZENIOWEGO ZAPOTRZEBOWANIA CIEPŁA, OBLICZENIOWEGO ZAPOTRZEBOWANIA MOCY*oraz *ROCZNEGO ZUŻYCIA CIEPŁEJ WODY*.

Wartości jednostkowego dobowego zużycia ciepłej wody

Roczne zapotrzebowanie ciepła użytkowego Metoda obliczeń: Wg metody świadectwa charakterystyki energetycznej budynku					
Powierzchnia o regulowanej temperaturze:	A _f = 82,90 m ²				
Rodzaj budynku:	Dom jednorodzinny				
Jednostkowe dobowe zapotrzebowanie na c.w.:	V _{WI} = 435,43 <u>dm³</u> Tablice				
Współczynnik korekcyjny ze względu na przerwy w użytkowaniu c.w.:	k _R =1,00 Tablice				
Roczne zapotrzebowanie na energię użytkową:	Q _{W,nd} = 690064,65 <u>kWh</u> a				

Pola do wprowadzenia pozostałych danych służących do obliczeń ciepłej wody użytkowej wg metodologii świadectwa charakterystyki energetycznej oraz pole z wynikami obliczeń wg Rozporządzenia MI z

TEMPERATURA CIEPŁEJ WODY – pole do wyboru jednego z trzech wariantów temperatury ciepłej wody na zaworze czerpalnym (55°C), na tej podstawie dobierany jest współczynnik k_t (wg tabelki nr 14 strona 38 Rozporządzenia MI).

LP. – kolejna liczba porządkowa dla dodawanego wiersza

Lp.	Rodzaje budynków	Jednostka odniesienia	Jednostkowe dobowe zużycie cieplej wody V _{CW} o temperaturze 55° C
		[j.o.]	[dm³/(j.o.)∙ doba]
1. Bud	ynki mieszkalne:		
1.1.	Budynki jednorodzinne	[osoba]	35
1.2.	Budynki wielorodzinne ¹⁾	[osoba] ²⁾	48
2. Bud	ynki zamieszkania zbiorowego:		
2.1.	Hotele z gastronomią	[miejsce noclegowe]	112
2.2.	Hotele pozostałe	[miejsce noclegowe]	75
2.3.	Schroniska, pensjonaty,	[miejsce noclegowe]	50
2.4.	Budynki koszarowe, areszty śledcze, budynki zakwaterowania na terenie zakładu karnego	[łóżko]	70
3. Inne	e budynki:		
3.1.	Szpitale	[łóżko]	325
3.2.	Szkoły	[uczeń]	8
3.3.	Budynki biurowe, produkcyjne i magazynowe	[pracownik]	7
3.4.	Budynki handlowe	[pracownik]	25
3.5.	Budynki gastronomii i usług	[pracownik]	30
3.6.	Dworce kolejowe, lotniska, muzea, hale wystawiennicze	[pasażer/zwie dzający]	5
Objaśn ¹⁾ W pr opłat z ²⁾ Licz z proje	nienia: zypadku zastosowania w budynkach wielorodzinnyc a ciepłą wodę, podane wskaźniki jednostkowe ilości bę mieszkańców w zależności od rodzaju budynku lu ktem budynku, a dla budynków istniejscych na podst	h wodomierzy miesz ciepłej wody należy ib lokalu mieszkalne tawie stanu rzeczywi	kaniowych do rozliczania zmniejszyć o 20%. go należy przyjmować zgodnie

Q w,nd – wartość wyliczana jest na podstawie danych wybranych lub wpisanych w grupie Roczne zapotrzebowanie ciepła użytkowego na podstawie wzoru:

 $Q_{W,nd} = V_{CW} \cdot L_i \cdot 4,19 \cdot 1000 \cdot (55 - 10) \cdot k_R \cdot 365 \cdot d \cdot 2,77 \text{ x}10^{-7} \text{ [kWh/rok]}$

Gdzie:

V_{CW} - wartość pobierana z pola JEDNOSTKOWE DOBOWE ZUŻYCIE CIEPŁEJ WODY V_{cw}

L_i - wartość pobierana z pola LICZBA OSÓB/JEDNOSTEK ODNIESIENIA L_i

 θ_{CW} - wartość pobierana z pola*TEMPERATURA WODY NA ZAWORZE CZERPALNYM*(tylko wartość temperatury,55)

 k_t - wartość pobierana z pola*TEMPERATURA WODY NA ZAWORZE CZERPALNYM*(tylko wartość k_t na podstawie tabelki)

d -w przypadku gdy mamy wybrany typ budynku mieszkalny wstawiamy 0,9 w innych przypadkach 1,0.

Ciepła woda użytkowa - Audyt energetyczny, WT 2014					
Sprawność wytwarzania Sprawność prz	zesyłu Sprawność akumulacji	Obliczenia Qw,nd i wyniki			
Obliczenia Qw,nd Indywidualne koszty	•		Wyniki obliczeń		
Metoda obliczeń: Wg metody świ	iadectwa charakterystyki er	nergetycznej	Przed modernizacją Sprawność całkowita syste	Po modernizacji mu cwu	
Przed n	nodernizacją Po modernizacji		η _{0cw,to} - 0,50	n _{1cw,to} 0,66	
Powierzchnia o regulowanej A _f = 2	2941,00 m ² A _f = 2941,00 m	1 ²	Obliczeniowe zapotrzebowa	nie ciepła	
Rodzaj budynku: Biurow	y Biurowy		a oow - oo,oo rok	a low - ro,000 rok	
Jednostkowe dobowe zapotrzebowanie na V _{WI} = 0	$V_{\rm WI} = 0.35 \frac{\rm dm^3}{\rm m^2.~dzien}$ $V_{\rm WI} = 0.35 \frac{\rm dm^3}{\rm m^2.~dz}$	Tablice	Obliczeniowe zapotrzebowa goow = 5,08 kW	nie mocy g _{tow} = 5,08 kW	
Współczynnik korekcyjny ze względu $k_R = 0$,70 k _R = 0,70	Tablice	Wyniki optymalizacji		
Czas użytkowania: () т = 18,	,00 h τ = 18,00 h		Roczne oszcz. kosztów: ∆O _{rcw} =	10447,89 <u>zł</u> rok	
Współczynnik Nh = godzinowej	1,70 Nh = 1,70	Tablice	SPBT: 11,77 lat		

Pola do wprowadzenia pozostałych danych służących do obliczeń ciepłej wody użytkowej wg polskiej normy oraz pole z wynikami obliczeńwg Rozporządzenia MI z 3.06.2014 r.

TEMPERATURA CIEPŁEJ WODY – pole do wyboru jednego z trzech wariantów temperatury ciepłej wody na zaworze czerpalnym (55°C, 50°C, 45°C), na tej podstawie dobierany jest współczynnik k_t (wg tabelki nr 14 strona 38 Rozporządzenia MI).

CZAS UŻYTKOWANIA tuz [h] – pole do wpisywania przez użytkownika czasu działania instalacji ciepłej wody. Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem Tablice.

CZAS UŻYTKOWANIA [h] – pole do wpisywania czasu użytkowania ciepłej wody w ciągu doby należy przyjmować zakres od 18-24 h.

LICZBA JEDNOSTEK ODNIESIENIAL_i– pole do wpisywania przez użytkownika ilości osób dla, których przygotowywana jest ciepła woda. Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem

JEDNOSTKOWA DOBOWA ILOŚĆ WODY DO PODGRZANIAV_{cw} [dm³/o·24] –pole do określania dobowego zużycia ciepłej wody.Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem

chrona zdrowia i opieka społecz	na		
p. Rod	Izaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]
Żłobki			
a) dzienne		1 dziecko	130
b) tygodniowe		1 dziecko	150
2 Przychodnie lekarskie, ośrod	ki zdrowia	1 zatrudniony	16
3 Izby porodowe		1 łóżko	500
4 Szpitale ogólne wielooddziało	we	1 łóżko	650
5 Sanatoria z hydroterapią		1 łóżko	700
6 Apteki		1 zatrudniony	100
7 Domy małego dziecka, rencis	ty i pomocy społecznej	1 łóżko	175
7 Domy małego dziecka, rencis	ty i pomocy społecznej	1 łóżko	175

Przeciętne normowe zużycie wody Ochrona zdrowia i opieka społeczna

Przeciętne normy zużycia wody w usługach				
0śv	viata i nauka			٢
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]	
	Przedszkola			
1	a) dzienne	1 dziecko	40	
	b) tygodniowe, miesięczne	1 dziecko	150	Ξ
	Szkoły			
2	a) bez stołówki	1 uczeń	15	
	b) ze stołówką	1 uczeń	25	
	Szkoły zawodowe i szkoły wyższe			
3	a) bez laboratoriów	1 uczeń	15	
	b) z latoratoriami	1 uczeń	25	
4	Internaty i domy studenckie	1 uczeń	100	
5	Szkoły z internatami	1 uczeń	100	
	Placówki wychowania pozaszkolnego			-
		A	Anuluj OK)

Przeciętne normowe zużycie wody Oświata i nauka
Przec	iętne normy zużycia wody w usługach		×
Kult	ura i sztuka		\$
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]
1	Muzea	1 zwiedzający	10
2	Kina	1 miejsce	12
3	Teatry	1 miejsce	15
4	Domy kultury	1 miejsce	15
5	Biblioteki i czytelnie	1 korzystający	15
		Ar	OK

Przeciętne normowe zużycie wody Kultura i sztuka

Przec	iętne normy zużycia wody w usługach			×
Spo	rt i turystyka			\$
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]	*
	Hotele i motele kat. lux (*****)	1 miejsce nocleg.	200	=
	a) z zapleczem gastronomicz.	1 miejsce nocleg.	250	
1	Hotele kat. (****)	1 miejsce nocleg.	150	
	Hotele kat. (***)	1 miejsce nocleg.	100	
	Hotele pozostałe	1 miejsce nocleg.	80	
	Pensjonaty i domy wypoczynkowe			
	a) kategorii l	1 miejsce nocleg.	200	
2	L1 14	1 miejsce	450	Ŧ
		A	Anuluj OK	

Przeciętne normowe zużycie wody Sport i turystyka

Przec	Przeciętne normy zużycia wody w usługach									
Han	del, gastronomia i usługi			\$						
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]	-						
1	Restauracje, jadłodajnie	1 miejsce	100							
2	Bary	1 miejsce	150							
3	Kawiarnie, bary kawowe	1 miejsce	25	Ξ						
4	Sklepy z asortymentem czystych produktów (sklepy tekstylne, odzieżowe, obuwnicze, galanteria skórzana, drogeria, "butiki" itp.)	1 zatrudniony	30							
5	Sklepy ze sprzedażą gotowych produktów spożywczych (sklepy spożywcze, mięsne itp.)	1 zatrudniony	40							
6	Sklepy z artykułami przetwórstwa spożywczego (garmażeryjne, ciastkarskie, wyrób lodów, sklepy rybne)	1 zatrudniony	40-100							
7	Kwiaciarnie i sklepy zoologiczne	1 zatrudniony	80							
8	Zakłady usługowe (szewc, zegarmistrz, krawiec, optyk)	1 zatrudniony	15							
9	Zakłady pralnicze	1 kg bielizny lub odzieży	17	-						
		A	ok OK							

Przeciętne normowe zużycie wody: Handel, gastronomia i usługi

Przec	iętne normy zużycia wody w usługach		
Zak	ady pracy		^
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j. o. * dobę]
1	Zakłady pracy, z wyjątkiem określonych w lp. 43	1 zatrudniony	15
	Zakłady pracy		
2	a) w których wymagane jest stosowanie natrysków	1 zatrudniony	60
	b) przy pracach szczególnie brudzących lub ze środkami toksycznymi	1 zatrudniony	90
		Ar	ok OK

Przeciętne normowe zużycie wody Zakład pracy

RZECZYWISTA DOBOWA ILOŚĆ WODY DO PODGRZANIA V_{cw,r}[dm³/0·24] –pole do określania rzeczywistego dobowego zużycia ciepłej wody.

OBLICZONE DOBOWE ZAPOTRZEBOWANIE NA CIEPŁĄ WODĘG_d [dm³/24] –pole do podglądu wyliczonego dobowego zapotrzebowania na ciepłą wodę wyliczone z wzoru $G_d=V_{cw}\cdot L_i$

OBLICZONE ŚREDNIO GODZINOWE ZAPOTRZEBOWANIE NA CIEPŁĄ WODĘG_{h,śr} [dm³/h] –pole do podglądu wyliczonego godzinowego zapotrzebowania na ciepłą wodę wyliczone z wzoru $G_{h,śr} = \frac{G_d}{r}$

OBLICZONE MAKSYMALNE GODZINOWE ZAPOTRZEBOWANIE NA CIEPŁĄ WODĘ $G_{h,max}$ [dm^3/h] –pole do podglądu wyliczonego godzinowego zapotrzebowania na ciepłą wodę wyliczone z wzoru $G_{h,max}=G_{h,śr}\cdot L_i^{-0,244}$

OBLICZENIOWA, ŚREDNIO GODZINOWA MOC CIEPLNA NA PRZYGOTOWANIE CIEPŁEJ WODY $Q_{h,sr}^{cwu}$ [kW]- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{h,sr}^{cwu} = G_{h,sr} \cdot c_p \cdot (\theta_{cwu} - \theta_{wz})$

OBLICZENIOWA, MAKSYMALNA GODZINOWA MOC CIEPLNA NA PRZYGOTOWANIE CIEPŁEJ WODY $Q_{h,max}^{cwu}$ **[kW]**- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{h,max}^{cwu} = G_{h,max} \cdot c_p \cdot (\theta_{cwu} - \theta_{wz})$

ROCZNE ZAPOTRZEBOWANIE CIEPŁA UŻYTKOWEGO NA PRZYGOTOWANIE CIEPŁEJ WODYQw,nd [kWh/rok]- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{w,nd} = Q_{h,śr}^{cwu} \cdot t_{uz} \cdot \tau \cdot \frac{V_{cw}}{V_{cw,r}}$

10.2.3.1.4 Indywidualne koszty

Należy podać indsywidualne koszty energii zgodnie z danych w zakałdce Koszty energii, albo inne wartości kosztów Oz, Om i Ab przed i po modernizacji

Podręcznik użytkownika dla programu ArCADia-TERMO

Praca z modułem Audyt

Obliczenia Qw,nd Indywid	ualne koszty		
Indywidualne koszt	/ energii		
Kalkulator kosztów	przed modernizacją	po modernizacji	
Zmienne Oz:	34,00 <u>Zł</u> GJ	34,00 <u>Zł</u> GJ	
Stałe miesięczne Om:	9879,00 <u>Zł</u> MW∙m-c	9879,00 <u>zł</u> MW∙m-c	
Abonamentowe Ab:	0 <u>zł</u> m-c	0 <u>zł</u> m-c	

Zakładka Indywidualne koszty energii

10.2.3.2 Zakładka: Ocena stanu technicznego

Zakładka do oceny stanu technicznego.

Zgodnie z wymaganiami rozporządzenia system ciepłej wody użytkowej należy poddać ocenie stanu technicznego. Służy do tego pole edycyjne *OCENA STANU TECHNICZNEGO*, które ma za zadanie wypełnić audytor wskazujące jednocześnie możliwości poprawy. Na podstawie oceny stanu technicznego audytor będzie miał za zadanie wykonać ocenę opłacalności zaproponowanych działań termomodernizacyjnych. Aby dokonać oceny opłacalności i uaktywnić zakładkę *OCENA OPŁACALNOŚCI* należy zaznaczyć pole

Aby dokonać oceny opłacalności i uaktywnić zakładkę OCENA OPŁACALNOSCI należy zaznaczyć pole wyboru WSKAZANIE DO OCENY OPŁACALNOŚCI.

Audytor ma możliwość także wczytania do programu fotografii dotyczących ocenianego systemu w grupie *DOKUMENTACJA FOTOGRAFICZNA*. Wczytane fotografie nie będą wyświetlane w raporcie.

Opis funkcjonalności przycisków:

dodawanie nowej fotografii,

usuwanie fotografii,

10.2.3.3 Zakładka: Ocena opłacalności

Arcadia-TERMO PRO 6.0 Lic	encia dla: Tes	t - ArCADia-TE	RMO PRO 6	5 [L01] - 05	. Audvt - Ko	ompleksow	a mod	ernizad	ia z ograniczeniem śr	- 🗆 ×
<u>Plik Edycja R</u> aporty	B Ø R	◆ ₹ <i>≯</i> ₹	?			1			, <u>,</u>	
AUDYT	Ciepła woda u	iżytkowa - Audy	t energety	czny, WT 2	014					
+×ħ	Ocena	sprawności	Ocer	na stanu techni	cznego	Oper	na opłacz	Iności		
	Dane główne	do optymalizacji						Wynik	i optymalizacji	
····· W Wariant 1	Wariant	Vi [m3/d·j.o.]	ηw [-]	NP [-]	Nakłady [zł]	SPBT [lat]	+	Wa	riant optymalny: Wariant 1	
	Istniejący	8,00	0,890	0,600						
	Wariant 1	8,00	0,990	1,000	4298,00	8,37	×	Kos	zt: 4298,00 zł	
								SPE	3T: 8,37 lat	
								Zakr	es modernizacji	
								Lp.	Rodzaj usprawnienia	Nakłady
								1	Miejscowe podgrzewacze przepływowe	1098,00
								2	Izolacja pionów	1500,00
								3	Pompa cyrkulacyjna	500,00
								4	Montaż wodomierzy	1200,00
	Informacje do	datkowe, uzasadi	nienie przyjęc	ia nakładów						
	Nakłady przyje	te na podstawie k	osztorysów	inwestorski	sh					
Dane ogólne										
System grzewczy										
Ciepła woda użytkowa										
Ściany, stropy, stropodachy										
Okna, drzwi, wentylacja										
- wanancy termomodernizacyjne										
DANE WEJŚCIOWE										
OBLICZENIA CIEPLNE										
EQ. AUDYT										
🔾 PODGLĄD PROJEKTU	Denote blocket									
wydruki	haport o brędach	-				Onia				
	1 Ostrzeżeni	e Parametr "	Współczynnik p	orzenikania Uc"	w przegrodzie	"STW 1", powin	ien znajd	ować się	w przedziale od 0,00 do 0,25!	Ŷ
< [9/15] >		D 🖻	臣		<u></u>	<u>a</u>	ť	ì <u>f</u>	à 🛕 🗛 🗐	Zamknij

Zakładka oceny opłacalności ciepłej wody użytkowej.

Zakładka OCENA OPŁACALNOŚCIsłuży do wyboru optymalnego wariantu przedsięwzięcia polegającego na usprawnieniu systemu ciepłej wody użytkowej. Składa się ona z grupy DANE GŁÓWNE DO OPTYMALIZACJI przedstawiającej wprowadzone dane za pomocą oknawariantów oraz WYNIKÓW OPTYMALIZACJI.

Opis funkcjonalności przycisków:

dodawanie nowego wariantu,

usuwanie wariantu,

10.2.3.3.1 Dane główne do optymalizacji

Dane główne do optymalizacji										
Wariant	Vi [m3/d·j.o.]	ηw [-]	ηp [-]	Nakłady [zł]	SPBT [lat]	+				
Istniejący	8,00	0,890	0,600							
Wariant 1	8,00	0,990	1,000	4298,00	8,37	×				

Pole z głównymi danymi do optymalizacji.

Grupa *DANE GŁÓWNE DO OPTYMALIZACJI* przedstawia dane wprowadzone przez audytora w oknie wariantów, które dla każdego z wariantu wywoływane są poprzez wybór wariantu znajdującego się w drzewku z wariantami. Kolejne warianty audytor dodaje poprzez wciśnięcie przycisku +. W tabeli zawartej w omawianej grupie przestawiane są dane dla stanu istniejącego jak i dla poszczególnych wariantów termomodernizacyjnych. Dane, które przedstawiane są w oknie to:

- **q**_{cw} jednostkowe dobowe zużycie ciepłej wody na jednostkę odniesienia (np. osobę, łóżko),
- η_w- sprawność wytwarzania (źródła ciepła wytwarzającego ciepłą wodę użytkową)
- η_p- sprawność przesyłu (cyrkulacji) ciepłej wody użytkowej
- *NAKŁADY* nakłady na wykonanie usprawnień termomodernizacyjnych w danym wariancie.
- *SPBT* prosty czas zwrotu danego wariantu.

10.2.3.3.2 Wyniki optymalizacji

Wariant optymalny: Wariant 1										
Koszt: 4298,00 zł										
SP	BT: 8,37 lat									
Zakres modernizacji										
Zak	res modernizacji									
Zakı Lp.	res modernizacji Rodzaj usprawnienia	Nakłady								
Zakı Lp. 1	res modernizacji Rodzaj usprawnienia Miejscowe podgrzewacze przepływowe	Nakłady 1098,00								
Zakı Lp. 1 2	res modernizacji Rodzaj usprawnienia Miejscowe podgrzewacze przepływowe Izolacja pionów	Nakłady 1098,00 1500,00								
Zakı Lp. 1 2 3	res modernizacji Rodzaj usprawnienia Miejscowe podgrzewacze przepływowe Izolacja pionów Pompa cyrkulacyjna	Nakłady 1098,00 1500,00 500,00								

Pole z wynikami optymalizacji.

Na podstawie wprowadzonych danych program samodzielnie wybiera optymalny wariant przedsięwzięcia termomodernizacyjnego zgodnie z rozporządzeniem. Audytor ma możliwość wybrania innego wariantu za pomocą listy rozwijalnej, zawierającej nazwy poszczególnych wariantów termomodernizacyjnych w punkcie *WARIANT OPTYMALNY*.

W grupie *WYNIKI OPTYMALIZACJI* oprócz nazwy wybranego wariantu optymalnego znajdują się informacje dotyczące jego kosztów w pozycji *KOSZT* oraz *SPBT*czyli prosty czas zwrotu. W grupie *ZAKRES MODERNIZACJI* znajdują się wszystkie uprawnienia wraz z nakładami składające się na wybrany optymalny wariant termomodernizacyjny.

10.2.3.4 Okno wariantów

ArCADia-TERMO PRO 6.0 Lice	encja	dla: Test - ArCADia-TERMO PRO 6	5 [L01] ·	- 05. Audy	t - Kom	plekso	wa mo	odernizacja z ograniczeniem śr 🗕 🗖 🗙
<u>Plik Edycja R</u> aporty		\$ B \$ \$ \$ \$?						
AUDYT	Ciep	a woda użytkowa - Audyt energety	czny, W	T 2014				
+ ×	Spraw	ność wytwarzania Sprawność przesyłu Spra	wność ał	tumulacji Obl	iczenia Q	w,nd i wy	niki	
Ocena opłacalności	Oblic	zenia Qw.nd Indywidualne koszty						Przed modernizacja Po modernizacji
Walten T		ndywidualne koszty energii						Sprawność całkowita systemu cwu
		Kalkulator kosztów przed modernizacją	P	o modernizacj				η _{00W,M} = 0,46 η _{10W,M} = 0,79
	Zm	ienne Oz: 34,00 GJ	34	4,00 GJ				Obliczeniowe zapotrzebowanie ciepła
	State missięczne Om: 9879,00 zł 9879,00 zł Obliczeniowe zaporrzebowanie ciepła State missięczne Om: 9879,00 zł 0 zł 0 zł 0 zł Com 9579,00 zł 0 zł 0 zł 0 zł 0 zł							$Q_{0CW} = 35,97 \frac{GJ}{rok}$ $Q_{1CW} = 20,85 \frac{GJ}{rok}$
	~		Obliczeniowe zapotrzebowanie mocy					
								q _{00W} = 2,13 kW q _{10W} = 2,13 kW
								Wyniki optymalizacji
								Roczne oszcz. kosztów. $\Delta O_{row} = 513,77 \frac{21}{rok}$
								SPBT: 8,37 lat
	Wyk	az prac remontowych						
Dane ogólne	Lp.	Rodzaj robôt	llość robót	Cena jedn.	netto [zł]	VAT [%]	brutto [2f]	Uzasadnienie przyjętych kosztów
System grzewczy	1	Miejscowe podgrzewacze przepływowe	3,00	300,00	900,00	22	1098,00	
Ciepła woda użytkowa	2	Izolacja pionów	1,00	1500,00	1500,00	0	1500,00	
Ściany, stropy, stropodachy	3	Pompa cyrkulacyjna	1,00	500,00	500,00	0	500,00	
Okna, drzwi, wentylacja	4	Montaż wodomierzy	4,00	300,00	1200,00	0	1200,00	
wananty termomodermzacyjne								
DANE WEJŚCIOWE								
OBLICZENIA CIEPLNE								
D AUDYT						C	ałkowity	koszt modernizacji systemu c.wu: 4298,00 zł
C PODGLĄD PROJEKTU	Rapo	t o bledach						
🖶 WYDRUKI	Lp.	Тур				Op	is	^
	1	Ostrzeżenie Parametr "Współczynnik p	orzenikani	a Uc" w przegr	odzie "ST	W 1", poi	vinien zn	ajdować się w przedziale od 0,00 do 0,25! 🗸 🗸
< [9/15] >	B		R	i Q i Q	i f	í	à	दि दि दि दि 🚍 Zamknij

Okno wariantów ciepłej wody użytkowej.

Aby wprowadzić dane optymalizacyjne należy wywołać okno wariantu służące do określenia parametrów techniczno ekonomicznych wariantu.

Dane, które należy wprowadzić to:

 USPRAWNIENIA – w grupie USPRAWNIENIA należy wprowadzić wkolumnie RODZAJE USPRAWNIEŃnazwy poszczególnych usprawnień wraz z ich NAKŁADAMI. Poszczególne rodzaje usprawnień dodaje się poprzez przycisk +.

- **SPRAWNOŚĆ WYTWARZANIA** audytor podaje wartość sprawności wytwarzania po modernizacji. Aby wspomóc pracę audytora po wciśnięciu przycisku **TABELA**zostanie wyświetlona tabela z wartościami sprawności wytwarzania.
- **SPRAWNOŚĆ PRZESYŁU** audytor podaje wartość sprawności przesyłu po modernizacji. Aby wspomóc pracę audytora po wciśnięciu przycisku **TABELA**zostanie wyświetlona tabela z wartościami sprawności przesyłu.
- **ZUŻYCIE JEDNOSTKOWE** jeżeli po modernizacji ulegnie zmianie wartość zużycia jednostkowego audytor ma możliwość dokonania odpowiedniej zmiany mając do pomocy tabelę ze zużyciami jednostkowymi wywoływaną przyciskiem **TABELA**.

Opis funkcjonalności przycisków:

dodawanie rodzaju usprawnienia,

usuwanie rodzaju usprawnienia,

10.2.4 ETAP Ściany, stropy, stropodachy

ArCADia-TERMO PRO 6.0 Li	encja dla: Te	est - ArCAD	ia-TERMC	PRO 6 [L	.01] - 05. Aud	yt - Komple	eksowa i	noderni	zacja z o	graniczer	niem śr		×
<u>Plik E</u> dycja <u>R</u> aporty	💾 🌮 R	2 ← ₹ #	► ₹ ?										
AUDYT	Ściany, stro	opy, stropod	achy - Aud	lyt energe	tyczny, WT 2)14							ľ
+ ×	Ocena s	tanu techniczne	90	Ocen	a opłacalności								
Stropy wewnętrzne STW 1 STW	Naxwa przegrody. Sciana zewnęttzna Dane przegrody. Sciana zewnęttzna Dane przegrody. Sciana zewnęttzna Powierzchnia do obliczeń strat Q0 Δ_{eg} = 248,63 m² Powierzchnia do obliczeń strat Q1 D_{A_g} = 246,63 m²							W) W Ma	Wyniki optymalizacji Wariani optymałny: Wariant 1 Materiał docieplenia: Płyta styropianowa EPS 70-040 FASADA Grubość izolagi: d=14 cm				PS
Bachy	□ Indywidualne koszty energii Kalkulator kosztów przed modernizacją po modernizacji Zmono D 1 40 0 元 34 00 元 34 00 元							Ro	oszt dociepl	enia przegro cędnośći kos	dy: 66738,6 szlów: 5537,	68 <u>zł</u> 68 <u>zł</u> rok	
	Stałe miesięc Abonamento	Zmenne 02: 34,40% GJ 34,40% GJ Stale mesięczne Om: 9873,00 MW m-c 9879,00 HW m-c Abonamentowe Ab: 0 Hm c 0 Hm c							SP8T: 12,05 lat Obliczenia pomocnicze Q _n = 129,66 <u>Gu</u> Q _n = 18,62 <u>Gu</u>				
Þ	Uzasadnieni Nakłady przy	e poniesionyc jęte na podsta	h nakładów wie koszto	rysów inwe	estorskich			q _o s _a	= 0,0174 M = 3572,50	W dzień * K rok	q ₁ = 0,00	25 MW	
	Dane główn	e do optymaliz	tacji										
Dane ogólne	Stopniuj grub	ość co:	2 cm										
System grzewczy	Wariant	Materiał do d	locieplenia	d [cm]	Kj netto [zi/m²]	R [mª-K/W]	Nakłac	ly netto [zł]	VAT [%]	Nakłady br	rutto [zi] S	SPBT [lat]	+
Ciepła woda użytkowa	Istniejący					0,588							
Ściany, stropy, stropodachy	Wariant 1	Płyta styropian EPS 70-040 FA	ASADA	14	220,00	4,088 .		54259,0	4 23	з е	6738,62	12,05	×.
Warianty termomodernizacyjn	Wariant 2		L.	16	240,00 .	4,5	38	59191,6	3 23	3 7	72805,77	12,91	
DANE WEJŚCIOWE	Wariant 3		4	10	200,00	. 5,0	0	04124,3	<u> </u>	, v	10072,91	15,79	
OBLICZENIA CIEPLNE													
	1												
	Raport o błęda Lp.	кch Тур					Opis						^
	1 Ostrzeże	enie Par	ametr "Wspó	iczynnik prze	nikania Uc" w prze	grodzie "STW 1	, powinien	znajdować	się w przed	ziale od 0,00	do 0,25!		~
													1 million (1997)

Okno Ściany, stropy, stropodachy.

Okno dialogowe ŚCIANY, STROPY, STROPODACHY służy do oceny stanu technicznego oraz do oceny opłacalności przeprowadzenia działań termomodernizacyjnych dla takich przegród jak ściany zewnętrzne, ściany wewnętrzne, stropy nad przejazdami, stropy pod pomieszczeniami nieogrzewanymi, dachy, stropodachy.

10.2.4.1 Zakładka: Ocena stanu technicznego

Zakładka do oceny stanu technicznego.

Zgodnie z wymaganiami rozporządzenia przegrody występujące w budynku należy poddać ocenie stanu technicznego. Służy do tego pole edycyjne *OCENA STANU TECHNICZNEGO* które ma za zadanie wypełnić audytor wskazujące jednocześnie możliwości poprawy istniejących przegród budowlanych. Na podstawie oceny stanu technicznego audytor będzie miał za zadanie wykonać ocenę opłacalności zaproponowanych działań termomodernizacyjnych.

Aby dokonać oceny opłacalności i uaktywnić zakładkę *OCENA OPŁACALNOŚCI*należy zaznaczyć pole wyboru *WSKAZANIE DO OCENY OPŁACALNOŚCI*.

Audytor ma możliwość także wczytania do programu fotografii dotyczących ocenianej przegrody w grupie *DOKUMENTACJA FOTOGRAFICZNA*. Wczytane fotografie nie będą wyświetlane w raporcie. Opis funkcjonalności przycisków:

dodawanie nowej fotografii,

usuwanie fotografii,

10.2.4.2 Zakładka: Ocena opłacalności

Occilia a	tanu techniczneg	30	Ocer	na opłacalności							
azwa przegro Dane przegr	ody: Ściana zew ody	nętrzna				Wy	niki optym	alizacji			
Powierzchi	nia do obliczeń 5.63 m ²	strat Q0		Powierzchnia do ol $\Delta = 246.63 \text{ m}^2$	oliczeń strat Q	1 Wa	riant optym	alny: Wariant 1			
Powierzch	nia do obliczeń	nakładów		Vymagany opór cie	play przegrog	Mat	eriał dociep	lenia: Płyta styr	opianowa EF		
1 A _n =246	5,63 m ²		Ċ	$R = 4,00 \frac{m^2 K}{W}$	Т	ablice Gru	Grubość izolacji: d=14 cm				
Indywidua	alne koszty en	ergii	Kos	zt docieple	nia przegrody: 66738	8,62 zł					
Kalkulator kosztów przed modernizacją po modernizacji								dnośći kosztów: 553	37,68 <u>zł</u>		
Zmienne Oz:	3	4,00 <u>과</u> GJ		34,00 <u>zł</u> GJ		SDF	T 12 05 1	*	· TOK		
Stałe miesięc:	zne Om: 9	879,00 <u>zł</u>	<u></u>	9879,00 Zł		- SH	71. 12,05 1	n.			
Abonamentov	weAb: 0	<u>_zł</u>	11-0	0_21		Obl	Obliczenia pomocnicze				
Abonamentowe Ab: 0 — 0 — 0 — 0 — 0									C I		
Izasadnieni	e poniesionvo	'm-c h nakładów		^o m-c		Q	= 129,56 <u>G.</u> rok	Q ₁ = 18	3,62 GJ rok		
Uzasadnieni lakłady przy	e poniesionyc jęte na podsta	ˈm-c h nakładów wie koszto	rysów inw	estorskich		Q ₀	= 129,56 <u>G.</u> rok = 0,0174 MV	Q ₁ = 18 / q ₁ = 0,0	3,62 GJ rok 0025 MW		
Uzasadnieni lakłady przy	e poniesionyc jęte na podsta	'm-c h nakładów wie koszto	rysów inw	estorskich		Q ₀ q ₀ = S _d =	= 129,56 <u>G.</u> rok = 0,0174 MV = 3572,50 <u>d:</u>	Q ₁ = 18 / q ₁ = 0,0 <u>cień * K</u> rok	3,62 GJ rok 0025 MW		
Uzasadnieni lakłady przy Dane główne	e poniesionyci jęte na podsta e do optymaliz	ʻm-c h nakładów wie koszto acji	rysów inw	estorskich		Q ₀ q ₀ = S _d :	= 129,56 <u>G.</u> = 0,0174 MV = 3572,50 <u>d</u> :	- Q ₁ = 18 / q ₁ = 0,0 <u>cień * K</u> rok	3,62 <u>GJ</u> 70k 0025 MW		
Uzasadnieni lakłady przy Dane główno Stopniuj grub	e poniesionyci jęte na podsta e do optymaliz ość co:	ʻm-c hnakładów wiekoszto acji 2 cm	rysów inw	estorskich		Q ₀ q ₀ : S _d :	= 129,56 <u>G.</u> = 0,0174 MV = 3572,50 <u>d:</u>	- Q ₁ = 18 / q ₁ = 0,0 <u>cień * K</u> rok	3,62 <u>GJ</u> 2025 MW		
Uzasadnieni lakłady przy Dane główno Stopniuj grub Wariant	e poniesionyci jęte na podsta e do optymaliz ość co: Materiał do do	'm-c h nakładów wie koszto acji 2 cm ocieplenia	rysów inw d [cm]	um-c estorskich Kj netto [z⊮m²]	R [m²-K/W]	Q ₀ q ₀ : S _d : Nakłady netto [zł]	= 129,56 G. = 0,0174 MV = 3572,50 ^{d;} VAT [%]	Q ₁ = 18 / q ₁ = 0,0 rok Nakłady brutto [26]	8,62 GJ rok 0025 MW SPBT [lat]		
Uzasadnieni lakłady przy Dane główno Stopniuj grub Wariant Istniejący	ie poniesionyci jęte na podsta e do optymaliz ość co: Materiał do do	m-c h nakładów wie koszto acji 2 cm ocieplenia	rysów inw d [cm]	⁰ m-c estorskich Kj netto [zł/m²]	R [m²-K/W] 0,588	Q ₀ q ₀ : S _d : Nakłady netto [zł]	= 129,56 G, = 0,0174 MV = 3572,50 <u>d:</u> VAT [%]	Q ₁ = 18 / q ₁ = 0,0 <u>cień * K</u> Nakłady brutto [21]	8,62 GJ 1025 MW SPBT [lat]		
Uzasadnieni lakłady przy Dane główno Stopniuj grub Wariant Istniejący Wariant 1	e poniesionyci jęte na podsta e do optymaliz ość co: Materiał do do Płyta styropian EPS 70-040 FA	m-c h nakładów wie koszto acji 2 cm ocieplenia	rysów inw d [cm] 14	Kj netto [2½m²]	R [m²-K/W] 0,588 4,088	Q ₀ q ₀ : S _d : Nakłady netto [z] 54259,04	= 129,56 G, = 0,0174 MV = 3572,50 ^{d;} VAT [%] 23	Q ₁ = 18 / q ₁ = 0,0 <u>deń * K</u> Nakłady brutto [24] 66738,62	3,62 GJ rok 2025 MW SPBT [lat] 12,05		
Jzasadnieni lakłady przy Dane główno Stopniuj grub Wariant Istniejący Wariant 1 Wariant 2	e poniesionyci jęte na podsta e do optymaliz ość co: Materiał do dr Płyta styropian EPS 70-040 FA	m-c h nakładów wie koszto acji 2 cm ocieplenia owa SADA	rysów inw d [cm] 14 16	⁰ m-c estorskich Kj netto [zł/m²] 220,00 240,00	R [m²-K/W] 0,588 4,088 4,588	Q ₀ q ₀ : S _d : Nakłady netto [z] 54259,04 59191,68	= 129,56 G, rok = 0,0174 MV = 3572,50 G VAT [%] 23 23	Q ₁ = 18 / q ₁ = 0,0 / q ₁ = 0,0 Nakłady brutto [21] 66738,62 72805,77	3,62 GJ rok 0025 MW SPBT [lat] 12,05 12,91		

Zakładka Ocena opłacalności.

Zakładka *OCENA OPŁACALNOŚCI*służy do wprowadzenia danych oraz dokonania oceny opłacalności i wyboru optymalnego wariantu przedsięwzięcia polegającego np. na ociepleniu ściany, stropu lub stropodachu. Składa się ona z grup:

- DANE GŁÓWNE DO OPTYMALIZACJI grupa służąca do wprowadzania danych do optymalizacji,
- UZASADNIENIE PONIESIONYCH NAKŁADÓW grupa służąca do wprowadzania informacji uzupełniających,
- DANE PRZEGRODY grupa zawierająca dane powierzchniowe analizowanej przegrody,
- *INDYWIDUALNE KOSZTY ENERGII* grupa, w której znajdują się koszty energii przed i po modernizacji,
- WYNIKI OPTYMALIZACJI grupa w której znajdują się wyniki optymalizacji,

10.2.4.2.1 Drzewko przegród

Pole z drzewkiem przegród.

DRZEWKO PRZEGRÓD – drzewko zawierające wszystkie przegrody lub ich grupy.

Zadaniem drzewka przegród jest wyświetlenie wszystkich przegród takich jak ściany, stropy, dachy. Dodatkowa funkcja drzewka jest możliwość grupowania przegród jednego typu w grupy w celu umożliwienia przeprowadzenia oceny opłacalności, zmniejszając dzięki temu pracochłonność oraz liczbę wariantów całego przedsięwzięcia termomodernizacyjnego budynku.

Po wyborze przegrody lub grupy przegród będzie możliwe wprowadzania danych dla danej przegrody lub grupy w zakładach OCENA STANU TECHNICZNEGO oraz w przypadku wskazania do oceny opłacalności OCENA **OPŁACALNOŚCI**.

Opis funkcjonalności przycisków:

10.2.4.2.2 Indywidualne koszty energii

Indywidualne koszty	Indywidualne koszty energii										
Kalkulator kosztów	przed modernizacją	po modernizacji									
Zmienne Oz:	34,00 <u>Zł</u> GJ	34,00 Zł GJ									
Stałe miesięczne Om:	9879,00 <u>zł</u> MW·m-c	9879,00 Zł MW·m-c									
Abonamentowe Ab:	0	0 zł m-c									

Indywidualne koszty energii.

Po zaznaczeniu opcji INDYWIDUALNE KOSZTY ENERGII audytor może podac koszty energii tylko do obliczeniaSPBT dla modernizacji ścian, stropów i dachów.

10.2.4.2.3 Dane główne do optymalizacii

topniuj grub	ość co: 2 cm								
Wariant	Materiał do dociepler	nia d [cm]	Kj netto [zł/m²]	R [m²·K/	w]	Nakłady netto [zł]	VAT [%]	Nakłady brutto [zł]	SPBT [lat]
Istniejący				0,588	5				
Wariant 1	Płyta styropianowa EPS 70-040 FASADA	1	4 220,00	4,088		54259,04	23	66738,62	12,05
Wariant 2	I	→ 1	6 240,00	4	,588	59191,68	23	72805,77	12,91
Wariant 3	I	_	8 260,00	5	,088	64124,32	23	78872,91	13,79

Pole Dane główne do optymalizacji.

W grupie **DANE GŁÓWNE DO OPTYMALIZACJI**audytor ma za zadanie podanie danych do optymalizacji dla przegrody wskazanej w drzewku przegród, a jej nazwa wyświetlona jest ponad grupą w pozycji NAZWA PRZEGRODY.

Aby dokonać oceny opłacalności należy w pierwszej kolejności wybrać materiał który posłuży do ocieplenia przegrody w pozycji MATERIAŁ DODATKOWEJ IZOLACJI. Wybór następuje poprzez otworzenie bazy materiałów po naciśnieciu przycisku wyborze materiału program automatycznie dokona wyboru minimalnej grubości ocieplenia spełniającej wymagania rozporządzenia.

Kolejnym krokiem jest podanie wartości co jaką wartość ma być stopniowana grubość ocieplenia w kolejnych wariantach termomodernizacyjnych. Audytor podaje wartość w polu edycyjnym w pozycji STOPNIUJ GRUBOŚĆ IZOLACJI CO ... CM.

Następnie za pomocą przycisku + audytor zwiększa ilość wariantów do wartości, którą uważa za stosowne. Program dzięki wprowadzonym wcześniej danym dokona dobrania wartości grubości dodatkowej izolacji *d[cm]*. Audytor ma także możliwość podania własnych wartości grubości ocieplenia *d[cm]*.

Aby byłoa możliwe dokonanie obliczeń pozwalających na wybór wariantu optymalnego należy w kolumnie *Kj[zl/m²]* podać wartości jednostkowej ceny proponowanej izolacji.

W celach informacyjnych w grupie znajdują się informacje dotyczące oporu cieplnego **R**dla stanu istniejącego oraz dla kolejnych wariantów termomodernizacyjnych, całkowitych kosztów ocieplenia przegrody w kolumnie **NAKŁADY [zł]**, oraz kolumny **SPBT[lata]**informującej o prostym czasie zwrotu danego wariantu który to jest podstawą oceny który wariant jest wariantem optymalnym.

Opis funkcjonalności przycisków:

10.2.4.2.4 Informacje dodatkowe, uzasadnienie przyjęcia nakładów

Uzasadnienie poniesionych nakładów Nakłady przyjęte na podstawie kosztorysów inwestorskich

Pole Informacje dodatkowe, uzasadnienie przyjęcia nakładów.

W grupie *INFORMACJE DODATKOWE*, *UZASADNIENIE PRZYJĘCIA NAKŁADÓW*, za pomocą pola edycyjnego, audytor ma za zadanie podać na jakiej podstawie przyjął nakłady na wykonanie działań termomodernizacyjnych. Dodatkowo w tej pozycji może przekazać dodatkowe informacje i wytyczne dotyczące analizowanego przedsięwzięcia.

10.2.4.2.5 Dane przegrody i wymagany opór cieplnyi

Pole z danymi przegrody.

Na podstawie danych wprowadzonych w module do obliczeń cieplnych program w pozycji **POWIERZCHNIA DO OBLICZEŃ STRAT** podaje wartość powierzchni przegrody która służy do obliczeń strat ciepła przez przegrodę. W pozycji **POWIERZCHNIA DO OBLICZEŃ NAKŁADÓW** domyślna wartość jest równa powierzchni do obliczeń strat, audytor ma możliwość jej korekty wówczas gdy do obliczeń nakładów na inwestycję powierzchnia nie jest równa powierzchni strat. Program, zależnie od rodzaju przegrody, w pozycji **WYMAGANY OPORU CIEPLNY PRZEGRODY** podaje wymaganą przez Rrozporządzenie wartość oporu cieplnego.

Po wyborze w grupie **DANE GŁÓWNE DO OPTYMALIZACJI MATERIAŁU DODATKOWEJ IZOLACJI** program poda w pozycji **MINIMALNA GRUBOŚĆ IZOLACJI** minimalną wartość grubości dodatkowej izolacji spełniającej wymagania minimalnego oporu cieplnego.

10.2.4.2.6 Wyniki optymalizacji

Podręcznik użytkownika dla programu ArCADia-TERMO

Praca z modułem Audyt

Wyniki optymalizacji	
Wariant optymalny:	Wariant 1
Materiał docieplenia:	Płyta styropianowa EPS 70-040 FA SADA
Grubość izolacji:	d=14 cm
Koszt docieplenia prze	grody: 66738,62 zł
Roczne oszczędnośći	koszłów: 5537,68 <u>zł</u> rok
SPBT: 12,05 lat	

Pole z wynikami optymalizacji.

Grupa **WYNIKI OPTYMALIZACJI** przedstawia dane dotyczące optymalnego wariantu. W pozycji **WARIANT OPTYMALNY** program automatycznie wybiera wariant o najniższej wartości SPBT. Audytor dzięki liście rozwijalnej zawierającej nazwy wariantów termomodernizacyjnych ma możliwość wyboru innego wariantu termomodernizacyjnego.

Pozostałe informacje które są prezentowane w grupie to:

- GRUBOŚĆ IZOLACJI- wartość grubości dodatkowej izolacji dla wybranego wariantu
- KOSZT- całkowity koszt wykonania dodatkowej izolacji dla wybranego wariantu
- SPBT wartość prostego czasu zwrotu dla wybranego wariantu.

10.2.5 Okno dialogowe: Okna, drzwi, wentylacja

DYT	Okna, drzwi,	wentylacj	a - Audyt en	iergetyczny, WT	2014						
Wentylacja grawitacyjna Wentylacja grawitacyjna Drzwi wewnętrzne Drzwi zewnętrzne Drzwi zewnętrzne Drzwi zewnętrzne	Ocena star Dane przegro Powierzchni O A = 48,9 Powierzchni O A = 48,9	Ocere a stari literinicingo Ocere b placa rozario Dane przegrów Powierzchnia do obliczeń strat Q0 O A_g3 46,96 m² Powierzchnia do obliczeń nakładów O A_g3 O A_g3 46,96 m²				Wyniki optymalizacji Wariant optymalny: Wariant 1 Koszt modernizacji wentylacji 0:2 Koszt modernizacji stolatki: 24490,00:2			1 9 0,00 zł		
	Indywiduala Kalkulator k Zmienne Oz: Stałe miesięczn Abonamentowe Uzasadnienie E	ne koszty er rosztów 3 re Om: 9 e Ab: 0 poniesionyd	ergii przed moderniz 4,00 ^{Zł} 679,00 ^{Zł} MW [.] m- m-c ch nakładów	acją	po moderniza 34,00 Zt 9879,00 Zt 9879,00 Zt 0 Zt	acji i m-c		Roczne SPBT: 1 Obliczen Q ₀ = 110, q ₀ = 0,014	oszcz koszt 11,17 lat ia pomocni 55 GJ 55 rok 43 MW	tów: ΔΟ _{ΙΟΚ+W} icze Q ₁ = 63,4 q ₁ = 0,00	= 2192,28 21 rok 11 GJ 93 MW
>	Dane główne Dodaj do ko Włącz edyc	do moderni: osztów Nw r ;ję strumien	zacji na instalację v i powietrza dl	ventylacyjną c _w = 1 la wariantu istnieją	,00 🕕	Odbywa sie	ę przez na	wiewniki, ok	na lub drzv	vi	
> Dane ogólne System ørzewczy	Dane główne Dodaj do ko Włącz edyc Stolarka We	do moderni: osztów Nw r ;ję strumien :ntylacja	zacji na instalację v i powietrza dl	ventylacyjną c _w = 1 la wariantu istnieją	,00 D Icego	Odbywa sie	ę przez na	wiewniki, ok	na lub drzv	vi	
> Dane ogólne System grzewczy Ciepła woda uzytkowa Sciany, stropy, stropodachy	Dane główne - Dodaj do ku Włącz edyc Stolarka We Wariant	do moderni: osztów Nw r sję strumien entylacja cr [-]	zacji na instalację v i powietrza dl cm [-]	ventylacyjną c _w =1 la wariantu istnieją U [W/(m²45)]	,00 0 cego Kjok netto [zł/m²]	Odbywa sie Nok netto [zł]	ę przez na VAT[%]	wiewniki, ok Nok brutto [zł]	na lub drzw	vi SPBT [lat]	
Dane ogólne System grzewczy Clepła woda użytkowa Sciany, stropodachy Okna, drzwi, wentyłacja	Dane główne Dodaj do kr Włącz edyc Stolarka We Wariant Istniejący	do moderni: osztów Nw r iję strumien intylacja cr [-] 1,200	cm [-] 1,350	ventylacyjną c _w = 1 la wariantu istnieją U [W/(m²4K)] 2,600	,00 0 cego Kjok netto [zł/m²]	Odbywa sie Nok netto [zł]	przez na VAT[%]	wiewniki, ok Nok brutto [zł]	na lub drzv	vi SPBT [[at]	
Dane ogólne System grzewczy Ciepia woda uzytkowa Sciany, stropy, stopodachy Okna, dzwi, wentyłacja Warianty termomodernizacyjm DANE WEJSCIOWE	Dane główne Dodaj do k Włącz edyc Stolarka We Wariant Istniejący 1 2	do moderni: osztów Nw r cję strumien entylacja [-] 1,200 1,000 0,850	cm [-] 1,000 1,000	wentylacyjną c _w = 1 la wariantu istnieją [W/(m²+K)] 2,600 1,300 1,300	,00 (Cego Kjok netto [2ł/m ²] 500,000 700,000	Odbywa sie Nok netto [zł] 24490,000 34286,000	<pre>przez na VAT[%] 0,000 0,000</pre>	wiewniki, ok Nok brutto [zł] 24490,000 34286,000	na lub drzw	vi SPBT [lat]	11,171 14,223
Dane ogólme System grzewczy Clepła woda uzytkowa Sciany, storyć storodachy Oran, drzwi, wentyracja Warianty termomodernizacyjaw DANE WEJSCIOWE OBLICZENIA CLEPLNE	Dane główne Dodaj do k Włącz edyc Stolarka We Wariant Istriejący 1 2	do modernii osztów IW r ję strumien mtylacja cr [-] 1,200 1,000 0,850	zacji na instalację v i powietrza dl [-] 1,350 1,000	ventylacyjną c _m =1 la wariantu istnieją [W/(m²+K)] 2,600 1,300 1,300	,00 () cego [zł/m²] 500,000 700,000	Odbywa si Nok netto [zł] . 24490,000 . 34286,000	e przez na VAT[%] 0,000 0,000	wiewniki, ok Nok brutto [zł] 24490,000 34286,000	na lub drzw	vi SPBT [lat]	11,171 14,223
Dane ogólne System grzewczy Ciepła woda użytkowa Sciany, stropy stropodachy Okna, dzwi, wentyłacja Warianty termomodernizacyjne DANE WEJŚCIOWE OBLICZENA CIEPLNE AUDYT	Dane główne Dodaj do k Włącz edyc Stolarke We Wariant Istriejący 1 2	do modernii osztów Nw rw ię strumien mtylacja (-) 1,200 0,850	zacji na instalacje v i powietrza di [-] 1,350 1,000	ventylacyjną c _m = 1 la wariantu istnieją [VV/(m²+K)] 2,600 1,300 1,300	00 0 cego Kjok netto [2ł/m ²] 500,000	Odbywa sie Nok netto [27] 24490,000 34286,000	e przez na VAT[%] 0,000 0,000	wiewniki, ok Nok brutto [zł] 24490,000 34286,000	na lub drzw	sper (lat)	11,171 14,223
Dane ogólne System grzewczy Clepła woda użytkowa Sciany, stropy stropodachy Oma, drzwi, wentyłacja Waranty termomodemizacyjne DANE WEJŚCIOWE OBLICZENIA CIEPLNE AUDYT PODGLĄD PROJEKTU	Dane główne Dodaj do k Vłącz edyc Stolarke We Wariant Istniejący 1 2 Rapot o biedaci	do modernii osztów Nw Iw ię strumien mtylacja (-) 1,200 1,000 0,850	zacji na instalacje v i powietrza dl cm [-] 1,350 1,000 1,000	wentylacyjną c., = 1 la wariantu istnieją [(V/(m²+4)] 2,600 1,300 1,300	,00 cego Kjok netto [2ł/m ²] 500,000 	Odbywa sie Nok netto [21] 24490,000 34286,000	\$ przez na VAT[%] 0,000 0,000	wiewniki, ok Nok brutto [21] 24490,000 34286,000	na lub drzw	vi SPBT [lat]	11,171 14,223

Okno Okna, drzwi, wentylacja.

Okno dialogowe *OKNA*, *DRZWI*, *WENTYLACJA* służy do oceny stanu technicznego oraz do oceny opłacalności przeprowadzenia działań termomodernizacyjnych dla takich przegród jak okna i drzwi zewnętrzne, okna i drzwi wewnętrzne, system wentylacji.

10.2.5.1 Zakładka: Ocena stanu technicznego

Ocena stanu technicznego	Ocena opłacalności		
♥ Wskazanie do oceny opłacalnoś Ocena stanu technicznego Okna w złym stanie technicznym -	ci konieczna wymiana	Dokumentacja fotograficz	

Zakładka do oceny stanu technicznego.

Zgodnie z wymaganiami rozporządzenia przegrody występujące w budynku należy poddać ocenie stanu technicznego. Służy do tego pole *EDYCYJNE OCENA STANU TECHNICZNEGO* które ma za zadanie wypełnić audytor wskazujące jednocześnie możliwości poprawy istniejących przegród budowlanych. Na podstawie oceny stanu technicznego audytor będzie miał za zadanie wykonać ocenę opłacalności zaproponowanych działań termomodernizacyjnych.

Aby dokonać oceny opłacalności i uaktywnić zakładkę *OCENA OPŁACALNOŚCI*należy zaznaczyć pole wyboru *WSKAZANIE DO OCENY OPŁACALNOŚCI*.

Audytor ma możliwość także wczytania do programu fotografii dotyczących ocenianej przegrody w grupie **DOKUMENTACJA FOTOGRAFICZNA.** Wczytane fotografie nie będą wyświetlane w raporcie.

Opis funkcjonalności przycisków:

dodawanie nowej fotografii,

usuwanie fotografii,

10.2.5.2 Zakładka: Ocena opłacalności

Ocena sta	nu techniczne	ego	Ocena opłacaln	ości							
Dane przegro Powierzchni $A_{s0} = 48,9$ Powierzchni $A_{n} = 48,9$	przegrody ierzchnia do obliczeń strat Q0 A _s o 48,98 m ² ierzchnia do obliczeń nakładów A _n = 48,98 m ²		Powierzchnia do obliczeń strat Q1 A _{s1} 48,98 m ²			Wyniki optymalizacji Wariant optymalny: Wariant 1 Koszt modernizacji wentylacji: 0 zł Koszt modernizacji stolarki: 24490,00 zł					
Indywiduali Kalkulatork Zmienne Oz: Stałe miesięczn Abonamentowe Uzasadnienie E Dane główne Dodaj do k Włącz edyc Stolarka Wee	ne koszty e cosztów ie Om: 4 e Ab: 0 poniesiony do moderni osztów IIw cję strumier entylacja	nergii przed moderniz 34,00 Zł 9879,00 Zł 9879,00 Zł m-c ch nakładów zacji na instalację v ni powietrza dł	acją c ventylacyjną c _w = 1, la wariantu istniejąc	po moderniza 34,00 $\frac{21}{GJ}$ 9879,00 $\frac{21}{MW^{-1}}$ 0 $\frac{21}{m-c}$	cji m-c Odbywa się	ę przez nav	Roczn SPBT: Oblicze $Q_0 = 111$ $q_0 = 0,0$ wiewniki, o	e oszcz. kosztó 11,17 lat nia pomocnic 0,55 GJ 143 MW kna lub drzwi	w. △O _{10K+W} = 2 ze Q ₁ = 63,41 1 = 0,0093	GJ GJ MW	
Wariant	сг [-]	cm [-]	U [W/(m²·K)]	Kjok netto [zł/m²]	Nok netto [zł]	VAT[%]	Nok brutto [zł]		SPBT [lat]		+ ×
Istniejący	1,200	1,350	2,600								D.
1	1,000	1,000	1,300	500,000	24490,000	0,000	24490,000			11,171	1 Ph
2	0,850	1,000	1,300	700,000	34286,000	0,000	34286,000			14,223	B

Zakładka służąca do oceny opłacalności.

10.2.5.2.1 Dane główne do optymalizacji

Dane główne	do moderniz	acji							
Dodaj do k	osztów Nw n	a instalację	wentylacyjną c _w =1	,00 🕕	Odbywa sie	ę przez na	wiewniki, o	kna lub drzwi	
Włącz edyo	cję strumieni	powietrza d	lla wariantu istnieją	cego					
Stolarka We	entylacja								
Wariant	cr [-]	cm [-]	U [W/(m²·K)]	Kjok netto [zł/m²]	Nok netto [zł]	VAT[%]	Nok brutto [zł]	SPBT [lat]	+
Istniejący	1,200	1,350	2,600						
1	1,000	1,000	1,300	500,000	24490,000	0,000	24490,000	11,171	L I.P.
2	0,850	1,000	1,300	700,000	34286,000	0,000	34286,000	14,223	Ē

Pole do wprowadzenia danych do optymalizacji.

W celach informacyjnych w grupie znajdują się informacje dotyczące całkowitych kosztów wymiany stolarki okiennej lub drzwiowej w kolumnie N_w [zl], oraz kolumny SPBT[lata] informującej o prostym czasie zwrotu danego wariantu który to jest podstawą oceny który wariant jest wariantem optymalnym. Opis funkcjonalności przycisków:

W grupie **DANE GŁÓWNE DO OPTYMALIZACJI** audytor ma za zadanie podanie danych do optymalizacji dla przegrody wskazanej w drzewku przegród, a jej nazwa wyświetlona jest ponad grupą w pozycji **NAZWA PRZEGRODY**.

Za pomocą przycisku 🕇 audytor zwiększa ilość wariantów do wartości, którą uważa za stosowne. Aby dokonać optymalizacji należy wprowadzić następujące dane:

- Współczynnik *Cr* –którego wartość należy dobrać, dla stanu przed i po modernizacji, na podstawie tabeli wywoływanej po naciśnięciu przycisku ··· znajdującym się obok pola edycyjnego służącego do wprowadzenia wartości współczynnika.
- Współczynnik *Cm* –którego wartość należy dobrać, dla stanu przed i po modernizacji, na podstawie tabeli wywoływanej po naciśnięciu przycisku … znajdującym się obok pola edycyjnego służącego do wprowadzenia wartości współczynnika.
- •

Lp.	Wyszczególnienie przyczyn wpływających na zapotrzebowanie ciepła na cele wentylacji	Wartości wsj korek	ci współczynników korekcyjnych		
		c r	c m		
	Wentylacja naturalna Szczelność okien i drzwi, charakterystyka nawiewnika lub obserwowany poziom wentylacji:				
	 a) okna bardzo nieszczelne(a≥4) lub obserwowana nadmierna wentylacja powodująca wyziębianie pomieszczeń 	1,1-1,3	1,2-1,5		
1	 b) okna szczelne (0,5<a<1), okno="" ze<br="">skrzydłem rozwieralno-uchylnym lub opcją rozszczelniania: warunki wentylacji normalne</a<1),> 	1,0	1,0		
	c) okna bardzo szczelne (a<0,3) z nawiewnikami powietrza regulowanymi ręcznie	0,85	1,0		
	d) okna bardzo szczelne (a<0,3) z nawiewnikami powietrza regulowanymi automatycznie	0,7	1,0		
	e) okna szczelne, obserwowana niewystarczająca wentylacja	0,4-0,7	0,6-0,8		
		Apului	OK		

Wartości współczynników korekcyjnych Cr i Cm

- Współczynnik *U* –którego wartość należy dobrać, dla stanu po modernizacji samodzielnie lub na podstawie tabeli wywoływanej po naciśnięciu przycisku … znajdującym się obok pola edycyjnego służącego do wprowadzenia wartości współczynnika.
- *K_{jok}* koszty jednostkowe wymiany stolarki okiennej lub drzwiowej.
- *N*_w- koszty całkowite modernizacji wentylacji.

10.2.5.2.2 Indywidualne koszty energii.

Indywidualne koszty	energii	
Kalkulator kosztów	przed modernizacją	po modernizacji
Zmienne Oz:	34,00 <u>zł</u> GJ	34,00 <u>Zł</u> GJ
Stałe miesięczne Om:	9879,00 <u>Zł</u> MW·m-c	9879,00 <u>zł</u> MW·m-c
Abonamentowe Ab:	0 zł m-c	0 <u>zł</u> m-c

Pole do podania indywidulanych kosztów energii.

Audytor może podać koszty energii tylko do obliczeniaSPBT dla modernizacji okien i drzwi.

10.2.5.2.3 Informacje dodatkowe, uzasadnienie przyjęcia nakładów.

Uzasadnienie poniesionych nakładów
Ē

Pole do wprowadzenia informacji dodatkowych oraz uzasadnienia przyjęcia nakładów.

W grupie *INFORMACJE DODATKOWE*, *UZASADNIENIE PRZYJĘCIA NAKŁADÓW*, za pomocą pola edycyjnego, audytor ma za zadanie podać na jakiej podstawie przyjął nakłady na wykonanie działań termomodernizacyjnych. Dodatkowo w tej pozycji może przekazać dodatkowe informacje i wytyczne dotyczące analizowanego przedsięwzięcia.

10.2.5.2.4 Dane przegrody

Dane przegrody Powierzchnia do obliczeń strat Q0	Powierzchnia do obliczeń strat Q1 A _{s1} 48,98 m ²
Powierzchnia do obliczeń nakładów A = 48,98 m ²	

Pole z danymi powierzchniowymi przegrody

Na podstawie danych wprowadzonych w module do obliczeń cieplnych program w pozycji **POWIERZCHNIA DO OBLICZEŃ STRAT** podaje wartość powierzchni przegrody która służy do obliczeń strat ciepła przez przegrodę oraz do obliczeń kosztów wymiany stolarki.

10.2.5.2.5 Wymagania

	W/m²K
Okno w ścianach dla strefy I, II, III	1,90
Okno w dachu dla strefy I, II, III	1,80
Dla wszystkich typów okien dla strefy IV, V	1,70
Drzwi zewnętrzne	2,60

Pole z minimalnymi wymaganiami dla przegrody

Po klkienięciu na przycisk przycisku … znajdującym się obok pola edycyjnego U, audytor może, zależnie od strefy cieplnej, w której znajduje się budynek, wskazać *WYMAGANA WARTOŚĆ WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA* podaje wymaganą przez Rozporządzenie wartość współczynnika U dla modernizowanej stolarki okiennej lub drzwiowej.

10.2.5.2.6 Wyniki optymalizacji

Wyniki optymalizacji
Wariant optymalny: Wariant 1
Koszt modernizacji wentylacji: 0 zł
Koszt modernizacji stolarki: 24490,00 zł
Roczne oszcz. kosztów: ∆0 _{r0k+W} = 2192,28 <u>zł</u> rok
SPBT: 11,17 lat

Pole z wynikami optymalizacji.

Grupa **WYNIKI OPTYMALIZACJI** przedstawia dane dotyczące optymalnego wariantu. W pozycji **WARIANT OPTYMALNY** program automatycznie wybiera wariant o najniższej wartości **SPBT**. Audytor dzięki liście rozwijalnej zawierającej nazwy wariantów termomodernizacyjnych ma możliwość wyboru innego wariantu termomodernizacyjnego.

Pozostałe informacje, które są prezentowane w grupie to:

- **KOSZT MODERNIZACJI WENTYLACJI** całkowity koszt wykonania wymiany modernizacji wentylacji dla wybranego wariantu,
- *KOSZT MODERNIZACJI STOLARKI* całkowity koszt wykonania wymiany stolarki dla wybranego wariantu,
- •
- SPBT wartość prostego czasu zwrotu dla wybranego wariantu.

10.2.6 Okna dialogowe: Warianty termomodernizacyjne

10.2.6.1 Okno wariantów termomodernizacyjnych

Okno wariantów termomodernizacyjnychwg Rozporządzenia MI z 17.03.2009.

Oblicz warianty - wymusza rozpoczęcie obliczania wariantów termomodenizacyjnych

Utwórz warianty zgodnie z Rozporządzeniem - wymusza utworzenie wariantó w termomodenizacyjnych zgdonie z Rozporządzeniem MI z dnia 17 marca 2009 roku

Pierwsze z okien wariantów termomodernizacyjnych składa się z grup:

- **DANE** grupa służąca do wprowadzenia danych koniecznych do obliczenia raty kredytu termomodernizacyjnego oraz do podania środków własnych jakie posiada inwestor.
- **OBLICZENIA** grupa przedstawiające dane oraz wyniki dla poszczególnych wariantów termomodernizacyjnych.
- *WYNIKI OPTYMALIZACJI* grupa w której podane są dane dotyczące wybranego jako optymalny wariantu termomodernizacyjnego.
- **DRZEWKO WARIANTÓW** grupa w której znajduje się drzewko z wariantami termomodernizacyjnymi.

10.2.6.1.1 Dane

Dane		
Środki własne inwestora 25000,00 zł		
Kwota kredytu możliwego do zaciągnięcia 90000,00 zł		
Vltwórz warianty zgodnie z Rozporządzeniem	Obliczwarianty	

Pole z danymi dotyczącymi oprocentowania kredytu, środków własnych inwestora oraz okresem kredytowaniawg Rozporządzenia MI z 17.03.2009.

W grupie **DANE** audytor musi podać:

- **OPROCENTOWANIE KREDYTU** wartość oprocentowania kredytu zaciąganego na realizację przedsięwzięcia termomodernizacyjnego.
- ŚRODKI WŁASNE INWESTORA środki własne jakie inwestor posiada na pokrycie wymaganego wkładu własnego. Bezwzględnie konieczne jest podanie wartości środków własnych, gdyż bez tej informacji nie będzie możliwe wybranie optymalnego wariantu przedsięwzięcia termomodernizacyjnego.
- OKRES KREDYTOWANIA okres kredytowania podany w latach. Domyślna wartość, zgodna z
 rozporządzeniem to 10 lat. Niezalecane jest zwiększanie wartości okresu kredytowania, gdyż okres
 kredytowania, zgodnie z rozporządzeniem, nie może być dłuższy niż 10 lat, natomiast zmniejszenie
 okresu kredytowania zwiększa miesięczną ratę kredytu co może skutkować zmniejszeniem
 maksymalnej wartości możliwego do uzyskania kredytu termomodernizacyjnego.
- **KWOTA KREDYTU MOŻLIWA DO ZACIĄGNIĘCIA** użytkownik musi podać jaką kwotę kredytu może zaciągnąć inwestor.
- UTWÓRZ WARIANTY ZGODNIE Z ROZPORZĄDZENIEM jeżeli audytor w oknie, w którym przyporządkowuje się kolejne usprawnienia do wariantów termomodernizacyjnych, dokona samodzielnych korekt może powrócić do ustalenia wariantów zgodnych z rozporządzeniem zaznaczając pole wyboru UTWÓRZ WARIANTY ZGODNIE Z ROZPORZĄDZENIEM.

Obliczenia													
		đy		<u>e</u>	ych	ota	Premia	termomoder	rnizacyjna	nie ość	e _ ie	agu	+
	Wariant	Planowane kos całkowite	Roczna oszczędność kosztów enery	Procentowa oszczędność zapotrzebowar na energię	Planowana kw środków własm	Planowana kwi kredytu	20% kredytu	16% kosztów całkowitych	dwukrotność rocznej oszczędności koszłów energii	Kwota kredytu przekracza wart zadeklarowan	Środki własne i przekraczają wartości zadeklarowan	Zmnielszenie zapotrzebowar na energię w ci	×
	1	151835,18	10598,52	90,56	25000,00	126835,18	25367,04	24293,63	21197,05	niespełnione	spełnione	spełnione	
	2	147735,18	10487,08	89,86	25000,00	122735,18	24547,04	23637,63	20974,15	niespełnione	spełnione	spełnione	
	3	115358,62	9865,96	85,89	25000,00	90358,62	18071,72	18457,38	19731,92	niespełnione	spełnione	spełnione	
	4	48620,00	4265,10	43,62	25000,00	23620,00	4724,00	7779,20	8530,20	spełnione	spełnione	spełnione	
	5	24130,00	3164,28	34,88	25000,00	0,00	0,00	3860,80	6328,56	spełnione	spełnione	spełnione	
	6	19832,00	2650,20	29,21	25000,00	0,00	0,00	3173,12	5300,40	spełnione	spełnione	spełnione	

10.2.6.1.2 Obliczenia

Pole z wynikami obliczeń dla wariantów termomodernizacyjnychwg Rozporządzenia MI z 17.03.2009.

W grupie *OBLICZENIA* znajduje się tabela z informacjami dotyczącymi kolejnych wariantów termomodernizacyjnych:

- wg Rozporządzenia MI z 14.02.2008

- PLANOWANE KOSZTY CAŁKOWITE
- ROCZNA OSZCZĘDNOŚĆ KOSZTÓW ENERGII
- PROCENTOWA OSZCZĘDNOŚĆ ZAPOTRZEBOWANIA NA ENERGIĘ
- PLANOWANA KWOTA ŚRODKÓW WŁASNYCH
- PLANOWANA KWOTA KREDYTU
- 1/12(różnica pomiędzy 1/12 rocznych oszczędności kosztów a ratą kredytu),

• RATA KREDYTU

- wg Rozporządzenia MI z 17.03.2009

- PLANOWANE KOSZTY CAŁKOWITE
- ROCZNA OSZCZĘDNOŚĆ KOSZTÓW ENERGII
- PROCENTOWA OSZCZĘDNOŚĆ ZAPOTRZEBOWANIA NA ENERGIĘ
- PLANOWANA KWOTA ŚRODKÓW WŁASNYCH
- PLANOWANA KWOTA KREDYTU
- PREMIA TERMOMODERNIZACYJNA 20% KOSZTÓW CAŁKOWITYCH
- PREMIA TERMOMODERNIZACYJNA 16% KREDYTU
- PREMIA TERMOMODERNIZACYJNA DWUKROTNOŚĆ ROCZNEJ OSZCZĘDNOŚCI KOSZTÓW ENERGII
- PREMIA TERMOMODERNIZACYJNA 16% KOSZTÓW CAŁKOWITYCH

Opis funkcjonalności przycisków:

dodawanie nowego wariantu,

usuwanie wariantu,

10.2.6.1.3 Wymagania

Kwota kredytu nie przekracza wartośc zadeklarowanej	Środki własne nie przekraczają wartości zadeklarowanej	Zmniejszenie zapotrzebowania na energię w ciągu roku
niespełnione	spełnione	spełnione
niespełnione	spełnione	spełnione
niespełnione	spełnione	spełnione
spełnione	spełnione	spełnione
spełnione	spełnione	spełnione
spełnione	spełnione	spełnione

Pole wskazujące spełnienie wymagań dla przedsięwzięć termomodernizacyjnych wg Rozporządzenia MI z 17.03.2009.

Grupa *WYMAGANIA* ma za zadanie przekazanie audytorowi czy wybrany wariant termomodernizacyjny spełnia wymagania stawiane przez Ustawę o wspieraniu przedsięwzięć termomodernizacyjnych.

10.2.6.1.4 Wyniki optymalizacji

Wyniki optymalizacji Wariant optymalny:	Wariant 4
Nakłady: 48620,00 zł	
Środki własne inwestora	a: 25000,00 zł
Kwota kredytu: 23620,0	0 zł
Premiatermomoderniza	acyjna: 4724,00 zł
Oszczędności kosztów:	4265,10 zł

Pole z wynikami obliczeń dla optymalnego wariantu przedsięwzięcia termomodernizacyjnegowg Rozporządzenia MI z 17.03.2009.

W grupie *WYNIKI OPTYMALIZACJI* w pozycji *WARIANT OPTYMALNY* program automatycznie wybiera wariant optymalny (czyli pierwszy który spełni wszystkie wymagania). Audytor ma możliwość samodzielnego wybrania na swoją odpowiedzialność innego wariantu jako optymalny. Pozostałe pozycje grupy to:

ozostale pozycje grupy to.

- *NAKŁADY* czyli całkowite koszty optymalnego wariantu przedsięwzięcia termomodernizacyjnego,
 ŚRODKI WŁASNE INWESTORA czyli środki własne jakie inwestor będzie musiał ponieść aby
- wykonać optymalny wariant przedsięwzięcia,
- KWOTA KREDYTU kwota kredytu na wykonanie optymalnego wariantu przedsięwzięcia,
- RATA KREDYTU rata kredytu pomniejszonego o premię termomodernizacyjną,
- **PREMIA TERMOMODERNIZACYJNA** premia termomodernizacyjna wybrana z jednego z trzech przypadków,
- **OSZCZĘDNOŚCI KOSZTÓW** roczne oszczędności kosztów wynikające z realizacji przedsięwzięcia termomodernizacyjnego.

ODTI	Wari	anty termomodernizacyjne - Audyt ene	rgetyczny, WT 2	014			
+×	Usp	awnienia termomodernizacyjne wg rosnącej	wartości SPBT				
Warianty termomoderniza Wariant 1 W Wariant 2 W Wariant 2 W	Lp.	Rodzaj i zakres usprawnienia termomodernizacyjnego albo wariantu termomodernizacyjnego	Planowane koszty robót [zł]	SPBT [lat]		Dhiczone roczne zapotrzebowanie na ciepio:	
Wariant 3	1	Modernizacja systemu ciepłej wody użytkowej	4298,00	8,366	•	Przed modernizacją Po modernizacji	
···· W Wariant 4 ···· W Wariant 5	2	Modernizacja przegrody OZ 1 'Wentylacja grawitacyjna'	24490,00	11,171		$Q_{000} = 117,73 \frac{GJ}{rok}$ $Q_{100} = 3,33 \frac{G_{10}}{rok}$	J k
····· W Wariant 6	3	Modernizacja przegrody Ściana zewnętrzna	66738,62	12,052	•	Q _{00w} = 35,97 GJ rok Q _{10w} = 20,85 G	<u>SJ</u> ok
	4	Modernizacja przegrody Stropodach	32376,56	40,106	•	Obliczone zapotrzebowanie na moc:	
	5	Modernizacja przegrody DZ 1 'Wentylacja grawitacyjna'	4100,00	46,005		Przed modernizacją Po modernizacji	
						Przed modernizacją Po modernizacji	coic
> Dane ogólne System grzewczy Clepła woda użytkowa Ściany, stropoł, stropodachy	Mod	ernizacja systemu orzewczego oraz koszty d	okumentacii			Przed modernizacją Po modernizacją Q ₀ 266,81 GJ, rok Q, q, = 251,77 C, rok Roczne koszty użytkowania systemu co i cwi Przed modernizacją Po modernizacją Po modernizacją O ₀ = 13849,13 zi O ₁ = 3250,61	coic 3J ok u: zł
Dane ogólne System grzewczy Clepła woda uzytkowa Ściany, stropy, stropodachy Okna, drzwi, wentyłacja	Mod	ernizacja systemu grzewczego oraz koszty d Rotzali zakras usorzwolenie	okumentacji			Przed modernizacją Po modernizacj Q ₀ = 266,81 <u>GJ</u> Roczne koszty użytkowania systemu co i cw Przed modernizacją Po modernizacj Q ₀ = 13849,13 zł O, = 3250,61 Roczne oszczędności kosztów użytkowania:	coic 3.J ok u: zł
Dane ogólne System grzewczy Clepia woda uzytkowa Sciany, stropy, stropodachy Okna, drzwi, wentyłacja Warianty termomodernizacyjne	Mod	ernizacja systemu grzewczego oraz koszty d Rodzaji zakres uspravnieni termonośenizacyjnego abo warantu termonodenizacyjnego	okumentacji Pianowane koszty robót [z]]	SPBT [lat]		Przed modernizacją Pe modernizacją O_{c} 268,81 O_{c} 2,47.1 Boczne koszty uzytkowana systemu o low Perzed modernizacją Pe modernizacją O _g 13448,13 O _g 3250,61 Roczne ozczędności kosztów użytkowana: 20 - 10598,52 Pocentwe oszczedności kosztów użytkowana: 20 - 10598,52	coic 3 <u>J</u> ok u: zł
Dane ogólne System grzewczy Ciepła woda użytkowa Ściany, stropy, stropodachy Okna, drzewi, wertylacja Warianty termomodernizacyjne DANE WEJSCIOWE	Mod Lp.	ernizacja systemu grzewczego oraz koszty d Rodzaj i zatres uspravniena termondernizacyjego abo wanatu termondernizacyjego Modernizacja systemu grzewczego	okumentacji Pianowane koszty robół [zł] 19832,00	SPBT [lat] 7,29		Przed modernizacji Po modernizacji Q ₀ = 26.81 Q ₀ = 25.71 Rozna Koszty Utykowania systemu co i cw Pized modernizacji Po modernizacji Q ₀ = 3.494.81 21 0, - = 3.250.61 Rozna Koszty Utykowania systemicki okazitów uzytkowania = 0.00000000000000000000000000000000000	coic 3 <u>J</u> ok u: 2 ³ ania:
Dane ogólne System grzenczy Ciepła woda uzytkowa Ściany, stropy, stropodachy Okna, drzwi, westyłacja Waransty termomodeninzacyjni Danie Wejsci Owie Obliczenia A cierune	Mod Lp.	ernizacja systemu grzewczego oraz koszty d Rodzaj i zatres uspravniena termondernizacyjego abo wanatu termondernizacyjnego Modernizacja systemu grzewczego	Planowane koszty robót [24] 19832,00	SPBT [lat] 7,29	V	Przed modernizacji Po modernizacji Q ₀ 24.841 Q ₀ 25.71 Rozna Koszty Ustowania systemu co i cw Po modernizacji Po modernizacji Q ₀ 1.3444.13 21 , - 3260.64 Rozna Koszty Ustybowania systemic kosztów użytkowania ado - 10598.52 - AO - 10598.52 - - - - Procentowe oszczęśnicki kosztów użytkowa %LO = 76,53 % % - - -	coic 3 <u>J</u> ok u: zł ania:
Dane ogólne System grzewczy Ciepła woda uzytkowa Sciany, stropy, stropodachy Okna, grzwi, wentyłacja Wasianty temmomdernizacy po Wasianty temmomdernizacy po Danie we.Scitowie Obliczenia ciepłnie AUDYT	Mod Lp.	ernizacja systemu grzewczego oraz koszty d Rodzaj i zakres uspravnienia termondernizacyjego abo varantu termondernizacyjego Modernizacja systemu grzewczego	Planowane koszty robół [zł] 19832,00	SPBT [lat] 7,29		$\label{eq:production} \begin{array}{llllllllllllllllllllllllllllllllllll$	coic 3.j ok u: 2ª ania:
Dane ogólne System grzewczy Clepia woda uzytkowa Sciany, stopodachy Okna, drzwi, wentyriacja Wasianty termomodenizacyjna Okne Wejściowe Obake Wejściowe Obake Czenia Clepine Obake Clepine AUDYT Obake Mojacha PROJektu	Mod Lp. 1	ernizacja systemu grzewczego oraz koszty d Rodzaj i zakres usystewinia termodernizacyjnega bio wrantu sermonodernizacyjnego Modernizacja systemu grzewczego o błędach	Planowane koszty robót [28] 19832,00	SPBT [lat] 7,29		$\label{eq:production} \begin{array}{llllllllllllllllllllllllllllllllllll$	coic ok u: zł ania:

10.2.6.2 Okno do ustalania wariantów termomodernizacyjnych

Okno służące do ustalania wariantów termomodernizacyjnych.

Program na podstawie dokonanych we wcześniejszych krokach ocenach opłacalności, ustala warianty termomodernizacyjne zgodnie z algorytmem określonym w rozporządzeniu. Jeżeli audytor wyraża chęć utworzenia wariantów w inny sposób niż to określa rozporządzenie, może je utworzyć poprzez zaznaczenie lub odznaczenie danego usprawnienia w analizowanym wariancie. Zaznaczenie pola edycja wyników odblokowuje do edycji pole Q_{1co} i q_{1co}. Przycisk "Pobierz dane " służy do wczytywania obliczeń z innych plików. Przykład mamy termomodernizacje, w której część pomieszczeń zmienia przeznaczenie (np. zmienia się wentylacja i temperatura wewnętrzna), program liczy automatycznie na podstawie danych wstawionych w projekcie jakakolwiek zmiana gemetrii lub danych wejściowych może się odbyć tylko w następujący sposób:

- wybieramy interesujący nas wariant termomodernizacji i wciskamy ikonę 🦾, program pyta się gdzie zapisac nowy projekt wybieramy miejsce na dysku, wówczas otowrzy się nam plik z wypełnioną geometrią i danymi z projektu przed termomodernizacją i z uwaględnieniem wszystkich zmian wybranych w wariancie termomodernizacji (np. w definicji przegród będą ściany z dociepleniem, zmieni się rodzaj wentylacji),

- użytkownik dowolnie modyfikuje projekt zmieniając na przykład temperatury i strumienie powietrza

- zapisuje projekt i zamyka program (tylko ten, który pojawił się w nowym oknie)

- w programie dla którego zrobił tą operację włącza przycisk "Pobierz dane", odnajduje plik i go dołącza do projektu

- wówczas program podmienia obliczone przez program wartości Q1co i q1co na te przeedytowane w nowym pliku

na podstawie nowych wartości Q_{1co} i q_{1co} zostaną przeprowadzone wszystkie obliczenia oszczędności, zapotrzebowania dla całego projektu (zmianie nie ulegną tylko czastkowe wartości SPBT).
 Opis funkcjonalności przycisków:

dodawanie nowego wariantu,

usuwanie wariantu,

utworzenie projektu na podstawie audytu

Wyniki obliczeń modułu Audyt

11 WYNIKI OBLICZEŃ MODUŁU AUDYT

Wyniki obliczeń modułu Audyt

11.1 RAPORT UPROSZCZONY

AUDYT						
Wybrany wariant termomodernizacyjny: Wariant 4						
Parametry ekonomiczne						
Nakłady inwestycyjne 48620.00 zł						
Planowany kredyt 23620.00 zł						
Planowane środki własne 25000.00 zł						
Premia termomodernizacyjna 16% kosztów całkowitych 7779.20 zł						
Premia termomodernizacyjna 20% kredytu 4724.00 zł						
Premia termomodernizacyjna dwukrotność rocznej oszczędności kosztów energii 8530.20 zł						
Planowane roczne oszczędności kosztów 4265.10 zł	Planowane roczne oszczędności kosztów 4265.10 zł					
Parametry energetyczne						
Procentowe zmniejszenie zapotrzebowania na energię 43.62%						
Spełnienie wymagań						
Kwota kredytu nie przekracza wartości zadeklarowanej	ТАК					
Kwota kredytu nie przekracza wartości zadeklarowanej Środki własne nie przekraczają wartości zadeklarowanej	TAK TAK					
Kwota kredytu nie przekracza wartości zadeklarowanej Środki własne nie przekraczają wartości zadeklarowanej Zmniejszenie zapotrzebowania na energię w ciągu roku wynosi co najmniej 15%	ТАК ТАК ТАК					
Kwota kredytu nie przekracza wartości zadeklarowanej Środki własne nie przekraczają wartości zadeklarowanej Zmniejszenie zapotrzebowania na energię w ciągu roku wynosi co najmniej 15% Wykaz usprawnień	ТАК ТАК ТАК					
Kwota kredytu nie przekracza wartości zadeklarowanej Środki własne nie przekraczają wartości zadeklarowanej Zmniejszenie zapotrzebowania na energię w ciągu roku wynosi co najmniej 15% Wykaz usprawnień Modernizacja systemu grzewczego	ТАК ТАК ТАК					
Kwota kredytu nie przekracza wartości zadeklarowanej Środki własne nie przekraczają wartości zadeklarowanej Zmniejszenie zapotrzebowania na energię w ciągu roku wynosi co najmniej 15% Wykaz usprawnień Modernizacja systemu grzewczego Modernizacja systemu ciepłej wody użytkowej	ТАК ТАК ТАК					

Okno raportu wg Rozporządzenia MI z 17.03.2009.

W raporcie użytkownik programu ma możliwość przeanalizowania wyników przeprowadzonych analiz audytorskich.

Informacje przekazywane w raporcie AUDYT:

WYBRANY WARIANT TERMOMODERNIZACYJNY – numer optymalnego wariantu przedsięwzięcia termomodernizacyjnego budynku.

PARAMETRY EKONOMICZNE – wyniki ekonomiczne dotyczące optymalnego wariantu przedsięwzięcia termomodernizacyjnego:

- NAKŁADY INWESTYCYJNE wartość całkowitych nakładów koniecznych do realizacji optymalnego wariantu przedsięwzięcia termomodernizacyjnego,
- *PLANOWANY KREDYT* wartość planowanego kredytu koniecznego do zaciągnięcia w celu realizacji optymalnego wariantu przedsięwzięcia termomodernizacyjnego,
- *PLANOWANE ŚRODKI WŁASNE* wartość planowanych środków własnych które musi posiadać inwestor aby móc zrealizować optymalny wariant termomodernizacyjny,
- **PLANOWANA RATA KREDYTU** wartość miesięcznej raty kredytu wraz z odsetkami pomniejszonego o premię termomodernizacyjną-,
- PLANOWANE ROCZNE OSZCZĘDNOŚCI KOSZTÓW wartość planowanych rocznych oszczędności kosztów wynikających z przeprowadzenia działań objętych optymalnym wariantem termomodernizacyjnym,
- PROCENTOWE ROCZNE OSZCZĘDNOŚCI KOSZTÓW procentowa wartość mówiąca o tym ile roczne inwestor zaoszczędzi kosztów w wyniku przeprowadzenia optymalnego wariantu termomodernizacyjnego.

PARAMETRY ENERGETYCZNE :

• **PROCENTOWE ZMNIEJSZENIE ZAPOTRZEBOWANIA NA ENERGIĘ** – wartość procentowego zmniejszenia zapotrzebowania na energię w wyniku przeprowadzenia działań objętych optymalnym wariantem przedsięwzięcia termomodernizacyjnego.

*SPEŁNIENIE WYMAGA*Ń – punkt raportu informujący o tym czy wybrany wariant spełnia wszystkie wymagania stawiane przez Ustawę o wspieraniu przedsięwzięć termomodernizacyjnych.

• ŚRODKI WŁASNE NIE PRZEKRACZAJĄ WARTOŚCI ZADEKLAROWANEJ

Wyniki obliczeń modułu Audyt

• ZMNIEJSZENIE ZAPOTRZEBOWANIA NA ENERGIĘ W CIĄGU ROKU WYNOSI CO NAJMNIEJ ...%

WYKAZ USPRAWNIEŃ – wykaz wszystkich usprawnień składających się na optymalny wariant przedsięwzięcia termomodernizacyjnego.

12 CERTYFIKAT

12.1 OGRZEWANIE I WENTYLACJA

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01]	- 🗆 ×
<u>Plik E</u> dycja Ustawienia P <u>o</u> moc	🗄 🅏 🖻 🔦 🖻 🥀 🗟 ?	
CERTYFIKAT	Ogrzewanie i wentylacja - Świadectwo charakterystyki energetycznej 2014, WT 2014	
D+6名×DB S	Oceniany budynek	^
	Rodzaj budynku 1) Dom jednorodzinny	1
⊡	Przeznaczenie budynku 2) Mieszkalny	
Budynek referencyjny	Adres budynku 90-057 Łódź ul. Sienkiewicza 85/87	
Strefa O1	Rok oddania do użytkowania budynku 3) 2014	
É	Metoda określenia charakterystyki 41 metoda obliczeniowa dla przyjętego sposobu użytkowania i standardowych warunków klimatycznych	
₩₩ Gaz ziemny 50%	Powierzchna pomieszczeń o regulowanej 51 temperaturze powietrza (powierzchna ogrzowana bu chódozon 3/4 (m ²)	
	Powierzchnia użytkowa (m²) 70,00 m²	
L	Ważne do (rrrr-mm-dd) 6)]
	Stacja meteorologiczna, według 7 której danych obliczna jest charakterystyka energetyczna	
	Ocena charakterystyki energetycznej budynku	
1,77,77 kWh/(m²rok)	Wskaźnik charakterystyki energetycznej Oceniany budynek Wymagania dla nowego budynku według przepisów techniczno-budowianych	
0 200 400 800 1000 >1000	Wskaźnik rocznego zapotrzebowania na energię użytkową EU = 46,60 (m ² -rok)	
1 Ogrzewanie i wentylacia	Wskaźnik rocznego zapotrzebowania na [®] EK = 63,70 ^{£Wh} (m ²² -rok)	
Ciepła woda użytkowa	Wskaźnik rocznego zapotrzebowania na ¹⁰ EP = 77,77 (^{kV/h} / _(m²-rok) EP = 120,00 (^{kV/h} / _(m²-rok))	
DANE WEJŚCIOWE	Jednostka wielkości emisji CO2 E _{CO2} = 1,31 (CO2 (m ² -rok)	
B OBLICZENIA CIEPLNE	Udział odnawialnych źródeł energi w	1
	rocznym zapotrzebowaniu na energię U ₀₂₂ = 10,40 m końcową	
LCA PODGLĄD PROJEKTU	Raport o bledach	
WYDRUKI	Lp. Typ Opis	
	Odśwież listę błędów!	
< [7/11] >		📙 Zamknij

Okno Certyfikatu ogrzewanie i wentylacja pierwsza strona raportu

Æ		ArCADia-TE	RMO PRO 6.0 Li	cencj	a dla: Test - ArCAI	Dia-TERMO PRO 6 [L	01]				- 🗆 🗙
Plik Edycja Ustawienia Pomoc	84	Þ 🖪 🔦 🖥	₹ /⇒ ₹ ?								
CERTYFIKAT	Ogrzev	wanie i went	ylacja - Świadect	wo ch	arakterystyki ener	getycznej 2014, WT	2014				
C++ 4 4 × D B	éı		HADAVTEDVETVI EN	IEDCET				_	•		^
Strefa O1	-										
⊡	N	Numer świadectwa 1									
	P	Podstawowe parametry techniczno-użytkowe budynku									
⊡	Li	iczba kondygnac	ji budynku		1						
Energia sioneczna 50%	Kı	ubatura budynku	[m ²]		249,92 m ³						
	Kubatura budynku o regulowanej temperaturze powietrza [m ³]				249,92 m ³						
	Po	Podział powierzchni użytkowej budynku			100% powierzchni użytkowej						
	Te za	Temperatury wewnętrzne w budynku w zależności od stref ogrzewanych			20 stopni w całym budynku						
	R	Rodzaj konstrukcji budynku tradycyjna									
>			,	łazwa przegrody	rzegrody Opis przegrody		Współczynnik przenikania ciepła Uc lub U [W/(m²·K)]				
77,77 kWh/(m²rok)								Uzyskany	Wymagany ¹³⁾		
1				C	27-Dach	Dachówka ceramiczna kai λ=1.000 W/(m·K)); Wełna r granulowana 80 (0,25 m, J	piówka (0,015 m, nineralna ⊷=0.050 W/(m·K))	0,19	0,20		
Ogrzewanie i wentylacja				C	Z 1-Drzwi zewnętrzne	Szerokość: 0,9m, Wysoko	ść: 2m	1,70	1,70		
Ciepra woda uzytkowa				0	OPZ 1-Okno połaciowe	Szerokość: 0,8m, Wysoko	ść: 0,8m	1,50	1,50		
DANE WEJŚCIOWE				0	OZ 1-Okno zewnętrzne	Szerokość: 1,2m, Wysoko	ść: 1,5m	1,30	1,30		
OBLICZENIA CIEPLNE				0	OZ 2-Okno zewnętrzne	Szerokość: 1,2m, Wysoko	ść: 2,2m	1,30	1,30		
CERTYFIKAT						Piasek (0,2 m, λ=2.000 W/ wysokiej gęstości 2400 (0	m·K)); Beton o ,1 m, λ=2.000				
🛱 PODGLĄD PROJEKTU	Pr Baport o	rzegrody budynk bledach	u			(W/(m·K)); Papa asfaltowa	izolacyjna gr. 4 mm	I	-		Ŷ
		Typ				Onis					
	1 0	strzeżenie	Parametr "Współczy	/nnik pr.	zenikania Uc" w przegrod	zie "SW 15", powinien znajo	lować się w przedziale	od 0,00 do	0,30!		
< [7/11] >	Ð	B	Ð	R	E		£ (à	Q.	8	Zamknij

Okno Certyfikatu ogrzewanie i wentylacja fragment drugiej strony raportu

Panel ogrzewania i wentylacji służy do zdefiniowania systemu wytwarzania, regulacji, przesyłu i akumulacji. W programie możemy wyliczyć zapotrzebowanie dla każdej grupy (zdefiniowanej funkcji budynku) osobno.

TYP RAPORTU – pole do wybierania dla pojedynczej grupy wzoru świadectwa. Użytkownik ma do wyboru jeden z czterech wariantów Budynek, Budynek mieszkalny, Lokal mieszkalny, Część budynku stanowiąca samodzielną całość techniczno-użytkową. Należy pamiętać również o tym, że do każdego wzoru świadectwa dopięty jest odpowiedni sposób obliczeń budynku referencyjnego oraz czy grupa zostanie uwzględniona w

obliczeniach oświetlenia wbudowanego (oświetlenie wbudowane wyliczane jest w przypadku wybrania wzoru świadectwa budynku lub części budynku stanowiącego samodzielną całość techniczno-użytkową).

NAZWA - pole do wpisywania nazwy grupy, która pojawi się w drzewku świadectwa.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄQ_{H,nd} [kWh/rok] – pole w którym użytkownik może wpisać własną wartość (wówczas można wykonać obliczenia bez konieczności wstawiania przegród np. jak mamy stare świadectwo i na jego podstawie musimy zmienić tylko rodzaj kotła i związane z nim sprawności), program domyślnie wstawia sumę wartości Q_{H,nd} z dołączonych do danej grupy stref.

12.1.1.1 Drzewko struktury świadectwa charakterystyki energetycznej-ogrzewanie i wentylacja

Drzewko to służy do zarządzania strukturą obliczeń świadectwa użytkownik może stworzyć dowolną ilość grup dla których program policzy oddzielnie świadectwa, dodatkowo na podstawie wstawionych grup wyliczy zbiorcze świadectwo EPm (z wszystkich wstawionych grup i policzonych świadectw wylicza średnią ważoną wartość dla poszczególnych energii użytkowych, końcowych, pierwotnych gdzie waga jest powierzchnia Af). Tworzenie grup ma uzasadnienie w kilku przypadkach:

 gdy mamy doczynienia z budynkiem w którym jest więcej niż jedna funkcja użytkowa np. jest część mieszkalna i lokal usługowy. Wówczas w ciepłej wodzie inne jest V_{cw} dla części mieszkalnej i usługowej (podobnie jest z czasem użytkowania, przerwami urlopowymi i wodomierzami na ciepłej wodzie),
 gdy mamy doczynienia z budynkiem mieszkalnym, w którym każdy lokal ma własne źródło ciepła (wówczas nie wykonujemy świadectwa dla całego budynku tylko dla poszczególnych lokali),

Legenda przycisków drzewka:

- tworzenie nowej grupy/funkcji,

dodawania nowego typu źródła do grupy/funkcji,

-usuwanie typu źródła z grupy/funkcji,

- wczytywanie gotowego szablonu drzewka struktury świadectwa,

- zapisywanie szablonu drzewka struktury świadectwa,

-przełączanie widoku drzewka z struktury świadectwa na podgląd wzorów.

Legenda oznaczeń na drzewku:

- przejście do okna zbiorczego świadectwa charakterystyki energetycznej. Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi),

-przejście do okna grupy/funkcji widok ikonki uzależniony jest od wybranego wariantu wzoru świadectwa (budynek, budynek mieszkalny, lokal mieszkalny, część budynku ...). Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi). Dodatkowo wybiera jaki wzór świadectwa ma być wygenerowany dla tej grupy

B				
	-przejście do okna parametrów źr	ódła ciepła, v	w którym wybieramy	/ współczynnik, udział procentowy
10	Q _{H,nd} i energię pomocniczą dla źro	ódeł,		

12.1.1.2 Zakładka Charakterystyka techniczno-użytkowa

Charakterystyka techniczno-użytkowa	Instalacje Uwagi Budynek referencyjn
Rodzaj budynku:	Kamienica ze sklepami
Adres:	ul. Sienkiewicza 85/87
Część/całość budynku:	Część budynku
Rok zakończenia budowy (oddania do użytku:	1948
Rok budowy instalacji:	2000
Cel wykonania świadectwa: 🏾 🌖	Rozbudowa
Liczba lokali mieszkalnych:	1
Przeznaczenie budynku:	Usługow-mieszkalny
Liczba kondygnacji:	1
Temperatury eksploatacyjne:	zima tz = 20°C
Powierzchnia użytkowa o regulowanej temperaturze:	A _F = 85,00 m ²
Powierzchnia użytkowa:	85 m2
Podział powierzchni:	100 % mieszkalnej
Liczba użytkowników:	3
Kubatura:	238.000
Rodzaj konstrukcji:	tradycyjna

Zakładka Charakterystyka techniczno-użytkowa

RODZAJ BUDYNKU – pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej typu budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ADRES - pole do edycji przez użytkownika, program domyślnie wstawia wartość z pól Kod pocztowy, Miejscowość, Adres, Nr (okno Dane projektu/Dane budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CZĘŚĆ/CAŁOŚĆ BUDYNKU – pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK ZAKOŃCZENIA BUDOWY/ODDANIA DO UŻYTKOWANIA - pole do edycji przez użytkownika, program domyślnie przenosi wartość z wybranego wcześniej Roku budowy (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK BUDOWY INSTALACJI- pole do wyboru przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CEL WYKONYWANIA ŚWIADECTWA - pole do edycji przez użytkownika, z dodatkowym przyciskiem info, w którym podane są przypadki opisane w rozporządzeniu. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA LOKALI MIESZKALNYCH - pole do wyboru przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZEZNACZENIE BUDYNKU - pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej Przeznaczenia budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA KONDYGNACJI - pole do edycji przez użytkownika, program domyślnie przenosi wartość z pola Liczba kondygnacji (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

TEMPERATURA EKSPLOTACYJNA - pole do edycji przez użytkownika, należ w nie wpisać wewnętrzną temperaturę dla zimy i lata. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE – pole do edycji przez użytkownika, program domyślnie sumuje z wszystkich stref należących do tej grupy powierzchnie Af.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA UŻYTKOWA - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PODZIAŁ POWIERZCHNI - pole do edycji przez użytkownika, należy wpisać albo udział procentowy powierzchni użytkowych do nieużytkowych albo podać wartości tych powierzchni. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA UŻYTKOWNIKÓW - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

KUBATURA - pole do edycji przez użytkownika, program domyślnie sumuje kubaturę wszystkich stref należących do danej grupy. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

RODZAJ KONSTRUKCJI - pole do edycji przez użytkownika, program domyślnie przenosi nazwę wybraną w polu Technologia wznoszenia (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.1.1.3 Zakładka Instalacje

Zakładka Instalacje

-przycisk służy do pobrania opisów typów instalacji wprowadzonych w poprzednich etapach

Podręcznik użytkownika dla programu ArCADia–TERMO

Certyfikat

OSŁONA BUDYNKU - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej izolacji przegród. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OGRZEWANIE - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu ogrzewania. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

WENTYLACJA - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej wentylacji w budynku. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CHŁODZENIE - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej instalacji chłodniczej.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZYGOTOWANIE CIEPŁEJ WODY - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu przygotowania ciepłej wody. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OŚWIETLENIE WBUDOWANE - pole do edycji przez użytkownika, należy w nim wpisywać opis instalacji oświetlenia. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.1.1.4 Zakładka Uwagi

Obliczenia Qwn Charakterystyka techniczno-użytko Instalacje Uwagi Budynek referencyjn
Możliwe zmiany w zakresie osłony zewnętrznej budynku: brak uwag
Możliwe zmiany w zakresie techniki instalacyjnej i źródeł energii: brak uwag
Możliwe zmiany ograniczające zapotrzebowanie na energię końcową w czasie eksploatacji brak uwag
Możliwe zmiany ograniczające zapotrzebowanie na energię końcową związane z korzystaniem z cieplej wody użytkowej; brak uwag
Inne uwagi osoby sporządzającej świadectwo charakterystyki energetycznej: brak uwag

Zakładka Uwagi

MOŻLIWE ZMIANY W ZAKRESIE OSŁONY ZEWNĘTRZNEJ BUDYNKU - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE TECHNIKI INSTALACYJNEJ I ŹRÓDEŁ ENERGII - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE OŚWIETLENIA WBUDOWANEGO - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ W CZASIE EKSPLOATACJI - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ ZWIĄZANE Z KORZYSTANIEM Z CIEPŁEJ WODY UŻYTKOWEJ - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

INNE UWAGI OSOBY SPORZĄDZAJĄCEJ ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.1.1.5 Zakładka Budynek referencyjny WT 2014

Typ budynku do obliczeń referencyjnych Budynek użyteczności publicznej Powierzchnia o regulowanej temperaturze 1 Ar = 250,00 m² 2	\$
Powierzchnia użytkowa chłodzonego budynku () A _{FC} = <u>200.00</u> m ²	
Czas użytkowania oświetlenia i $t_0 = 2500,00 \frac{h}{rok}$	
Cząstkowa max. wartość EP na ogrzewanie, wentylację i przygotowanie c.w.u. ΔEP _{H+W} ⁼ 65,00 <u>kWh</u> m ^{2*} rok	
Cząstkowa max. wartość EP na chłodzenie i ∆EP _c = 20,00 <u>kWh</u> m ^{2*} rok	
Cząstkowa max. wartość EP na oświetlenie ΔΕΡ _L = 100,00 <u>kWh</u> m ^{2*} rok	
Maksymalna wartość wskaźnika EP i EP _{max} = 185,00 <u>kWh</u> m ^{2*} rok	

Zakładka Budynek referencyjny (Projektowana Charakterystyka Energetyczne WT2014),

TYP BUDYNKU DO OBLICZEŃ REFERENCYJNYCH – pole do wyboru z listy na tej podstawie wstawaine są wartości ΔEP_{H+W} , ΔEP_C , ΔEP_{H+W} . Do wyboru z listy mamy:

- Budynki mieszkalne jednorodzinne
- Budynki mieszkalne wielorodzinne
- Budynki zamieszkania zbiorowego
- Budynki opieki zdrowotnej
- Budynki użyteczności publicznej
- Budynki gospodarcze, magazynowe i produkcyjne

POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE A_f - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana sumą powierzchni stref cieplnych.

POWIERZCHNIA UŻYTKOWA CHŁODZONEGO BUDYNKU A_{f,c} - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana sumą powierzchni stref chłodzonych.

CZAS UŻYTKOWANIA OŚWIETLENIA to [h/rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie źródeł oświetlenia (jeśli jest klika źródeł w gupie certyfikatu program przyjmuje najwyższą to), na tej podstawie wstawiana jest wartość referencyjna ΔEP_L .

Cząstkowa max wartość EP na ogrzewanie, wentylację i przygotowanie ciepłej wody ΔEP_{H+W} [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Cząstkowa max wartość EP na chłodzenie ΔEP_C [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Cząstkowa max wartość EP na oświetlenie Δ EP_L [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Maksymalna wartość wskaxnika EP [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie wzoru EP= $EP_{H+W} + \Delta EP_C + \Delta EP_L$.

12.1.1.6 Etap Ogrzewanie i wentylacja

ArCADia-TERM	IO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - TEST z chłodzeniem(854808814	306166) – 🗆 🗙
<u>Plik E</u> dycja Ustawienia P <u>o</u> moc	□ ② 取 ★ ▼ / ▼ ?	
CERTYFIKAT	Ogrzewanie i wentylacja - Świadectwo charakterystyki energetycznej 2014, WT 2014	
C++ 4+ 4+ × IP IP ♦ C- L Certyfikat D- Creść budynku H- IP Budynek referencyjny D- IP Lista stref	Nazwa źródła cepła Kotły gazowe © Procentowy udział źródła w grupe: %, 50,00 % O Obliczony udział wg O _{W, sz} Roczne zapotrzebowanie na energię użyteczną na O _{W, sz} = 4147,32 1 <u>2020</u>	Informacje uzupełniające E
Część ogzewana Część ogrzewana 16 Część ogrzewana 16 Część ogrzewana 16 Wspólny system ogrzewa Wspólny system ogrzewa	Výtvarzanie Výtvarzanie energii w budynku - Gaz Tabice ziemny	Sprawność wytwarzania $w_H = 1,10$ $W_{eH,CO_2} = 0,06 \frac{Mg CO_2}{GJ}$ $\eta_{Hg} = 0,98$
⊡	Rodzaj źródła ciepła: Kotły gazowe kondensacyjne niskotemperaturowe (55/45°C) o mocy nominalnej owyżej 120 do 1200 kW	Hu = 48,00 TJ Gg Baza
щи чухо порочноху.	Regulacja Ogrzewanie wodne z grzejnikami członowymi lub Tabice Rodzaj instalacj: płytowymi w przypadku regulacji centralnej i miejscowej z zaworem termostatycznym o działania proporcionalno-zaktyjewym P1 crinkcjami datącenjom i Baza Baza	Sprawność regulacji n _{H.8} =0,93 Oblicz n' _{H.6} =0,93 X=1,00
►	Przesył C.o. wodne z lokalnego źródia ciepia usytuowanego W Tablice Rodzaj instalacji ogrzewczej przewodami, armaturą i urządzeniami, które są zalinstalowane w przestrzeni nieogrzewanej Boza	Sprawność przesyłu Oblicz N _{H.S} =0,80
	Akumutacja ciepla Parametry zasobnika buforowego Bxza	Sprawność akumulacji Oblicz N _{H.8} =1,00
Ciepta woda uzytkowa Ciepta woda uzytkowa Chłodzenie	Ulrządzenia pomocnicze Roczene ząpotrzewonia enropi ektrycznej kończwej do napędu urządzeń pomocniczych systemu oprzewania i wentybiacj Borczja pałwa: systemo wa systemu oprzewania i wentybiacj systemu oprzewania wentybiacj systemu	$\begin{array}{c c} \text{Urządzenia pomocnicze} \\ w_{ef} = 3,00 & W_{epon,H,CO} = 0,09 & \underline{\text{Mg CO}} \\ \text{Hu} = 20,70 & \underline{\text{TJ}} \\ \hline \text{Gg} & \text{Baza} \end{array}$
DANE WEJŚCIOWE OBLICZENIA CIEPLNE		Sprawność całkowita n _{H.tot} = 0,73
CERTYFIKAT	Raport o blędach	
WYDRUKI	Lp. Typ Opis 1 Ostrzeżenie Przegrada STZ 1 nie jest zaprojektowana prawidłowo. Brak odprowadzenia kondensatu w okresie let	nim.
< [8/14] >		🔓 🔓 🗐 Zamknij

Etap Ogrzewanie i wentylacja. Źródła ciepła

Oblicz

przycisk obok Obliczony udział wg Q_{H,nd}, pozwala obliczyć udział procentowy wybranego źródła ciepła w ogólnym zapotrzebowaniu na ciepło do ogrzania budynku

Lp.	Miesiąc	Udział	ΣQH,nd [kWh/mc]	Udział %	ΣQH,nd% [kWh/mc]
1	Styczeń	✓	2165,45	100	2165,45
2	Luty	✓	1936,23	100	1936,23
3	Marzec	✓	1567,75	100	1567,75
4	Kwiecień	✓	969,78	100	969,78
5	Maj	✓	304,23	100	304,23
6	Czerwiec	✓	0	100	0
7	Lipiec	✓	0	100	0
8	Sierpień	✓	0	100	0
9	Wrzesień	✓	479,7	100	479,7
10	Październik	✓	1265,82	100	1265,82
11	Listopad	✓	1593,43	100	1593,43
12	Grudzień	✓	2000,95	100	2000,95
azem:			12283,34		12283,34

Okno Obliczenie Q_{H,nd} dla wybranego źródła ciepła

Baza

- przycisk pozwala przejść do bazy danych Sprawności, w celu wybrania z bazy danych odpowiedniego urządzenia lub systemu o określnym współczynniku sprawności.

		Baza sprawności						X
Znajdź Szukaj: Ē Wyniki wyszukiwania aktualnie niedostępne.		Wyczyść		Wybrany Sprawno	y wynik ość: 0,96	min	Q	max
╪╪╪╳╳ҧ҇҇҇╠҄	Lp.	Nazwa	Spra mini	wność imalna	Sprawność maksymalna			+
Biomasa Viessmann Lon Pompa ciepta Stiebel Eltron Pompa ciepta Biawar	1	Węzły wyposażone w automatykę pogodową, pompy starszego typu bez płynnej regulacji obrotów, wymienniki płytowe inne niż JAD i WCO, układ zamknięty wyposażony w przeponowe naczynia wzbiorcze		0,945	0,965	Pompa		× ∿
Pompa ciepła Vikersønn Pompa ciepła Danfoss L Pompa ciepła L Pompa ciepła	2	Węzły wyposażone w automatykę pogodową, wymienniki płytowe inne niż JAD i WCO, pompy z płynną regulacją obrotów, układ zamknięty wyposażony w przeponowe naczynia wzbiorcze		0,950	0,970	Pompa		¢)
Pompa ciepła 	3	Węzły wyposażone w automatykę pogodową, wymienniki płytowe, pompy z płynną regulacją obrotów, układ otwarty lub zamknięty bez przeponowych naczyń wzbiorczych		0,950	0,970	Pompa		
	4	Hydroelewator	0,950	0,970	Pompa			
	5	Węzły wyposażone w automatykę pogodową, wymienniki płytowe, pompy starszego typu bez płynnej regulacji obrotów, układ zamknięty wyposażony w przeponowe naczynia wzbiorcze		0,955	0,975	Pompa		
Przywróć domyślne wartości Wybór wersji ba	 Izy da	nych: 6.0			Anul	uj	c	ж

Baza sprawności rodzaju źródła ciepła

Oblicz

przycisk obok $E_{el, pom}$ - pozwala przejść do okienka , zawierającego urządzenia (pompy obiegowe, pompy cyrkulacyjne, wentylatry) w celu oszacowania zapotrzebowania ilości energii elekrycznej, niezbędnej do zasilania tych urządzeń.

Oblicz

przyciski obok $\eta_{H,d}$ i $\eta_{H,s}$ pozwalają przejść do okienek, w których można obliczyć wartości sprawności przesyłu i sprawności akumulacji ciepła.

NAZWA ŹRÓDŁA CIEPŁA – pole do edycji przez użytkownika, wartość z tego pola pokazywana będzie na drzewku Certyfikat.

PROCENTOWY UDZIAŁ ŹRÓDŁA W GRUPIE – pole do edycji przez użytkownika, na podstawie wpisanej wartości procentowej zostanie odpowiednio pomniejszone $Q_{H,nd}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTECZNĄ NA OGRZEWANIE I WENTYLACJĘ Q_{H,nd} [kWh/rok] – pole do podglądu obliczonego zapotrzebowania wyliczonego z uwzględnieniem udziału procentowego.

INFORMACJA UZUPEŁNIAJĄCA – pole do wpisywania uwag przez użytkownika.

GRUPA WYTWARZANIE - pozycja wybrana z rozwijanej listy, z bazy sprawności lubpole do wpisywania uwag przez użytkownika.

RODZAJ PALIWA – użytkownik ma do wyboru następującą listę, do której dopięte są współczynniki nakładu **w**i:

Nr. Rodzaj paliwa w_i

1	Paliwo- olej opałowy	1,1
2	Paliwo- gaz ziemny	1,1
3	Paliwo- gaz płynny	1,1
4	Paliwo- węgiel kamienny	1,1
5	Paliwo- węgiel brunatny	1,1
6	Paliwo- biomasa	0,2
7	Ciepło z kogeneracji- węgiel kamienny	0,8
8	Ciepło z kogeneracji- gaz ziemny	0,8
9	Ciepło z kogeneracji- gaz biogaz	0,15
10	Ciepło z kogeneracji- biomasa	0,15
11	Ciepło z ciepłowni węglowej	1,3
12	Ciepło z ciepłowni gazowej/olejowej	1,2
13	Ciepło z ciepłowni na biomasę	0,2
14	Energia elektryczna- produkcja mieszana	3,0
15	Energia elektryczna- system PV	0,7
16	Paliwo-Kolektory słoneczne termiczne	0,0

 $RODZAJ \acute{Z}R\acute{O}DLA \ CIEPLA -$ użytkownik ma do wyboru listę, do której dopięte są współczynniki $\eta_{H,g}$.

Lp.	Rodzaj źródła ciepła	$\eta_{\mathrm{H,g}}$
1	Kotły węglowe wyprodukowane :	
	a) przed 1980 r.	0,60
	b) w latach 1980-2000 r.	0,65
	c) po 2000 r.	0,82
2	Kotły na biomasę (słoma) wrzutowe, z obsługą ręczną o mocy:	
	a) do 100 kW,	0,63
	b) powyżej 100 kW.	0,70
3	Kotły na biomasę (drewno: polana, brykiet, pelety, zrębki), wrzutowe, z	0,65
	obsługą ręczną, o mocy do 100 kW	
4	Kotły na biomasę (słoma) automatyczne o mocy:	
	a) do 100 kW,	0,70
	b) powyżej 100 kW do 600 kW.	0,75
5	Kotły na biomasę (drewno: polana, brykiet, pelety, zrębki),	
	automatyczne o mocy:	
	c) do 100 kW,	0,70
	d) powyżej 100 kW.	0,85
6	Kotły na biomasę (drewno: polana, brykiet, pelety, zrębki),	0,85
	automatyczne, z mechanicznym podawaniem paliwa, o mocy powyżej	,
	600 kW	
7	Kominki z zamkniętą komorą spalania	0,70
8	Piece kaflowe	0,80
9	Podgrzewacze elektryczne przepływowe	0,94
10	Podgrzewacze elektrotermiczne	1,00
11	Elektryczne grzejniki bezpośrednie: kowektorowe, płaszczyznowe,	0,99
	promiennikowe i podłogowe kablowe	
12	Piece olejowe lub gazowe pomieszczeniowe	0,84
13	Kotły na paliwo gazowe lub ciekłe z otwarta komorą spalania	0,86
	(palnikami atmosferycznymi) i dwustawną regulacją procesu spalania	
14	Kotły niskotemperaturowe na paliwo gazowe lub ciekłe, z zamknięta	
	komorą spalania i palnikiem modulowanym, o mocy nominalnej:	
	a) do 50 kW,	0,87
	b) powyżej 50 kW do 100 kW,	0,91
	c) powyżej 120 kW do 1200 kW	0,94
15	Kotły gazowe kondensacyjne (70/55°C) o mocy nominalnej:	
	a) do 50 kW,	0,91
	b) powyżej 50 kW do 100 kW,	0,92
	c) powyżej 120 kW do 1200 kW	0,95

16	Kotły gazowe kondensacyjne niskotemperaturowe (55/45°C) o mocy	
	nominalnej:	
	a) do 50 kW,	0,94
	b) powyżej 50 kW do 100 kW,	0,95
	c) powyżej 120 kW do 1200 kW	0,98
17	Pompy ciepła typu woda/woda, spreżarkowe, napedzane elektrycznie:	,
	a) 55/45°C.	3.60
	b) 35/28°C	4.00
18	Pompy ciepła typu glikol/woda, spreżarkowe, napedzane elektrycznie:	,
	a) 55/45°C	3 50
	b) $35/28^{\circ}C$	4 00
19	Pompy ciepła typu beznośredniego odnarowanie w gruncie /woda	1,00
17	spreżarkowe nanedzane elektrycznie.	
	$(5)^{-5}/45^{\circ}C$	3 50
	b) $35/28^{\circ}$ C	3,50 4,00
20	Domny ciente turn heznośradniego odnarowanie w gruncie	4,00
20	bezpośradnie skraplanie w instalacji płaszczyznowego ogrzewania	4,00
	spreżarkowe, nanedzane elektrycznie	
21	Pompy cieple typy powietrze/woda spreżerkowe nanedzane	
21	Polipy ciepia typu powietrze/woda, spręzarkowe, napęuzane	
	55/45°C	2.60
	a) $55/43$ C,	2,00
- 22	$\frac{\mathbf{b}}{\mathbf{b}} = \frac{35/28^{\circ} \mathbf{C}}{1 + 1 + 1 + 1}$	3,00
22	Pompy ciepła typu powietrze/woda, spręzarkowe, napędzane gazem:	1.00
	a) $55/45^{\circ}C$,	1,30
	b) 35/28°C	1,40
23	Pompy ciepła typu powietrze/woda, absorbcyjne, napędzane gazem:	
	a) $55/45^{\circ}C$,	1,30
	b) 35/28°C	1,40
24	Pompy ciepła typu glikol/woda, sprężarkowe, napędzane gazem:	
	a) 55/45°C,	1,30
	b) 35/28°C	1,40
25	Pompy ciepła typu glikol/woda, absorbcyjne, napędzane gazem:	
	a) 55/45°C,	1,40
	b) 35/28°C	1,60
26	Pompy ciepła typu powietrze/powietrze, sprężarkowe, napędzane	3,00
	elektrycznie	
27	Pompy ciepła typu powietrze/powietrze, sprężarkowe, napędzane gazem	1,30
28	Pompy ciepła typu powietrze/powietrze, absorpcyjne, napędzane gazem	1,30
29	Wezeł ciepłowniczy kompaktowy z obudowa, o mocy nominalnej:	
	a) do 100 kW,	0,98
	b) powyżej 100 kW	0.99
30	Wezeł ciepłowniczy kompaktowy bez obudowy, o mocy nominalnej	, -
	a) do 100 kW.	0.91
	b) powyżej 100 do 300 kW	0.93
	c) nowyżej $300 \mathrm{kW}$	0.95
Wn	y powyzej suo kw. zvnadku nomn cienła nodano wartości wenółczwnnika wudajności sezonow	
Wp	zypauku pomp ciepia pouano wanosci wsporezymnika wyuajności sezonow zypadku innych źródeł cienła, za wyjatkiem zasilanych energia elektryczna	vj. nodano sprawność
odni	zypacku mnych złodoł ciepia, za wyjątkiem zasnanych chergią cieku yczną	, podano sprawnose
Jun	conta do wartosor opatowoj.	

GRUPA REGULACJA

RODZAJ INSTALACJI – użytkownik ma do wyboru listę, do której dopięte są współczynniki $\eta_{H,e'}$.

Lp. Parametry systemu ogrzewanego $\eta_{\text{H,e}'}$
--

1	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i	
	promiennikowe z regulatorem:	
	a) proporcionalnym P,	0,90
	b) proporcjonalno-całkującym PI	0,94
2	Elektryczne grzejniki akumulacyjne z regulatorem:	
	a) proporcjonalnym P,	0,88
	b) proporcjonalno-całkującym-różniczkującym PID z optymalizacja	0,91
3	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i	
	promiennikowe z regulatorem:	
	a) dwustawnym,	0,88
	 b) proporcjonalno-całkującym PI 	0,90
4	Ogrzewanie piecowe lub z kominka	0,70
5	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w	
	przypadku regulacji:	
	a) centralnej bez automatycznej regulacji miejscowej,	0,77
	b) automatycznej miejscowej	0,82
	c) centralnej i miejscowej z zaworem termostatycznym o działaniu	0,88
	proporcjonalnym z zakresem proporcjonalności P-2K	
	d) centralnej i miejscowej z zaworem termostatycznym o działaniu	0,89
	proporcjonalnym z zakresem proporcjonalności P-1K	
	e) centralnej i miejscowej z zaworem termostatycznym o działaniu	0,93
	proporcjonalno-całkującym PI z funkcjami adaptacyjną i	
	optymalizującą	
6	Ogrzewanie wodne podłogowe w przypadku regulacji:	
	a) centralnej bez regulacji miejscowej	0,76
	b) centralnej i miejscowej z regulatorem dwustawnym lub	0,89
	proporcjonalnym P	
7	Ogrzewanie wodne płaszczyznowe w przypadku regulacji centralnej bez	0,85
	regulacji miejscowej, dla temperatury zasilania poniżej 30°C	

GRUPA PRZESYŁ

RODZAJ INSTALACJIOGRZEWCZEJ – użytkownik ma do wyboru listę, do której dopięte są współczynniki η_{H,d}.

Lp.	Rodzaj instalacji ogrzewczej	ηн,а
1	Źródło ciepła w pomieszczeniu (ogrzewanie elektryczne, piec kaflowy)	1,00
2	Ogrzewanie mieszkaniowe (kocioł gazowy lub miniwęzeł)	1,00
3	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w pom. ogrzewanych	0,96-0,98
4	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, z zaizolowanymi przewodami, armaturą i urządzeniami, które są zainstalowane w pom. nieogrzewanych	0,92-0,95
5	C.o. wodne z lokalnego źródła usytuowanego w ogrzewanym budynku, bez izolacji na przewodach, armaturze i urządzeniach, które są zainstalowane w pom. nieogrzewanych	0,87-0,90
6	Ogrzewanie powietrzne	0,95

Dodatkowo użytkownik przy pomocy przycisku ma możliwość obliczyć współczynnik η_{H,d} indywidualnie.

	Sprawność przesyłu										×				
	Parametry wody 90/70°C regulowane														
4) .	DN [mm]		L [m]	Lokalizacja przewodów		Typ izolacji		qi [W/i	m]	ΔI [m]	I	tsq [h]	∆QH,d [kWh/rok]	+
	1	15		14,0 0	Na zewnątrz osłony izolacyjnej budynku		½ grubości wg WT		12,4 0		1,50		5328	924,94	X
:	2	25		25,0 0	Wewnątrz osłony izolacyjnej budynku		2 x grubość WT		4,00		1,50		5328	532,80	ŧ
															ኩ
															D
												ΣΔ	Q _{H,d} = 29	15,48 <u>kWh</u> rok	
	О _{пн.а=} 0,60														
											A	nulų		ок	

Okno umożliwiające obliczenie sprawności przesyłu

PARAMETRY WODY – wariant na podstawie, którego wstawiane będą wartości ql: 90/70 °C stałe, 90/70 °C regulowane, 70/55 °C regulowane, 55/45 °C regulowane, 35/28 °C regulowane.

Lp. – kolejna liczba porządkowa dla dodawanego wiersza.

DN [*mm*] – średnica przewodów centralnego ogrzewania, wartość wybierana przez użytkownika z listy: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100.

L[*m*] – długość przewodów centralnego ogrzewania o zadanej średnicy, wartość wpisywana przez użytkownika.

LOKALIZACJA PRZEWODÓW- użytkownik w kolumnie tej wybiera jeden z dwóch wariantów lokalizacji przewodów: NA ZEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU, WEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU.

TYP IZOLACJI – użytkownik w tym oknie wybiera z listy jeden z kilku wariantów izolacji cieplnej: *NIEIZOLOWANE, ½ GRUBOŚCI WG WT, GRUBOŚĆ WT, 2 X GRUBOŚĆ WT.*

ql [*W/m*]- jednostkowa strata ciepła przewodów centralnego ogrzewania, wstawiana na podstawie tabelki wyświetlanej poprzez wciśnięcie przycisku ….

Jednostkowe straty ciepła przez przewody centralnego ogrzewania q I [W/m]										
Baramotov °C	Izolacja termiczna	Na zew	nątrz os budy	łony izo nku	lacyjnej	Wewnątrz osłony izolacyjnej budynku				
Parametry °C	przewodów	DN 10-15	DN 20-32	DN 40-65	DN 80-100	DN 10-15	DN 20-32	DN 40-65	DN 80-100	
90/70 °C stałe	nieizolowane	39,3	65,0	106,8	163,2	34,7	57,3	94,2	144,0	
	½ grubości wg WT 1)	20,1	27,7	38,8	52,4	17,8	24,4	34,2	46,2	
SUTU C State	grubość wg WT	10,1	12,6	12,1	12,1	8,9	11,1	10,7	10,7	
	2x grubość wg WT	7,6	8,1	8,1	8,1	6,7	7,1	7,1	7,1	
	nieizolowane	24,3	40,1	66,0	100,8	19,6	32,5	53,4	81,6	
90/70 °C	½ grubości wg WT 1)	12,4	17,1	24,0	32,4	10,1	13,9	19,4	26,2	
regulowane	grubość wg WT	6,2	7,8	7,5	7,5	5,0	6,3	6,0	6,0	
	2x grubość wg WT	4,7	5,0	5,0	5,0	3,8	4,0	4,0	4,0	
	nieizolowane	18,5	30,6	50,3	76,8	13,9	22,9	37,7	57,6	
70/55 °C	½ grubości wg WT 1)	9,5	13,0	18,3	24,7	7,1	9,8	13,7	18,5	
regulowane	grubość wg WT	4,7	5,9	5,7	5,7	3,6	4,4	4,3	4,3	
	2x grubość wg WT	3,6	3,8	3,8	3,8	2,7	2,8	2,8	2,8	
	nieizolowane	14,4	23,9	39,3	60,0	9,8	16,2	26,7	40,8	
55/45 °C	½ grubości wg WT 1)	7,4	10,2	14,3	19,3	5,0	6,9	9,7	13,1	
regulowane	grubość wg WT	3,7	4,6	4,4	4,4	2,5	3,1	3,0	3,0	
	2x grubość wg WT	2,8	3,0	3,0	3,0	1,9	2,0	2,0	2,0	
	nieizolowane	8,1	13,4	22,0	33,6	3,5	5,7	9,4	14,4	
35/28 °C	½ grubości wg WT 1)	4,1	5,7	8,0	10,8	1,8	2,4	3,4	4,6	
regulowane	grubość wg WT	2,1	2,6	2,5	2,5	0,9	1,1	1,1	1,1	
	2x grubość wg WT	1,6	1,7	1,7	1,7	0,7	0,7	0,7	0,7	
1) grubości iz	olacji podane w Rozpora	ządzeniu	Ministr	a Infras	truktury	z dnia 1	12 kwie	tnia 2002	r. o	
	Anuluj OK									
Tabela z wartościami jednostkowych strat ciepła przez przewody centralnego ogrzewania

tsg [*h*] - czas trwania sezonu grzewczego.

 $\Delta Q_{H,d} [kWh/rok]$ – jednostkowa sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią).

 $\sum \Delta Q_{H,d} [kWh/rok]$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią).

 $\eta_{H,d}$ – średnia sezonowa sprawność transportu nośnika ciepła w obrębie budynku (osłony bilansowej lub poza nią).

$$\eta_{H,d} = \frac{Q_{H,nd} + \Delta Q_{H,e}}{Q_{H,nd} + \Delta Q_{H,e} + \Sigma \Delta Q_{H,d}}$$

Gdzie:

Q н,nd – zapotrzebowanie energii użytkowej przez budynek, wartość pobierana z stref cieplnych. Wartość wyliczana z sumy z każdej strefy wartości Qh

 $\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} - \text{uśrednione sezonowe straty ciepła w wyniku niedoskonałej regulacji i przekazania ciepła budynku wartość wyliczana z wzoru: <math display="block"> \Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} = \mathbf{Q}_{\mathbf{H},\mathbf{nd}} \cdot \left(\frac{\eta_{H,e}}{1} - 1\right), \text{ gdzie } \eta_{H,e} \text{ jest pobierane z grupy} \textbf{REGULACJA}.$

 $\sum \Delta Q_{H,S}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku, wartość wyliczana w poprzednim polu.

GRUPA AKUMULACJA

PARAMETRY ZASOBNIKA BUFOROWEGO – użytkownik ma do wyboru listę, do której dopięte są współczynniki η_{H,s}

Lp.	Parametry systemu ogrzewanego	$\eta_{\mathrm{H,s}}$
1	Zbiornik buforowy w systemie ogrzewania o parametrach 70/55°C	
	w przestrzeni:	
	a) ogrzewanej,	0,93
	b) nieogrzewanej	0,90
2	Zbiornik buforowy w systemie ogrzewania o parametrach 55/45°C	
	w przestrzeni:	
	a) bez wiatrołapu,	0,95
	b) z wiatrołapem	0,93
3	System ogrzewczy bez zbiornika buforowego	1,00

Dodatkowo użytkownik przy pomocy przycisku \square ma możliwość obliczyć współczynnik $\eta_{H,s}$ indywidualnie.

		Sprawność a	iku	mulacji ciepła		×
Lp.	V [m³]	qs [W/m³]		tsg [h]	∆Qhs [kWh/rok]	+
1	35,00	0,80		5328,00	149,1	8 🗸
2	50,00	1,10		5328,00	293,0	4 ^
						Π'n
						D
ΣΔQ	H,s= 442,22 <u>kWh</u> rok	1 n _{H,s} = 0,9	2	Anuluj	Oł	

Okno umożliwiające obliczanie sprawności akumulacji

Lp. – kolejna liczba porządkowa dla dodawanego wiersza.

Vs [dm³] – pojemność zbiornika buforowego, wartość podawana przez użytkownika w zakresie (0-1000000).

qs [W/dm³]- jednostkowa strata ciepła zbiornika buforowego, wartość podawana przez użytkownika lub wstawiana na podstawie tabelki wyświetlanej poprzez wciśnięcie przycisku ….

Parametry system	mu ogrzewczego	70/55 °C lub	wyższe	
Lokalizacja	Pojemność	Parametry 70/5	systemu ogi 5 °C lub wyż	rzewczego sze
zbiornika buforowego	[dm³]	Izolacja 100 mm	Izolacja 50 mm	Izolacja 20 mm
	100	0,89	1,4	2,7
	200	0,7	1,1	2,1
W przestrzeni nieogrzewanej	500	0,5	0,8	1,6
incogr zowanoj	1000	0,4	0,6	1,3
	2000	0,3	0,5	1,0
	100	0,7	1,1	2,2
	200	0,6	0,9	1,7
W przestrzeni	500	0,4	0,7	1,3
ogrzewanej	1000	0,3	0,5	1,0
	2000	0,2	0,4	0,8

Wariant A Parametry termiczne 70/55 °C i wyżej

Tabela jednostkowych strat ciepła przez zbiornik buforowy

Wariant B Parametry termiczne 55/45 °C i niżej

Wartości jednostkowej straty ciepła zbiornika buforow 🗙								
Parametry systemu ogrzewczego 55/45 °C lub niższe								
Lokalizacja	Pojemność	Parametry systemu ogrzewczego 55/45 °C lub niższe						
buforowego	[dm³]	Izolacja 100 mm	Izolacja 50 mm	Izolacja 20 mm				
	100	0,5	0,8	1,6				
	200	0,4	0,7	1,3				
W przestrzeni pieogrzewanej	500	0,3	0,5	1,0				
moogreenanoj	1000	0,2	0,4	0,8				
	2000	0,2	0,3	0,6				
	100	0,4	0,6	1,1				
	200	0,3	0,4	0,9				
W przestrzeni	500	0,2	0,3	0,6				
ogrzowanej	1000	0,2	0,3	0,5				
	2000	0,1	0,2	0,4				

Tabela jednostkowych strat ciepła przez zbiornik buforowy

tsg [*h*] - czas trwania sezonu grzewczego, wartość pobierana z części strefy cieplne z parametrów Ld (dla normy PN B 02025) t (dla norm PN EN 832 i 13790).

 $\Delta Q_{H,S}$ [*kWh/rok*]– jednostkowa sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią) $\Delta Q_{H,S} = (Vs \cdot qs \cdot t_{SG}) \cdot 10^{-3}$

 $\sum \Delta \mathbf{Q}_{\mathbf{H},\mathbf{S}} [\mathbf{k} \mathbf{W} \mathbf{h} / \mathbf{r} \mathbf{k}]$ – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią). $\sum \Delta \mathbf{Q}_{\mathbf{H},\mathbf{S}} = \sum (\Delta \mathbf{Q}_{\mathbf{H},\mathbf{S}})$

ηH,**s**– średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią).

$$\eta_{H,S} = \frac{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d}}{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d} + \sum \Delta Q_{H,S}}$$

Gdzie:

Q H,nd – zapotrzebowanie energii użytkowej przez budynek, wartość pobierana z stref cieplnych.

 $\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} - \text{uśrednione sezonowe straty ciepła w wyniku niedoskonałej regulacji i przekazania ciepła budynku wartość wyliczana z wzoru: <math display="block">\Delta \mathbf{Q}_{\mathbf{H},\mathbf{e}} = \mathbf{Q}_{\mathbf{H},\mathbf{nd}} \cdot \left(\frac{\eta_{H,e}}{1} - 1\right), \text{ gdzie } \eta_{H,e} \text{ jest pobierane z grupy } \boldsymbol{REGULACJA},$ $\Delta \mathbf{Q}_{\mathbf{H},\mathbf{d}} - \text{uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku, wartość pobierana z grupy$ **PRZESYL**z wyliczonej wartości pod przyciskiem oblicz (w przypadku nie wyliczenia tej wartości program powinien wyświetlić komunikat, że aby obliczyć**η** $_{\mathbf{H},s} należy najpierw obliczyć$ **ΔQ** $_{\mathbf{H},d}$.

 $\sum \Delta Q_{H,S}$ – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku

*ROCZNE ZAPOTRZEBOWANIE ENERGII ELEKTRYCZNEJ KOŃCOWEJ DO NAPĘDU URZĄDZEŃ POMOCNICZYCH SYSTEMU OGRZEWANIA I WENTYLACJI*_{El,pomH}- wartość podawana przez użytkownika lub wyliczana w oknie aktywowanym przyciskiem

-	Roczne zapotrzebowanie energii elektrycznej końcowej							×						
ROC	Izaj obliczen: Wg Rozporządzenia MI													1
Lp.	Rodzaj urządzenia pomocniczego		Urządzenia dla wentylacji	β		Udział [%]	qel,HV [W/m²]	Ilość [szt.]	Uwzględnij sezon grzewczy	tel [h/rol]	Af [m²]	Eel,pom,H [kWh/rok]	+
1	Pompy obiegowe w systemie ogrzewczym z grzejnikami członowymi lub płytowymi przy granicznej temperaturze ogrzewania 12°C w budynku o powierzchni Af do 250 m²			Δ		50,00	0,30	 1		570	o	95,55	81,70	х Л
2	Wentylator miejscowy systemu wentylacyjnego		•	0,30		50,00	2,40	 1		870	0	95,55	997,54	Ē
ΣΕ _{αίχοπ,Η} = 1079,24 <u>kWh</u> Γοίκ ΟΚ														

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej wg rozporządzenia MI

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,

RODZAJ URZĄDZENIA POMOCNICZEGO- użytkownik wybiera z listy jedną z pozycji,

*q*_{el,H} [W/m2] – wartość wpisywana przez użytkownika lub wybierana z tabeli aktywowanej przyciskiem ····

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

ILOŚĆ [szt.] – wartość podawana przez użytkownika,

*t*_{el} [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana domyślnie na podstawie wybranego *RODZAJU URZĄDZENIA POMOCNICZEGO*,

*A*_{*f*}[**m**²] – powierzchnia pomieszczeń o regulowanej temperaturze,

 $E_{el,pom,H}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,H} = q_{el,H} \cdot ilość \cdot A_f \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,H}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,H}$: $\sum E_{el,pom,H} = \sum (E_{el,pom,H})$

Lp.	Rodzaj urządzenia pomocniczego i instalacji	qel[W/m2]	tel[h/rok]
1	Pompy obiegowe ogrzewania w budynku do A=250 m2 z grzejnikami	0,2-0,7	5000-
	członowymi lub płytowymi, granica ogrzewania 12 °C		6000

2	Pompy obiegowe ogrzewania w budynku ponad A=250 m2 z grzejnikami	0,1-0,4	4000-
	członowymi lub płytowymi, granica ogrzewania 10 °C		5000
3	Pompy obiegowe ogrzewania w budynku do A=250 m2 z grzejnikami	0,5-1,2	6000-
	podłogowymi, granica ogrzewania 15 °C		7000
4	Pompy cyrkulacyjne ciepłej wody w budynku do A=250 m2, praca ciągła	0,1-0,4	8760
5	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m2, praca	0,05-0,1	7300
	przerywana do 4 godz./dobę		
6	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m2, praca	0,05-0,1	5840
	przerywana do 8 godz./dobę		
7	Pompy ładujące zasobnik ciepłej wody w budynku do A=250 m2	0,3-0,6	200-300
8	Pompy ładujące zasobnik ciepłej wody w budynku ponad A=250 m2	0,1-0,2	300-700
9	Pompy ładujące bufor w układzie ogrzewania w budynku do A=250 m2	0,2-0,5	1500
10	Pompy ładujące bufor w układzie ogrzewania w budynku ponad A=250 m2	0,05-0,1	1500
11	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku do A=250 m2	0,8-1,7	200-350
12	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku ponad A=250 m2	0,1-0,6	300-450
13	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku do A=250 m2	0,3-0,6	1400- 3000
14	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku ponad A=250	0,05-0,2	2500-
	m2		4500
15	Napęd pomocniczy pompy ciepła woda/woda w układzie przygotowania ciepłej wody	1,0-1,6	400
16	Napęd pomocniczy pompy ciepła glikol/woda w układzie przygotowania ciepłej wody	0,6-1,0	400
17	Napęd pomocniczy pompy ciepła woda/woda w układzie ogrzewania	1,0-1,6	1600
18	Napęd pomocniczy pompy ciepła glikol/woda w układzie ogrzewania	0,6-1,0	1600
19	Regulacja węzła cieplnego – ogrzewanie i ciepła woda	0,05-0,1	8760
20	Pompy i regulacja instalacji solarnej w budynkach do A=500 m2	0,2-0,4	1000-
			1750
21	Pompy i regulacja instalacji solarnej w budynkach ponad A=500 m2	0,1-0,3	1000-
			1750
22	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza do 0,6	0,2-0,6	6000-
	1/h		8760
23	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza ponad 0,6	0,6-1,6	6000-
	1/h		8760
24	Wentylatory w centrali wywiewnej, wymiana powietrza do 0,6 1/h	0,1-0,5	6000-
			8760
25	Wentylatory w centrali wywiewnej, wymiana powietrza ponad 0,6 1/h	0,5-1,1	6000-
			8760
26	Wentylatory miejscowego układu wentylacyjnego	1,1-3,0	6000-
1			8760

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej Ręczny

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,

RODZAJ URZĄDZENIA POMOCNICZEGO- użytkownik wpisuje własną wartość,

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

MOC [kW] - wartość mocy elektrycznej urządzenia pomocniczego podawana przez użytkownika,

 t_{el} [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana przez użytkownika lub

wstawiana z podpowiedzi ••••.

 $E_{el,pom,H}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,H} = Moc \cdot ilość \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,W}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,H}$: $\sum E_{el,pom,H} = \sum (E_{el,pom,H})$

 $\eta_{H,tot}$ – średnia sezonowa sprawność całkowita systemu grzewczego budynku ocenianego , wartość wyliczana z wzoru: $\eta_{H,tot} = \eta_{H,g} \cdot \eta_{H,s} \cdot \eta_{H,d} \cdot \eta_{H,e}$

Q_{P,H} **[kWh/rok]** – roczne zapotrzebowanie energii pierwotnej przez system grzewczy i wentylacyjny do ogrzewania i wentylacji budynku ocenianego, wartość wyliczana z wzoru:

 $\mathbf{Q}_{\mathbf{P},\mathbf{H}} = \mathbf{W}_{H} \cdot \frac{\mathbf{Q}_{H,nd}}{\eta_{H,tot}} + \mathbf{3} \cdot \mathbf{E}_{el,pom,H}$

Qκ,**H** [**kWh/rok**] – roczne zapotrzebowanie na energie końcową na potrzeby ogrzewcze budynku ocenianego, wartość wyliczana z wzoru:

 $\mathbf{Q}_{\mathrm{K,H}} = \frac{Q_{H,nd}}{\eta_{H,tot}}$

Certyfikat

12.2 ETAP CIEPŁA WODA UŻYTKOWA

Æ	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01]	- 🗆 🗙
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	🖻 🇳 🗈 🔦 🔻 🛪 🖻 /> 🗧 /	
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014	
	ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU 1	^
Częsc budynku	Numer świadectwa 1	
Budynek referencyjny	Oceniany budynek	
E Caz ziempy 100%	Rodzaj budynku 1) Dom jednorodzinny	
Gaz zienniy 100%	Przeznaczenie budynku 2) Mieszkalny	
	Adres budynku 90-057 Łódź ul. Sienkiewicza 85/87	
	Rok oddania do użytkowania budynku 3) 2014	
	Metoda określenia charakterystyki 4) metoda obliczeniowa dla przyjętego sposobu użytkowania i energetycznej standardowych warunków klimatycznych	
L	Powierzchnia pomieszczeń o regubuwanej 5) temperaturze powietrza (powierzchnia ogrzewana lub chłodcna) Af (mP) 95,55 m ²	
	Powierzchnia użytkowa (m²) 70,00 m²	
	Ważne do (rrrr-mm-dd) 0)	
	Stacja meteorologiczna, według 7) której danych obliczana jest charakterystyka energetyczna Łódź - Lublinek	
177.77 kWh/(m²rok)	Ocena charakterystyki energetycznej budynku	
0 200 400 600 800 1000 >1000 ↑	Wskaźnik charakterystyki energetycznej Oceniany budynek Wymagania dla nowego budynku według przepisów techniczno-budowlanych	
Ciepła woda użytkowa	Wskaźnik rocznego zapotrzebowania na EU = 46,60 ^{kWh} (m ² +rok)	
DANE WEJŚCIOWE	Wskaźnik rocznego zapotrzebowania na ⁹) energię końcową	
OBLICZENIA CIEPLNE	Wskaźnik rocznego zapotrzebowania na 9 pieodnawiałna energie pierwotną EP = 77,77 (m²-rok) EP = 120,00 (m²-rok)	
	tC0,	~
LQ. PODGLĄD PROJEKTU	Raport o blędach	
WYDRUKI	Lp. Typ Opis	^
	1 Ostrzeżenie Parametr "Współczynnik przenikania Uc" w przegrodzie "SW 15", powinien znajdować się w przedziale od 0,00 do 0,30!	~
< [8/11] >		Zamknij

Okno Ciepła woda użytkowa pierwsza strona raportu

RODZAJ BUDYNKU – pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej typu budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ADRES - pole do edycji przez użytkownika, program domyślnie wstawia wartość z pól Kod pocztowy, Miejscowość, Adres, Nr (okno Dane projektu/Dane budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CZĘŚĆ/CAŁOŚĆ BUDYNKU-pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK ZAKOŃCZENIA BUDOWY/ODDANIA DO UŻYTKOWANIA - pole do edycji przez użytkownika, program domyślnie przenosi wartość z wybranego wcześniej Roku budowy (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK BUDOWY INSTALACJI- pole do wyboru przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CEL WYKONYWANIA ŚWIADECTWA - pole do edycji przez użytkownika, z dodatkowym przyciskiem info, w którym podane są przypadki opisane w rozporządzeniu. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA LOKALI MIESZKALNYCH - pole do wyboru przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

Panel ciepła woda użytkowa służy do definiowania rocznego zapotrzebowania na ciepłą wodę użytkową, a także do zdefiniowania systemu jej dystrybucji, akumulacji i przygotowania. W programie możemy wyliczyć zapotrzebowanie dla każdej grupy (zdefiniowanej funkcji budynku) osobno.

12.2.1.1 Drzewko struktury świadectwa charakterystyki energetycznej-ciepła woda

Drzewko to służy do zarządzania strukturą obliczeń świadectwa użytkownik może stworzyć dowolną ilość grup dla których program policzy oddzielnie świadectwa, dodatkowo na podstawie wstawionych grup wyliczy zbiorcze świadectwo EP_m (z wszystkich wstawionych grup i policzonych świadectw wylicza średnią ważoną wartość dla poszczególnych energii użytkowych, końcowych, pierwotnych gdzie waga jest powierzchnia A_f). Tworzenie grup ma uzasadnienie w kilku przypadkach:

 gdy mamy doczynienia z budynkiem w którym jest więcej niż jedna funkcja użytkowa np. jest część mieszkalna i lokal usługowy. Wówczas w ciepłej wodzie inne jest V_{cw} dla części mieszkalnej i usługowej (podobnie jest z czasem użytkowania, przerwami urlopowymi i wodomierzami na ciepłej wodzie),
 gdy mamy doczynienia z budynkiem mieszkalnym, w którym każdy lokal ma własne źródło ciepła (wówczas nie wykonujemy świadectwa dla całego budynku tylko dla poszczególnych lokali),

Legenda przycisków drzewka:

-tworzenie nowej grupy/funkcji,

-dodawania nowego typu źródła do grupy/funkcji,

-usuwanie typu źródła z grupy/funkcji

-wczytywanie gotowego szablonu drzewka struktury świadectwa

-zapisywanie szablonu drzewka struktury świadectwa

-przełączanie widoku drzewka z struktury świadectwa na podgląd wzorów

Legenda oznaczeń na drzewku:

-przejście do okna zbiorczego świadectwa charakterystyki energetycznej. Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi), -przejście do okna grupy/funkcji widok ikonki uzależniony jest od wybranego wariantu wzoru świadectwa (budynek, budynek mieszkalny, lokal mieszkalny, część budynku ...). Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi), a także definiuje roczne zapotrzebowanie na ciepła wodę użytkową. Dodatkowo wybiera jaki wzór świadectwa ma być wygenerowany dla tej grupy

-przejście do okna parametrów źródła ciepła, w którym wybieramy współczynnik, udział procentowy Qw,nd i energię pomocniczą dla źródeł,

12.2.1.2 Zakładka Obliczenia Qw,nd

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] – 🗖	×
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	🖻 🌮 🔯 🛧 🔻 🎢 🤋 ?	
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014	
Certyfikat Certyfikat Ceréb Udymku Ceréb Udymku Ceréb Udymku Budynek referencyiny Cole Construction Cole Construction Cole Construction Constructio	Roczne zapótrzebowanie na energię Orm jednosti o regulowanie na energię Ownyse*2557,26 KWR	
77.77 KVth(m²rok)		
Ogrzewanie i wentylacja		
Clepła woda użytkowa		
DANE WEJŚCIOWE		
OBLICZENIA CIEPLNE		
CERTYFIKAT		
Q PODGLĄD PROJEKTU	Raport o bledach	
WYDRUKI	Lp. Typ Opis 1 Ostrzeżenie Parametr "Wsoółczwnik przenkania Uc" w przedrodzie "SW 15", powinien znasłować sie w przedziale od 0.00 do 0.30!	Ĵ
< [8/11] >		knij

Okno grupy świadectwa ciepła woda

TYP RAPORTU – pole do wybierania dla pojedynczej grupy wzoru świadectwa. Użytkownik ma do wyboru jeden z czterech wariantów Budynek, Budynek mieszkalny, Lokal mieszkalny, Część budynku stanowiąca samodzielną całość techniczno-użytkową. Należy pamiętać również o tym, że do każdego wzoru świadectwa dopięty jest odpowiedni sposób obliczeń budynku referencyjnego oraz czy grupa zostanie uwzględniona w obliczeniach oświetlenia wbudowanego (oświetlenie wbudowane wyliczane jest w przypadku wybrania wzoru świadectwa budynku lub części budynku stanowiącego samodzielną całość techniczno-użytkową).

NAZWA – pole do wpisywania nazwy grupy, która pojawi się w drzewku świadectwa.

METODA OBLICZEŃ – pole do wyboru jak będziemy obliczać roczne zapotrzebowanie ciepłej wody czy wg metodyki zawartej w rozporządzeniu MI, czy wg normy do obliczeń ciepłej wody. W zależności od wybranego wariantu zmieni nam się ilość danych potrzebna do wypełnienia.

wg METODY ŚWIADECTWA CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU

Podręcznik użytkownika dla programu ArCADia-TERMO

Certyfikat – 🗆 🗙 Æ ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] <u>P</u>lik <u>E</u>dycja Ustawienia P<u>o</u>moc 🗎 🏟 🖻 🔦 ₹ /⇒ 🔻 ? Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014 Roczne zapotrzebowanie ciepła użytkowego Metoda obliczeń: Wg metody świadectwa charakterystyki energetycznej budynku **□ + ×** ■ 🖫 \$ Certyfikat Powierzchnia o regulowanej temperaturze: Ar = 95,55 m² Obliczenia Qw,nd Doliczenia Qw,nd Budynek referencyjny Żródła ciepła Gaz ziemny 100% Rodzaj budynku: Dom jednorodzinny Jednostkowe dobowe zapotrzebowanie na c.w.: $V_{WI} = 1,40 \frac{dm^3}{m^2 dzień}$ Tablice Współczynnik korekcyjny ze względu na przerwy w użytkowaniu c.w.: $k_{\rm R}\!=\!\!1,\!00$ Tablice Roczne zapotrzebowanie na energię użytkową: Q_{W,nd}= 2557,26 <u>kWh</u> 177,77 kWh/(m²rok) 200 400 600 800 1000 Ogrzewanie i wentylacja DANE WEJŚCIOWE OBLICZENIA CIEPLNE Raport o błędach 🖶 wydruki Lp. Typ 1 Ostrzeżenie Opis Parametr "Współczynnik przenikania Uc" w przegrodzie "SW 15", powinien znajdować się w przedziale od 0,00 do 0,30! < [8/11]

Obliczenia wg metodyki w Rozporządzeniu MI

WODOMIERZE MIESZKANIOWE DO ROZLICZENIA OPŁAT ZA CIEPŁĄ WODĘ- pole do wyboru

POWIERZCHNIA Af [m²]- wartość podawana przez użytkownika.

JEDNOSTKOWE DOBOWE ZUŻYCIE CIEPŁEJ WODY V_{cw}- wartość wpisywana przez użytkownika lub pobierana z tablicy przyciskiem

Ro	dzai budvnku	Vwi [dm³/(m²·dzień)]		
	wielorodzinny (Ryczałtowe rozliczenie za ciepłą wodę)	2,0		
Mieszkalny	wielorodzinny (Rozliczenie według indywidualnego zużycia)	1,6		
	jednorodzinny	1,4		
	biurowy	0,35		
	przeznaczony na potrzeby: oświaty, szkolnictwa wyższego, nauki	0,8		
Użyteczności	przeznaczony na potrzeby opieki zdrowotnej	6,5		
publicznej	przeznaczony na potrzeby gastronomii	2,5		
	przeznaczony na potrzeby sportu	0,25		
	przeznaczony na potrzeby: handlu, usług	0,6		
Zamies	zkania zbiorowego	3,75		
N	lagazynowy	0,1		
F	indywidualnie w zależności od rodzaju produkcji i sposobu użytkowania			
Anuluj OK				

Q w,nd – wartość wyliczana jest na podstawie danych wybranych lub wpisanych w grupie Roczne zapotrzebowanie ciepła użytkowego na podstawie wzoru:

Gdzie:

$$Q_{W,nd} = V_{CW} \cdot L_i \cdot 4,19 \cdot 1000 \cdot (55 - 10) \cdot k_t \cdot 365 \cdot d \cdot 2,77 \times 10^{-7} [kWh/rok]$$

 V_{CW} - wartość pobierana z pola **JEDNOSTKOWE DOBOWE ZUŻYCIE CIEPŁEJ WODY** V_{ew}

L_i - wartość pobierana z pola *LICZBA OSÓB/JEDNOSTEK ODNIESIENIA* L_i

 θ_{CW} - wartość pobierana z pola*TEMPERATURA WODY NA ZAWORZE CZERPALNYM*(tylko wartość temperatury 45,50,55)

 k_t - wartość pobierana z pola*TEMPERATURA WODY NA ZAWORZE CZERPALNYM*(tylko wartość k_t na podstawie tabelki)

d -w przypadku gdy mamy wybrany typ budynku mieszkalny wstawiamy 0,9 (przerwa urlopowa) w innych przypadkach 1,0.

wg NORMY DO PRZYGOTOWANIA CIEPŁEJ WODY

Æ	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] – 🗖 🗙
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	🗄 🗢 🖻 🛧 🔻 🚈 🤁
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014
CERTVIEKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014 Medda obiczeń: Wg normy PH-928-01706 Temperatura ciepła wody: 55 Liczba dni użytkowania: 1 = 24.00 M Liczba dni użytkowania: 1 = 24.00 M Liczba dni użytkowania: 1 = 24.00 M Liczba dni użytkowania: 0 1 = 24.00 M Liczba dni użytkowania: 0 1 = 24.00 M Liczba dni użytkowania: 0 1 = 24.00 M Liczba dniotwa kładnieśnik: L = 2.00 Ołaicz Zapotrzebowanie na wody 0 wyw = 44.00 drził Rzeczywniat dotowa kod 0 wyw = 44.00 drził Obliczentowa, średnio godźnowa moc ciejka na 0 wyw = 0.21 kw 0 wywe = 0.21 kw Przygółwania: 0 wyw = 4.00 drził 0 wywe = 0.21 kw
1 66.26 kV/h/(m ² rck)	Oliticzałowa maksymala godziowa moc O ^{CMU} 1,65 kW clepina na przygołowanie cieplej wody: Roczne zapotrzebowanie cieplej uzyškowego na O _{WWE} T 1835,22 <u>kMn</u> przygołowanie cieplej wody:
Ogrzewanie i wentylacja	
Ciepła woda użytkowa	
DANE WEJŚCIOWE	
OBLICZENIA CIEPLNE	
CERTYFIKAT	
C PODGLĄD PROJEKTU	Raport o bledach
H WYDRUKI	Lp. Typ Opis Oddiniez listę błędówi
< [8/11] >	🕞 📴 🖩 🖻 🖺 🔽 🖓 🖨 Zamknij

Obliczenia do przygotowania ciepłej wody wg normy

TEMPERATURA CIEPŁEJ WODY – pole do wyboru jednego z trzech wariantów temperatury ciepłej wody na zaworze czerpalnym (55°C, 50°C, 45°C), na tej podstawie dobierany jest współczynnik k_t (wg tabelki nr 14 strona 38 Rozporządzenia MI).

CZAS UŻYTKOWANIA tuz [h] – pole do wpisywania przez użytkownika czasu działania instalacji ciepłej wody. Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem Tablice.

CZAS UŻYTKOWANIA [h] – pole do wpisywania czasu użytkowania ciepłej wody w ciągu doby należy przyjmować wartości z zakresu od 18-24 h.

LICZBA JEDNOSTEK ODNIESIENIALi– pole do wpisywania przez użytkownika ilości osób dla, których przygotowywana jest ciepła woda. Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem

JEDNOSTKOWA DOBOWA ILOŚĆ WODY DO PODGRZANIAV_{cw} [dm³/o·24] –pole do określania dobowego zużycia ciepłej wody.Dodatkowo można skorzystać z podpowiedzi uruchamianej przyciskiem Tablice

	Przeciętne normy zużycia wody w usługach 🛛 🗙						
Ochrona zdrowia i opieka społeczna							
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.·dobę]				
	Żłobki						
1	a) dzienne	1 dziecko	130				
	b) tygodniowe	1 dziecko	150				
2	Przychodnie lekarskie, ośrodki zdrowia	1 zatrudniony	16				
3	Izby porodowe	1 łóżko	500				
4	Szpitale ogólne wielooddziałowe	1 łóżko	650				
5	Sanatoria z hydroterapią	1 łóżko	700				
6	Apteki	1 zatrudniony	100				
7	Domy małego dziecka, rencisty i pomocy społecznej	1 łóżko	175				
		A	nuluj OK				

Przeciętne normowe zużycie wody Ochrona zdrowia i opieka społeczna

	Przeciętne normy zużycia wody w usługach 🛛 🗙						
Ośw	Oświata i nauka						
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.·dobę]	^			
	Przedszkola						
1	a) dzienne	1 dziecko	40				
	b) tygodniowe, miesięczne	1 dziecko	150				
	Szkoły						
2	a) bez stołówki	1 uczeń	15				
	b) ze stołówką	1 uczeń	25				
	Szkoły zawodowe i szkoły wyższe						
3	a) bez laboratoriów	1 uczeń	15				
	b) z latoratoriami	1 uczeń	25				
4	Internaty i domy studenckie	1 uczeń	100				
5	Szkoły z internatami	1 uczeń	100	1			
	Placówki wychowania pozaszkolnego			~			
	Anuluj OK						

Przeciętne normowe zużycie wody Oświata i nauka

	Przeciętne normy zużycia wody w usługach 🛛 🗙				
Kult	ura i sztuka				
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.·dobę]		
1	Muzea	1 zwiedzający	10		
2	Kina	1 miejsce	12		
3	Teatry	1 miejsce	15		
4	Domy kultury	1 miejsce	15		
5	Biblioteki i czytelnie	1 korzystający	15		
		A	nuluj OK		

Przeciętne normowe zużycie wody Kultura i sztuka

	Przeciętne normy zużycia wody	w usługach		×
Spo	rt i turystyka			
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.·dobę]	^
	Hotele i motele kat. lux (*****)	1 miejsce nocleg.	200	
	a) z zapleczem gastronomicz.	1 miejsce nocleg.	250	
1	Hotele kat. (****)	1 miejsce nocleg.	150	
	Hotele kat. (***)	1 miejsce nocleg.	100	
	Hotele pozostałe	1 miejsce nocleg.	80	
	Pensjonaty i domy wypoczynkowe			
	a) kategorii I	1 miejsce nocleg.	200	
2	L 1	1 miejsce	450	۷
		A	Anuluj OK	

Przecietne normowe	zużycie	wody S	port i	turvst	vka
1 1Zeelçine normowe	ZuZycic	wouy 5	ponti	tui yst	ућа

	Przeciętne normy zużycia wody w usługach				
Hand	Handel, gastronomia i usługi				
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.∙dobę]	^	
1	Restauracje, jadłodajnie	1 miejsce	100		
2	Bary	1 miejsce	150		
3	Kawiarnie, bary kawowe	1 miejsce	25		
4	Sklepy z asortymentem czystych produktów (sklepy tekstylne, odzieżowe, obuwnicze, galanteria skórzana, drogeria, "butiki" itp.)	1 zatrudniony	30		
5	Sklepy ze sprzedażą gotowych produktów spożywczych (sklepy spożywcze, mięsne itp.)	1 zatrudniony	40		
6	Sklepy z artykułami przetwórstwa spożywczego (garmażeryjne, ciastkarskie, wyrób lodów, sklepy rybne)	1 zatrudniony	40-100		
7	Kwiaciarnie i sklepy zoologiczne	1 zatrudniony	80		
8	Zakłady usługowe (szewc, zegarmistrz, krawiec, optyk)	1 zatrudniony	15		
9	Zakłady pralnicze	1 kg bielizny lub odzieży	17	~	
Anuluj OK					

Przeciętne normowe zużycie wody Handel, gastronomia i usługi

	Przeciętne normy zużycia wody w usługach 🛛 🗙						
Zak	Zakłady pracy						
Lp.	Rodzaj zakładu	Jednostka odniesienia	Przeciętne normy zużycia wody [dm³/j.o.∙dobę]				
1	Zakłady pracy, z wyjątkiem określonych w lp. 43	1 zatrudniony	15				
	Zakłady pracy						
2	a) w których wymagane jest stosowanie natrysków	1 zatrudniony	60				
	 b) przy pracach szczególnie brudzących lub ze środkami toksycznymi 	1 zatrudniony	90				
		A	nuluj OK				

Przeciętne normowe zużycie wody Zakład pracy

RZECZYWISTA DOBOWA ILOŚĆ WODY DO PODGRZANIA V_{cw,r}[dm³/o·24] –pole do określania rzeczywistego dobowego zużycia ciepłej wody.

OBLICZONE ŚREDNIO GODZINOWE ZAPOTRZEBOWANIE NA CIEPŁĄ WODĘG_{h,śr} [dm³/h] –pole do podglądu wyliczonego godzinowego zapotrzebowania na ciepłą wodę wyliczone z wzoru $G_{h,śr} = \frac{G_d}{r}$

OBLICZONE MAKSYMALNE GODZINOWE ZAPOTRZEBOWANIE NA CIEPŁĄ WODĘG_{h,max} [dm³/h] –pole do podglądu wyliczonego godzinowego zapotrzebowania na ciepłą wodę wyliczone z wzoru $G_{h,max}=G_{h,\text{sr}}\cdot L_i^{-0,244}$

OBLICZENIOWA, ŚREDNIO GODZINOWA MOC CIEPLNA NA PRZYGOTOWANIE CIEPŁEJ WODY $Q_{h,śr}^{cwu}$ [kW]- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{h,śr}^{cwu} = G_{h,śr} \cdot c_p \cdot (\theta_{cwu} - \theta_{wz})$

OBLICZENIOWA, MAKSYMALNA GODZINOWA MOC CIEPLNA NA PRZYGOTOWANIE CIEPŁEJ WODY $Q_{h,max}^{cwu}$ **[kW]**- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{h,max}^{cwu} = G_{h,max} \cdot c_p \cdot (\theta_{cwu} - \theta_{wz})$

ROCZNE ZAPOTRZEBOWANIE CIEPŁA UŻYTKOWEGO NA PRZYGOTOWANIE CIEPŁEJ WODYQw,nd [kWh/rok]- pole do podglądu wyliczeń maksymalnej godzinowej mocy cieplnej wyliczane z wzoru $Q_{W,nd} = Q_{h,sr}^{cwu} \cdot t_{uz} \cdot \tau \cdot \frac{V_{cw}}{V_{cwr}}$

12.2.1.3 Charakterystyka techniczno-użytkowa

A	ArCADia-TERMO PRO 6.0 Li	icencja dla: Test - ArCAI	Dia-TERMO PRO 6 [L01]		- 🗆 ×			
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	🗄 \$ 🖻 ◆ ₹ /> ?							
CERTYFIKAT	Ciepła woda użytkowa - Świadectw	o charakterystyki energe	etycznej 2014, WT 2014					
¢ ≝a×+Ω	Podstawowe parametry techniczr	no-użytkowe budynku			^			
🖃 🖺 Certyfikat	Liczba kondygnacji budynku	mku 1						
Część budynku	Kubatura budynku [m³]	249,92 m ³						
Budynek referencyjny	Kubatura budynku o regulowanej temperaturze powietrza [m³]	249,92 m ³						
Gaz ziemny 100%	Podział powierzchni użytkowej budynku	100% powierzchni uży	/tkowej					
	Temperatury wewnętrzne w budynku w zależności od stref ogrzewanych	v 20 stopni w całym bu	dynku					
	Rodzaj konstrukcji budynku	tradycyjna						
		Nazwa przegrody	Opis przegrody	Współczynnik przenikania ciepła Uc lub U [W/(m²·K)]				
				Uzyskany Wymagany ¹³⁾				
•		D 27-Dach	Dachówka ceramiczna karpiówka (0,015 m, λ=1.000 W/(m·K)); Weina mineralna granulowana 80 (0,25 m, λ=0.050 W/(m·K))	0,19 0,20				
		DZ 1-Drzwi zewnętrzne	DZ 1-Drzwi zewnętrzne Szerokość: 0,9m, Wysokość: 2m 1,70 1,70					
		OPZ 1-Okno połaciowe	Szerokość: 0,8m, Wysokość: 0,8m	1,50 1,50				
66.26 k\Wh/(m²rok)		OZ 1-Okno zewnętrzne	Szerokość: 1,2m, Wysokość: 1,5m	1,30 1,30				
0 200 400 000 800 1000 2 1000		OZ 2-Okno zewnętrzne	Szerokość: 1,2m, Wysokość: 2,2m	1,30 1,30				
T Ogrzewanie i wentylacja Clepła woda uzytkowa	Przegrody budynku	PG 53-Podłoga na gruncie	Plasek (0,2 m, λ+2.000 W/(m K)); Beton o wysokiej gęstości 2400 (0,1 m, λ+2.000 W/(m K)); Papa as fatłowa i zolacyjna gr. 4 mm (0,004 m, λ=0.180 W/(m K)); Ptyta styropianowa EPS 200-036 PODLOGA (0,12 m, λ=0.038 W/(m K)); Podkład pod posadzkę	0,26 0,30				
DANE WEJŚCIOWE			Ceresit CN 78 (0,08 m, λ=1.000 W/(m·K)); Posadzka cementowa Ceresit CN 76 (0,026 m, λ=1.000 W/(m·K))					
			Plyta styropianowa EPS 80-036 FASADA (0.2					
		S1W 44-Strop wewnetrzny m, λ=0.036 W/(m-K)); Strop Teriva 4.0\1 (0,24 0,16 0,20						
	naporo ovejadon							
	Ddśwież listę błędów!	Upis						
< [8/11] >	B B B			à là l	📑 Zamknij			

Okno drugiej strony raportu charakterystyka techniczno-użytkowa

PRZEZNACZENIE BUDYNKU - pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej Przeznaczenia budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA KONDYGNACJI - pole do edycji przez użytkownika, program domyślnie przenosi wartość z pola Liczba kondygnacji (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

TEMPERATURA EKSPLOTACYJNA - pole do edycji przez użytkownika, należ w nie wpisać wewnętrzną temperaturę dla zimy i lata. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

Podręcznik użytkownika dla programu ArCADia-TERMO

Certyfikat

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE–pole do edycji przez użytkownika, program domyślnie sumuje z wszystkich stref należących do tej grupy powierzchnie Af.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA UŻYTKOWA - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PODZIAŁ POWIERZCHNI - pole do edycji przez użytkownika, należy wpisać albo udział procentowy powierzchni użytkowych do nieużytkowych albo podać wartości tych powierzchni. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA UŻYTKOWNIKÓW - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

KUBATURA - pole do edycji przez użytkownika, program domyślnie sumuje kubaturę wszystkich stref należących do danej grupy. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

RODZAJ KONSTRUKCJI - pole do edycji przez użytkownika, program domyślnie przenosi nazwę wybraną w polu Technologia wznoszenia (okno Dane o budynku).Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

=-przycisk służy do pobrania opisów typów instalacji wprowadzonych w poprzednich etapach

OSŁONA BUDYNKU - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej izolacji przegród. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OGRZEWANIE - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu ogrzewania. Wartość ta wyświetlana jest w raporcie .rtf Świadectwa charakterystyki energetycznej.

WENTYLACJA - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej wentylacji w budynku. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CHŁODZENIE - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej instalacji chłodniczej.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZYGOTOWANIE CIEPŁEJ WODY - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu przygotowania ciepłej wody.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OŚWIETLENIE WBUDOWANE - pole do edycji przez użytkownika, należy w nim wpisywać opis instalacji oświetlenia. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.2.1.4 Uwagi

Æ	ArCADia-TERM	MO PRO 6.0	Licencja dla: Te	est - ArCADia-TE	RMO PRO 6 [L01	1]		- 🗆 🗙	
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	Ustawienia Pomoc 🖻 🏚 🗈 🛧 🔻 🥕 🔽 7								
CERTYFIKAT	Ciepła woda użytkow	a - Świadect	two charakterys	tyki energetyczr	iej 2014, WT 2014	4			
	ŚWIADECTWO CHAF	RAKTERYSTYKI	I ENERGETYCZNEJ E	NUDYNKU			3	^	
🖹 🔛 Część budynku	udynku Numer świadectwa 1								
Budynek referencyiny									
🖃 👘 Źródła ciepła	Wskażnik roczneg	o zapotrzebo	wania na energię i	użytkowną EU[kWh	/(m²-rok)]149	1	1		
Gaz ziemny 100%			Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chłodzenie	Oświetlenie wbudowane ^{s)}	Suma		
	Wartość [kWh/(m²-r	ok)]	17,27	19,21	0,00	0,00	39,05		
	Udział [%]		44,24	49,19	0,00	0,00	100,00		
	Wskaźnik roczneg	o zapotrzebo	wania na energię i	użytkowną EU:: 39,0)5 kWh/(m³·rok)				
	Wskażnik roczneg	o zapotrzebo	wania na energię I	końcową EK[kWh/(m²·rok)]'*)				
	Rodzaj nośnika en energii	ergii lub	Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chłodzenie	Oświetlenie wbudowane ^{s)}	Suma		
	Energia elektryczna mieszana	- produkcja	0,00	0,00	0,00	0,00	2,57		
	Paliwo - gaz ziemny	(26,66	26,58	0,00	0,00	53,24	1	
	Wartość [kWh/(mª-r	ok)]	26,66	26,58	0,00	0,00	55,81	1	
	Udział [%]		47,77	47,63	0,00	0,00	100,00]	
	Wskaźnik roczneg	o zapotrzebo	wania na energię I	końcową EK:: 53,24	kWh/(m²-rok)			1	
66,26 kWh/(m²rok)	Wskaźnik roczneg	o zapotrzebo	wania na nieodnav	wialną energię pier	wotną EP[kWh/(m²·	rok)]**)			
0 200 400 600 800 1000 ≻1000	Rodzaj nośnika en energii	ergii lub	Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chłodzenie	Oświetlenie wbudowane ^{s)}	Suma		
↑ Ogrzewanie i wentylacja	Energia elektryczna mieszana	- produkcja	0,00	0,00	0,00	0,00	2,57		
Ciepła woda użytkowa	Paliwo - gaz ziemny	/	26,66	26,58	0,00	0,00	53,24]	
	Wartość [kWh/(m²-r	ok)]	29,33	29,24	0,00	0,00	66,26		
	Udział [%]		44,26	44,13	0,00	0,00	100,00		
	Wskaźnik roczneg	o zapotrzebo	wania na nieodnav	wialną energię pier	wotną EP:: 66,26 kV	Vh/(m³·rok)			
CERTYFIKAT]	
O PODGLĄD PROJEKTU	Raport o bledach	aport o bledach						Ť	
🛱 WYDRUKI	Lp. Typ	, Typ Dois							
	Odśwież listę błędów!				opio				
< [8/11] >	D D	B	E		E.	≧ []	G	😑 Zamknij	

Okno trzeciej strony raportu Uwagi

MOŻLIWE ZMIANY W ZAKRESIE OSŁONY ZEWNĘTRZNEJ BUDYNKU - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE TECHNIKI INSTALACYJNEJ I ŹRÓDEŁ ENERGII - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE OŚWIETLENIA WBUDOWANEGO - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ W CZASIE EKSPLOATACJI - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ ZWIĄZANE Z KORZYSTANIEM Z CIEPŁEJ WODY UŻYTKOWEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

INNE UWAGI OSOBY SPORZĄDZAJĄCEJ ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.2.1.5 Budynek referencyjny WT2014

Typ budynku do obliczeń referencyjnych Budynek użyteczności publicznej Powierzchnia o regulowanej temperaturze Image: Argen and Arg
Powierzchnia użytkowa chłodzonego budynku A _{FC} = <u>200,00</u> m ²
Czas użytkowania oświetlenia 1 t _o = 2500,00 <u>h</u> rok
Cząstkowa max. wartość EP na ogrzewanie, wentylację i przygotowanie c.w.u. Ο ΔΕΡ _{H+W} = 65,00 <u>kWh</u> m ^{2*} rok
Cząstkowa max. wartość EP na chłodzenie ΔEP _c = 0 <u>kWh</u> m ² *rok
Cząstkowa max. wartość EP na oświetlenie ΔEP _L = 100,00 <u>kWh</u> m ^{2*} rok
Maksymalna wartość wskaźnika EP i EP _{max} = 165,00 <u>kWh</u> m ² *rok

Zakładka Budynek referencyjny (Projektowana Charakterystyka Energetyczne WT2014),

TYP BUDYNKU DO OBLICZEŃ REFERENCYJNYCH – pole do wyboru z listy na tej podstawie wstawaine są wartości ΔEP_{H+W} , ΔEP_C , ΔEP_{H+W} . Do wyboru z listy mamy:

- Budynki mieszkalne jednorodzinne
- Budynki mieszkalne wielorodzinne
- Budynki zamieszkania zbiorowego
- Budynki opieki zdrowotnej
- Budynki użyteczności publicznej
- Budynki gospodarcze, magazynowe i produkcyjne

POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE Af - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana sumą powierzchni stref cieplnych.

POWIERZCHNIA UŻYTKOWA CHŁODZONEGO BUDYNKU A_{f,c} - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana sumą powierzchni stref chłodzonych.

CZAS UŻYTKOWANIA OŚWIETLENIA t_o [h/rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie źródeł oświetlenia (jeśli jest klika źródeł w gupie certyfikatu program przyjmuje najwyższą t_o), na tej podstawie wstawiana jest wartość referencyjna ΔEP_L .

Cząstkowa max wartość EP na ogrzewanie, wentylację i przygotowanie ciepłej wody ΔEP_{H+W} [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Cząstkowa max wartość EP na chłodzenie ΔEP_C [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Cząstkowa max wartość EP na oświetlenie Δ EP_L [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie typu budynku.

Maksymalna wartość wskaxnika EP [kWh/m²•rok]- pole tekstowe do edycji przez użytkownika, program wstawia wartość na podstawie wzoru EP= $EP_{H+W} + \Delta EP_C + \Delta EP_L$.

12.2.1.6 Okno źródła ciepła na przygotowanie ciepłej wody

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01]	= 🗆 ×
<u>P</u> lik <u>E</u> dycja Ustawienia P <u>o</u> moc	□ ∅ № ▼ /> ▼ ?	
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014	
	Nazwa źródła ciepła Gaz ziemny	Informacje uzupełniające E
E Część budynku	Procentowy udział źródła w grupie: 100,00 %	
Budynek referencyjny	Roczne zapotrzebowanie na energię użyteczną na Q _{W/zd} = 1835,22 <u>kWh</u> potrzeby przygotowania ciepłej wody:	
Gaz ziemny 100%	Wytwarzanie Miniscenus ustuszczenia oporali w budwiku. Cez	Sprawność wytwarzania
	Rodzaj paliwa: Tablice ziemny	w _w =1,10 W _{e,W,CO} =0,06 <u>Mg CO</u> 2 GJ
	Rodzaj žródia ciepia: Przepływowy podgrzewacz gazowy z zapionem Baza elektrycznym	η _{W.g} =0,85 Hu = 48,00 <u>TJ</u> Βαza
	Przesyl	Sprawność przesyłu
	Typ instalacji ciepłej wody: Mieszkaniowe węzły cieplne Tablice	Oblicz
	Rodzaj instalacji cieplej Kompaktowy węzeł cieplny dla pojedynczego lokalu Baza wódy: mieszkalnego bez objegu cyrkulacyjnego	η _{W.d} =0,85
	Akumulacja ciepła:	Sprawność akumulacji
	Parametry zasobnika: System przygotowania ciepłej wody użytkowej bez zasobnika ciepłej wody użytkowej	Oblicz
	Baza	η _{W,s} =1,00
66,26 kWh/(m²rok)	Urządzenia pomocnicze	Urządzenia pomocnicze
0 200 400 600 800 1000 ≻1000	Noczne zapotrzebowania cierpie lektrycznej końcowej do napodu urządzeh pomocniczych systemu przygotowania ciepłej wody:	$w_{al} = 3,00$ $W_{a,pom,W,CO_2} = 0,09 \frac{Mg CO_2}{GJ}$
T Ogrzewanie i wentylacja	Rodzaj paliwa: Energia elektryczna - Sieć elektroenergetyczna systemowa	Gg Baza
Ciepła woda użytkowa	-,	Sprawność całkowita
DANE WEJŚCIOWE		η _{W,tot} = 0,72
OBLICZENIA CIEPLNE		
CERTYFIKAT		
Q PODGLAD PROJEKTU	Rannt a bladach	
H WYDRUKI	Lp. Typ Oois	
	Odśwież listę blędów!	
([8/11])		📮 🗐 Zamknij

Okno Ciepła woda użytkowa, źródła ciepła dla ciepłej wody

NAZWA ŹRÓDŁA CIEPŁA – pole do edycji przez użytkownika, wartość z tego pola pokazywana będzie na drzewku certyfikatu.

PROCENTOWY UDZIAŁ ŹRÓDŁA W GRUPIE – pole do edycji przez użytkownika, na podstawie wpisanej wartości zostanie pomniejszone $Q_{W,nd}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTECZNĄ NA POTRZEBY PRZYGOTOWANIA CIEPŁEJ WODY Qw,nd [kWh/rok] – pole do podglądu obliczonego zapotrzebowania wyliczonego z uwzględnieniem udziału procentowego.

INFORMACJA UZUPEŁNIAJĄCA – pole do wpisywania uwag przez użytkownika.

GRUPA WYTWARZANIE

RODZAJ PALIWA – użytkownik ma do wyboru następującą listę, do której dopięte są współczynniki nakładu ww:

Nr.	Rodzaj paliwa	$\mathbf{W}_{\mathbf{W}}$
1	Paliwo- olej opałowy	1,1
2	Paliwo- gaz ziemny	1,1
3	Paliwo- gaz płynny	1,1
4	Paliwo- węgiel kamienny	1,1
5	Paliwo- węgiel brunatny	1,1
6	Paliwo- biomasa	0,2
7	Ciepło z kogeneracji- węgiel kamienny	0,8
8	Ciepło z kogeneracji- gaz ziemny	0,8
9	Ciepło z kogeneracji- gaz biogaz	0,15
10	Ciepło z kogeneracji- biomasa	0,15

11	Ciepło z ciepłowni węglowej	1,3
12	Ciepło z ciepłowni gazowej/olejowej	1,2
13	Ciepło z ciepłowni na biomasę	0,2
14	Energia elektryczna- produkcja mieszana	3,0
15	Energia elektryczna- system PV	0,7
16	Paliwo-Kolektory słoneczne termiczne	0,0

W przypadku wybrania wartości "*PALIWO-KOLEKTORY SŁONECZNE TERMICZNE*" wzór do obliczeń: $Q_{P,W} = 3 \cdot E_{el,pom,W}$

RODZAJ ŹRÓDŁA CIEPŁA – użytkownik w polu tym wybiera jeden z wariantów wg poniższej tabeli:

Lp.	Rodzaj źródła ciepła	η _{w,g}
1	Przepływowy podgrzewacz gazowy z zapłonem:	
	i) elektrycznym,	0,85
	j) płomieniem dyżurnym	0,50
2	Kotły stałotemperaturowe wyprodukowane przed 180 r. (tylko	0,40
	przygotowanie ciepłej wody użytkowej)	
3	Kotły stałotemperaturowe dwufunkcyjne (ogrzewanie i	0,65
	przygotowanie ciepłej wody użytkowej)	
4	Kotły niskotemperaturowe o mocy:	
	a) do 50 kW,	0,83
	b) powyżej 50 kW	0,50
5	Kotły kondensacyjne, opalane gazem ziemnym lub olejem opałowym	
	lekki, o mocy:	
	a) do 50 kW,	0,85
	b) powyżej 50 kW	0,50
6	Elektryczny podgrzewacz akumulacyjny (z zasobnikiem ciepłej	0,96
	wody użytkowej bez strat)	
7	Elektryczny podgrzewacz przepływowy	0,99
8	Pompa ciepła typu woda/woda, sprężarkowa, napędzana elektrycznie	3,00
9	Pompa ciepła typu glikol/woda, sprężarkowa, napędzana elektrycznie	3,00
10	Pompa ciepła typu bezpośrednie odparowanie w gruncie/woda,	3,00
	sprężarkowa, napędzana elektrycznie	
11	Pompa ciepła typu powietrze/woda, sprężarkowa, napędzana	2,60
	elektrycznie	
12	Pompa ciepła typu powietrze/woda, sprężarkowa, napędzana gazem	1,20
13	Pompa ciepła typu powietrze/woda, absorpcyjna, napędzana gazem	1,20
14	Pompa ciepła typu powietrze/woda, sprężarkowa, napędzana gazem	1,30
15	Pompa ciepła typu powietrze/woda, absorpcyjna, napędzana gazem	1,30
16	Węzeł cieplny kompaktowy z obudową, o mocy nominalnej:	
	a) do 100 kW,	0,98
	b) powyżej 100 kW	0,99
17	Węzeł cieplny kompaktowy bez obudowy, o mocy nominalnej:	
	a) do 100 kW,	0,91
	b) powyżej 100kW	0,93
18	Węzeł cieplny kompaktowy z obudową (ogrzewanie i przygotowanie	
	ciepłej wody użytkowej):	
	a) do 100 kW,	0,97
	b) powyżej 100kW	0,98
19	Węzeł cieplny kompaktowy bez obudowy (ogrzewanie i	
	przygotowanie ciepłej wody użytkowej):	
	a) do 100 kW,	0,90
	b) powyżej 100kW	0,91
Wp	zypadku pomp ciepła podano wartość współczynnika wydajności sezono	owej.
W p	zypadku innych źródeł ciepła, z wyjątkiem zasilanych energią elektryczi	ną, podano
spra	wność odniesiona do wartości opałowej paliwa.	

GRUPA PRZESYŁ

TYP INSTALACJI CIEPŁEJ WODY - użytkownik w polu tym wybiera jeden z wariantów wg poniższej tabeli:

Lp.	Typ instalacji ciepłej wody
1	Miejscowe przygotowanie ciepłej wody, instalacja ciepłej wody bez obiegów cyrkulacyjnych
2	Mieszkaniowe węzły ciepła
3	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody bez obiegów cyrkulacyjnych
4	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi, piony
	instalacyjne nie izolowane, przewody rozprowadzające izolowane
5	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi, piony
	instalacyjne i przewody rozprowadzające izolowane
6	Centralne przygotowanie ciepłej wody, instalacja ciepłej wody z obiegami cyrkulacyjnymi z
	ograniczeniem czasu pracy, piony instalacyjne i przewody rozprowadzające izolowane

RODZAJ INSTALACJI CIEPŁEJ WODY- użytkownik w polu tym wybiera jeden z wariantów wg poniższej tabeli:

Lp.	Rodzaj instalacji ciepłej wody	ηw,d
1	Miejscowe przygotowanie ciepłej wody bezpośrednio przy punktach poboru wody ciepłej	1,00
2	Miejscowe przygotowanie ciepłej wody dla grupy punktów poboru wody ciepłej w jednym pomieszczeniu sanitarnym, bez obiegu cyrkulacyjnego	0,80
3	Kompaktowy węzeł cieplny dla pojedynczego lokalu mieszkalnego, bez obiegu cyrkulacyjnego	0,85
4	Instalacja ciepłej wody w budynkach jednorodzinnych	0,60
5	Instalacje małe, do 30 punktów poboru ciepłej wody	0,60
6	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,50
7	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,40
8	Instalacje małe, do 30 punktów poboru ciepłej wody	0,70
9	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,60
10	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,50
11	Instalacje małe, do 30 punktów poboru ciepłej wody	0,80
12	Instalacje średnie, od 30-100 punktów poboru ciepłej wody	0,70
13	Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,60

Dodatkowo po tego współczynnika dorobiony jest przycisk \square , który otwiera poniższe okno (wówczas współczynnik η w, wyliczany jest z poniższego okna):

			S	prawność prz	esyłu				X			
	Przewody cieplej wody o temperaturze 65°C przepływ zmienny											
Lp.	DN [mm]	L [m]	Lokalizacja przewodów	Typ izolacji	Typ ql izolacji [W/m]		tcw [h]	∆QW,d [kWh/rok]	+			
1	15	10,0 0	Wewnątrz osłony izolacyjnej budynku	½ grubości wg WT	3,40	1,50	5328	208,32	×			
									Ť			
									+			
						200)	18 32 <u>kWh</u>				
						0	η _{W,d} = 0 ,	90				
						Anulu	j	ок				

Okno certyfikatu obliczenie sprawności przesyłu

PRZEWODY CIEPŁEJ WODY O TEMPERATURZE – wybór jednego z wariantów podstawie, którego wstawiane będą wartości ql: 55 °C przepływ stały, 55 °C przepływ zmienny **LP.** – kolejna liczba porządkowa dla dodawanego wiersza

DN [mm] – średnica przewodów ciepłej wody, wartość wybierana przez użytkownika z listy.

L [m] – długość przewodów ciepłej wody o zadanej średnicy, wartość wpisywana przez użytkownika,

LOKALIZACJA PRZEWODÓW- użytkownik w kolumnie tej wybiera jeden z dwóch wariantów lokalizacji przewodów: NA ZEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU, WEWNĄTRZ OSŁONY IZOLACYJNEJ BUDYNKU,

TYP IZOLACJI – użytkownik w tym oknie wybiera z listy jeden z kilku wariantów izolacji cieplnej: *NIEIZOLOWANE, ½ GRUBOŚCI WG WT, GRUBOŚĆ WT, 2 X GRUBOŚĆ WT,*

qi [W/m]- jednostkowa strata ciepła przewodów ciepłej wody, wstawiana na podstawie tabelki wyświetlanej

poprzez wciśnięcie przycisku ••••, edytowalna przez użytkownika. Wartość domyślna jest wstawiana napodstawie listy rozwijanej "**Parametry wody**", kolumny "**DN**", kolumny "**Lokalizacja przewodów**", kolumny" **Typ izolacji". Na podstawie poniższej tabelki:**

Przewody		Na zer	wnątrz os	łony izo	lacyjnej	Wewnątrz osłony izolacyjnej					
0	o Izolacja termiczna			ynku		budynku					
temperaturze	przewodów	DN	DN	DN	DN	DN	DN	DN	DN		
°C		10-15	20-32	40-65	80-100	10-15	20-32	40-65	80-100		
Przewody	nieizolowane	24,9	33,2	47,7	68,4	14,9	19,9	28,6	41,0		
ciepłej wody	1/2 grubości wg WT	5,7	8,8	13,5	20,7	3,4	5,3	8,1	12,4		
użytkowej –	grubość wg WT	4,1	4,6	4,6	4,6	2,5	2,7	2,7	2,7		
przepływ											
zmienny	2x grubość wg WT	3,0	3,4	3,2	3,2	1,8	2,0	1,9	1,9		
55°C											
Przewody	nieizolowane	53,5	71,3	102,5	147,1	37,3	49,8	71,5	102,6		
cyrkulacyjne	1/2 grubości wg WT	12,3	18,9	29,0	44,6	8,6	13,2	20,2	31,1		
– stały	grubość wg WT	8,8	9,8	9,8	9,8	6,1	6,8	6,8	6,8		
przepływ	2x grubość wg WT	6,5	7,2	6,9	6,9	4,5	5,1	4,8	4,8		
55°C	-										

t_{CW} [h] - czas trwania sezonu grzewczego.

 $\Delta Q_{w,d} [kWh/rok]$ – jednostkowa sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią). Wartość wyliczana domyślnie z wzoru: $\Delta Q_{w,d} = (L \cdot qi \cdot t_{cw}) \cdot 10^{-3}$

 $\sum \Delta \mathbf{Q}_{w,d} [\mathbf{k}W\mathbf{h}/\mathbf{rok}] - u$ średnione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku (w obrębie osłony bilansowej lub poza nią). Wartość wyliczana z sumy kolumny $\Delta \mathbf{Q}_{w,d}$: $\sum \Delta \mathbf{Q}_{w,d} = \sum (\Delta \mathbf{Q}_{w,d})$

H_{w,d}– średnia sezonowa sprawność transportu nośnika ciepła w obrębie budynku (osłony bilansowej lub poza nią). Wartość domyślnie obliczana z wzoru:

$$\eta_{W,d} = \frac{Q_{W,nd}}{Q_{W,nd} + \Sigma \Delta Q_{W,d}}$$

Gdzie:

Q w,nd – zapotrzebowanie ciepła użytkowego do podgrzewu ciepłej wody,

 $\sum \Delta Q_{W,d}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku,

Grupa Akumulacja

PARAMETRY ZASOBNIKA CIEPŁEJ WODY - na podstawie listy program wstawia odpowiedni współczynnik $\eta_{W,s}$ wg następującego schematu:

Lp.	Parametry zasobnika ciepłej wody	$\eta_{W,s}$
1	Zasobnik w systemie wg standardu z lat 1970-tych	0,30-0,59
2	Zasobnik w systemie wg standardu z lat 1977-1995	0,55-0,69
3	Zasobnik w systemie wg standardu z lat 1995-2000	0,60-0,74

4 Zasobnik w systemie wg standardu budynku niskoenergetycznego	0,83-0,86
---	-----------

Dodatkowo po tego współczynnika dołączony jest przycisk _____, który otwiera poniższe okno (wówczas współczynnik **n**w,s wyliczany jest z poniższego okna):

Sprawność akumulacji ciepła									
Lp.	V [m³]	qs [W/m³]	tsw [h]	∆Qws [kWh/rok]	+				
1	100,00	0,65	5328,00	346,32	×				
					Ψh				
					Đ				
ΣΔQ	ws = 346,32 <u>kWh</u> rok	i η _{WS} = 0,86	Anuluj	ок					

Okno certyfikatu obliczenie sprawności akumulacji

LP. – kolejna liczba porządkowa dla dodawanego wiersza

VS [dm³] – pojemność zasobnika ciepłej wody, wartość podawana przez użytkownika w zakresie (0-2000),

qs [W/dm³]- jednostkowa strata ciepła zbiornika buforowego, wartość podawana przez użytkownika lub

wstawiana na podstawie tabelki wyświetlanej poprzez wciśnięcie przycisku •••• Wariant A **Pośrednio podgrzewane, biwalentne zasobniki solarne, zasobniki elektryczne całodobowe**

Lokalizacja	Pojemność	Pośrednio po solarne, zas	dgrzewane, biwał sobniki elektryczn	entne zasobniki e całodobowe		
zasobnika	nika [dm ³] Iz		Izolacja	Izolacja		
		10 cm	5 cm	2 cm		
Na	25	0,68	1,13	2,04		
zewnątrz	50	0,54	0,86	1,58		
osłony	100	0,43	0,65	1,23		
izolacyjnej	200	0,34	0,49	0,95		
budynku	500	0,25	0,34	0,68		
	1000	0,20	0,26	0,53		
	1500	0,18	0,22	0,46		
	2000	0,16	0,20	0,41		
Wewnątrz	25	0,55	0,92	1,66		
osłony	50	0,44	0,70	1,29		
izolacyjnej	100	0,35	0,53	1,00		
budynku	200	0,28	0,40	0,78		
	500	0,21	0,28	0,56		
	1000	0,17	0,21	0,43		
	1500	0,14	0,18	0,37		
	2000	0,13	0,16	0,33		

Wariant B Małe zasobniki elektryczne

Lokalizacja zasobnikaPojemność [dm³]Małe zasobniki elektryczNa252,80zewnątrz osłony502,80jzolacyjnej budynku200-5001000-10001500-	ri
Na 25 2,80 zewnątrz 50 2,80 osłony 100 2,80 izolacyjnej 200 200 budynku 500 1000 1500 1500 1500	ne
zewnątrz osłony izolacyjnej budynku 500 1000 200 500 1000 1500	
osłony izolacyjnej budynku 500 1000 1500	
izolacyjnej 200 budynku 500 1000 1500	
budynku 500 1000 1500	
1000 1500	
1500	
2000	
Wewnątrz 25 2,28	
osłony 50 2,28	
izolacyjnej 100 2,28	
budynku 200	
500	
1000	
1500	
2000	

Wariant C Zasobniki gazowe

Lokalizacja zasobnika	Pojemność [dm³]	Zasobniki gazowe
Na	25	3,13
zewnątrz	50	3,07
osłony	100	3,02
izolacyjnej	200	2,96
budynku	500	2,89
	1000	2,84
	1500	2,81
	2000	2,78
Wewnątrz	25	2,55
osłony	50	2,50
izolacyjnej	100	2,46
budynku	200	2,41
	500	2,35
	1000	2,31
	1500	2,28
	2000	2,27

t_{CW}[**h**] - czas trwania sezonu grzewczego.

 $\Delta Q_{w,s}$ [kWh/rok] – jednostkowa sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią). Wartość wyliczana domyślnie z wzoru: $\Delta Q_{w,s} = (Vs \cdot qs \cdot t_{cw}) \cdot 10^{-3}$

 $\sum \Delta Q_{w,s}$ [kWh/rok] – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią).

 $\eta_{W,S}$ – średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu grzewczego budynku (w obrębie osłony bilansowej lub poza nią). Wartość domyślnie obliczana z wzoru:

$$\eta_{W,S} = \frac{Q_{W,nd} + \Delta Q_{W,d}}{Q_{W,nd} + \Delta Q_{W,d} + \sum \Delta Q_{W,S}}$$

Gdzie:

Q w,nd – zapotrzebowanie ciepła użytkowego do podgrzewu ciepłej wody,

 $\Delta Q_{w,d}$ – uśrednione sezonowe straty ciepła instalacji transportu nośnika ciepła w budynku,

 $\sum \Delta Q_{W,S}$ – uśrednione sezonowe straty ciepła w elementach pojemnościowych systemu grzewczego budynku,

ROCZNE ZAPOTRZEBOWANIE ENERGII ELEKTRYCZNEJ KOŃCOWEJ DO NAPĘDU URZĄDZEŃ POMOCNICZYCH SYSTEMU PRZYGOTOWANIA CIEPŁEJ WODY E el.pomw- wartość podawana przez

użytkownika lub wyliczana w oknie aktywowanym przyciskiem

	Roczne zapotrzebowanie energii elektrycznej końcowej									×			
Roo	Izaj obliczeń: Wg Rozporządzenia MI												
Lp.	Rodzaj urządzenia pomocniczego		Urządzenia dla wentylacji	β		Udział [%]	qel,HV [W/m²]	Ilość [szt.]	tel [h/rok]	Af [m²]	Eel,pom,W [kWh/rok]	+
1	Pompy obiegowe w systemie ogrzewczym z grzejnikami członowymi lub płytowymi przy granicznej temperaturze ogrzewania 12°C w budynku o powierzchni Af do 250 m ²			Δ		100,00	0,30		1	5700	 95,55	163,39	×
2	Wentylator miejscowy systemu wentylacyjnego		<	1,00		100,00	2,40		1	8700	 30,00	626,40	.11
ΣE _e	_{pom,W} = 789,79 <u>kWh</u> rok										Anuluj	ОК	

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej wg rozporządzenia MI

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,

RODZAJ URZĄDZENIA POMOCNICZEGO- użytkownik wybiera z listy jedną z pozycji,

*q*_{el,W} [W/m2] – wartość wpisywana przez użytkownika lub wybierana z tabeli aktywowanej przyciskiem ····

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

ILOŚĆ [szt.] – wartość podawana przez użytkownika,

*t*_{el} [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana domyślnie na podstawie wybranego *RODZAJU URZĄDZENIA POMOCNICZEGO*,

A_f[m²] – powierzchnia pomieszczeń o regulowanej temperaturze,

 $E_{el,pom,W}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,W} = q_{el,W} \cdot ilość \cdot A_f \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,W}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,W}$: $\sum E_{el,pom,W} = \sum (E_{el,pom,W})$

Lp.	Rodzaj urządzenia pomocniczego i instalacji	qel[W/m2]	tel[h/rok]
1	Pompy obiegowe ogrzewania w budynku do A=250 m2 z grzejnikami	0,2-0,7	5000-
	członowymi lub płytowymi, granica ogrzewania 12 °C		6000
2	Pompy obiegowe ogrzewania w budynku ponad A=250 m2 z grzejnikami	0,1-0,4	4000-
	członowymi lub płytowymi, granica ogrzewania 10 °C		5000
3	Pompy obiegowe ogrzewania w budynku do A=250 m2 z grzejnikami	0,5-1,2	6000-
	podłogowymi, granica ogrzewania 15 °C		7000
4	Pompy cyrkulacyjne ciepłej wody w budynku do A=250 m2, praca ciągła	0,1-0,4	8760
5	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m2, praca	0,05-0,1	7300
	przerywana do 4 godz./dobę		
6	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m2, praca	0,05-0,1	5840
	przerywana do 8 godz./dobę		
7	Pompy ładujące zasobnik ciepłej wody w budynku do A=250 m2	0,3-0,6	200-300
8	Pompy ładujące zasobnik ciepłej wody w budynku ponad A=250 m2	0,1-0,2	300-700
9	Pompy ładujące bufor w układzie ogrzewania w budynku do A=250 m2	0,2-0,5	1500
10	Pompy ładujące bufor w układzie ogrzewania w budynku ponad A=250 m2	0,05-0,1	1500

11	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku do A=250 m2	0,8-1,7	200-350
12	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku ponad A=250 m2	0,1-0,6	300-450
13	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku do A=250 m2	0,3-0,6	1400- 3000
14	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku ponad A=250 m2	0,05-0,2	2500- 4500
15	Napęd pomocniczy pompy ciepła woda/woda w układzie przygotowania ciepłej wody	1,0-1,6	400
16	Napęd pomocniczy pompy ciepła glikol/woda w układzie przygotowania ciepłej wody	0,6-1,0	400
17	Napęd pomocniczy pompy ciepła woda/woda w układzie ogrzewania	1,0-1,6	1600
18	Napęd pomocniczy pompy ciepła glikol/woda w układzie ogrzewania	0,6-1,0	1600
19	Regulacja węzła cieplnego – ogrzewanie i ciepła woda	0,05-0,1	8760
20	Pompy i regulacja instalacji solarnej w budynkach do A=500 m2	0,2-0,4	1000- 1750
21	Pompy i regulacja instalacji solarnej w budynkach ponad A=500 m2	0,1-0,3	1000- 1750
22	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza do 0,6 1/h	0,2-0,6	6000- 8760
23	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza ponad 0,6 1/h	0,6-1,6	6000- 8760
24	Wentylatory w centrali wywiewnej, wymiana powietrza do 0,6 1/h	0,1-0,5	6000- 8760
25	Wentylatory w centrali wywiewnej, wymiana powietrza ponad 0,6 1/h	0,5-1,1	6000- 8760
26	Wentylatory miejscowego układu wentylacyjnego	1,1-3,0	6000- 8760

 $\eta_{w,tot}$ – średnia sezonowa sprawność całkowita systemu grzewczego budynku ocenianego , wartość wyliczana z wzoru: $\eta_{w,tot} = \eta_{w,g} \cdot \eta_{w,s} \cdot \eta_{w,d} \cdot \eta_{w,e}$

*Q*_{*P*,*W*} [**kWh/rok**] – roczne zapotrzebowanie energii pierwotnej przez system do podgrzewu ciepłej wody, wartość wyliczana z wzoru:

 $Q_{P,W} = w_W \cdot \frac{Q_{W,nd}}{\eta_{W,tot}} + 3 \cdot E_{el,pom,W}$

 $Q_{K,W}$ [kWh/rok] – roczne zapotrzebowanie na energie końcową na potrzeby podgrzewu ciepłej wody budynku ocenianego, wartość wyliczana z wzoru:

 $Q_{K,W} = \frac{Q_{W,nd}}{\eta_{W,tot}}$

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej - Ręczny rodzaj obliczeń

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,

RODZAJ URZĄDZENIA POMOCNICZEGO – użytkownik wpisuje własną wartość,

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

MOC [kW] - wartość mocy elektrycznej urządzenia pomocniczego podawana przez użytkownika,

 t_{el} [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana przez użytkownika lub

wstawiana z podpowiedzi ••••.

 $E_{el,pom,W}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,W} = Moc \cdot ilość \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,W}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,W}$: $\sum E_{el,pom,W} = \sum (E_{el,pom,W})$

12.3 ETAP CHŁODZENIE

🕂 ArCADia-TERMO Niekomercyjna wersja czasowa 4.0 Niekomercyjna w pełni funkcjona	alna wersja czasowa ważna przez następne 12 dni 15. Budynek wielorodzinny	
<u>P</u> lik <u>E</u> dycja <u>W</u> ersja <u>R</u> aporty Ustawienia P <u>o</u> moc 🌈 🔻 🐴 🐨	🜔 Efekt ekologiczny) 🚺 Efekt ekonomiczny 🗰 Dobór grzejników	
CERTYFIKAT	Chłodzenie	
<mark>72 + X (~ 14</mark>	The All Distance	
E Certyfikat	lypraporu: budynek	
🖨 📲 Mieszkanie nr 1	Nazwa: Certyfikat	
Budynek referencyjny		
Nowe źródło chłodzenia 100%	ŚWIADECTWO, CHARAKTERYSTYKI, ENERGETYCZNEJ	
E Klatka schodowa		
Budynek referencyjny		
🕸 Źródła chłodu	Ważne do: 09 lutego 2020 V	
e		
Budynek referencyjny	Budynek oceniany	
🕸 Źródła chłodu	Rodzaj budynku Blok 4-piętrowy	
Mieszkanie nr 3	Adres budynku	
Lista stref	Całość/Część budynku	
Žródla chłodu	Rok zakończenia budowylrok 2007	
Mieszkanie nr 4 Mułynek referencyjny	oddania do użytkowania 2007	
Lista stref	Rok budowy instalacji 2010	
2ródła chłodu	Liczba lokali użytkowych 0	-
Budynek referencyjny	Powierzchnia użytkowa (Af,m³) 0	
Lista stref	🔽 budynek nowy 📄 budynek istniejacy 📄 ogłoszenie	
🖓 Żródła chłodu	Cel wykonania świadectwa	
Budynek referencyjny	najem/sprzedaz rozbudowa imiy	
Lista stref	Obliczeniowe zapotrzebowanie na nieodnawialna energie pierwotna ¹⁾	
Weszkanie pr 7	EP - budynek oceniany	
Budynek referencyjny	■ 204.2 kWh/(m²rok)	
Lista stref		
	0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 >1000	
204, 10 KWW(M*TOR)		
0 200 400 800 800 1000 >1000	\uparrow \uparrow	
	EP-ref budynek nowy EP-ref budynek przebudowywany 233.06kWh(im/rok) 268.02kWh(im/rok)	
Ogrzewanie i wentylacja	Stwierdzenie dotrzymania wymagań wg WT2008 ⁹	
Ciepła woda użytkowa	Zapotrzebowanie na energię pierwotna (EP) Zapotrzebowanie na energię końcowa (EK)	
Chlodzenie	Budynek oceniany 204,18 kWh/(m*rok) Budynek oceniany 176,73 kWh/(m*rok)	
Oświetlenie	Burlynak wn WT2008 233.06 kWh/(m²rok)	
Z DANE WEJŚCIOWE	1).Charakterystyka energetyczna budynku określana jest na podstawie porównania jednostkowej ilości nieodnawialnej energii pierwotnej EP	
	 niezbędnej do zaspokojenia potrzeb energetycznych budynku w zakresie ogrzewania, chłodzenia, wentylacji i ciepłej wody użytkowej (efektywność całkowita) z odpowiednia wartościa referencyjna. 	
	2).Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich	
CERTYFIKAT	usyuowanie (oz. o. ne ro, joż. cou, z pozn. zm.), spernienie warunkow jest wymagane tyko ola budynku nowego (ub przebudówanego. Spełnienie warunków wg WT2008 nie jest wymagane do budynków, wobecktórych przed dniem 1 stycznia 2009 r. została wydana decyzja o	
202 ZUŻYCIE PALIW	pozwoleniu na budowę lub odrębna decyzja o zatwierdzeniu projektu budowlanego lub został złożony wniosek o wydanie takich decyzji. 3) Bez chłodzenia i oświetlenia. 4) W przypadku budynków użyteczności publicznej – tablica w widocznym miejscu.	
	Ilwana: rharaktanishka anamaturina niraštana last dla waninkiw klimaturinurh ninlasiania _ staria Łórtź . Luhlinak nraz dla normalnurh Ranot o bledach	
RAPORTY		
	Odśwież liste błedówi	
	ananier and address)	
< [10/19] >		 Zamknij

Etap Chłodzenie

Panel chłodzenie służy do zdefiniowania systemu wytwarzania, rozdziału, regulacji i wykorzystania, akumulacji. W programie możemy wyliczyć zapotrzebowanie dla każdej grupy (zdefiniowanej funkcji budynku) osobno.

TYP RAPORTU – pole do wybierania dla pojedynczej grupy wzoru świadectwa. Użytkownik ma do wyboru jeden z czterech wariantów Budynek, Budynek mieszkalny, Lokal mieszkalny, Część budynku stanowiąca samodzielną całość techniczno-użytkową. Należy pamiętać również o tym, że do każdego wzoru świadectwa dopięty jest odpowiedni sposób obliczeń budynku referencyjnego oraz czy grupa zostanie uwzględniona w obliczeniach oświetlenia wbudowanego (oświetlenie wbudowane wyliczane jest w przypadku wybrania wzoru świadectwa budynku lub części budynku stanowiącego samodzielną całość techniczno-użytkową).

NAZWA – pole do wpisywania nazwy grupy, która pojawi się w drzewku świadectwa.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{C,nd} [kWh/rok] – pole w którym użytkownik może wpisać własną wartość (wówczas można wykonać obliczenia bez konieczności wstawiania przegród np. jak mamy stare świadectwo i na jego podstawie musimy zmienić tylko rodzaj kotła i związane z nim sprawności), program domyślnie wstawia sumę wartości Q_{C,nd} z dołączonych do danej grupy stref.

12.3.1.1 Drzewko struktury świadectwa charakterystyki energetycznej-chłodzenie

Drzewko to służy do zarządzania strukturą obliczeń świadectwa użytkownik może stworzyć dowolną ilość grup dla których program policzy oddzielnie świadectwa, dodatkowo na podstawie wstawionych grup wyliczy zbiorcze świadectwo EPm (z wszystkich wstawionych grup i policzonych świadectw wylicza średnią ważoną wartość dla poszczególnych energii użytkowych, końcowych, pierwotnych gdzie waga jest powierzchnia Af). Tworzenie grup ma uzasadnienie w kilku przypadkach:

 gdy mamy doczynienia z budynkiem w którym jest więcej niż jedna funkcja użytkowa np. jest część mieszkalna i lokal usługowy. Wówczas w ciepłej wodzie inne jest V_{cw} dla części mieszkalnej i usługowej (podobnie jest z czasem użytkowania, przerwami urlopowymi i wodomierzami na ciepłej wodzie),
 gdy mamy doczynienia z budynkiem mieszkalnym, w którym każdy lokal ma własne źródło ciepła (wówczas nie wykonujemy świadectwa dla całego budynku tylko dla poszczególnych lokali),

Legenda przycisków drzewka:

- tworzenie nowej grupy/funkcji,

- dodawania nowego typu źródła do grupy/funkcji,

-usuwanie typu źródła z grupy/funkcji,

- wczytywanie gotowego szablonu drzewka struktury świadectwa,

- zapisywanie szablonu drzewka struktury świadectwa,

-przełączanie widoku drzewka z struktury świadectwa na podgląd wzorów.

Legenda oznaczeń na drzewku:

- przejście do okna zbiorczego świadectwa charakterystyki energetycznej. Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi)

 $\label{eq:constraint} \begin{array}{c} - \mbox{ przejście do okna parametrów źródła ciepła, w którym wybieramy współczynnik, udział procentowy $Q_{C,nd}$ i energię pomocniczą dla źródeł,} \end{array}$

Æ	ArCADia-TERMO PRO 6.0 L	icencja dla: Test - A	rCADia-TERMO PRO 6 [L01] - 02. Ka	mienica+	Sklep(chłóc	d)					- 8 ×
Plik Edycja Ustawienia Pomoc	E \$ 2 \$ \$ \$ \$ \$ \$ \$ \$?										
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo ch	arakterystyki energ	etycznej 2014, WT 2014								
Certyfiat Certyfiat Certyfiat Certyfiat Certyfiat Certyfiat Certyfiat	+				⇒						î
Budynek referencyjny Jródka ciepka	ŚWIADECTWO CHARAKTERYSTYKI ENERG										
- Fe Kolektory sloneczne 40%	Numer świadectwa	1									
Cześć usługowa	Podstawowe parametry techniczno-uz	tytkowe budynku									
- Dbliczenia Qw,nd	Liczba kondygnacji budynku	1									
Budynek referencyjny	Kubatura budynku [m²]	338,80 m ⁵									
Eros Zrodia ciepta Fre Kolektory 40% Fre Kolektory 40% Fre Kolektory 40%	Kubatura budynku o regulowanej temperaturze powietrza [m*]	338,80 m ³									
	Podział powierzchni użytkowej budynku	2 🗵									
	Temperatury wewnętrzne w budynku w zależności od stref ogrzewanych	E									
	Rodzaj konstrukcji budynku	tradycyjna									
		Nazwa przegrody	Opis przegrody	Wapółczyr ciepła Uc k	nnik przenikania ub U (W/(m² K))						
	Przegrody obaynka			Uzyskany	Wymagany ^{rol}						
				0,00	0,00						
		Elementy składowe systemu	Opis		Średnia sezonowa sprawność						- 1
—		Wytwarzanie ciepła	0,94 								
		Przesył ciepła									
		Akumulacja ciepła	System ogrzewczy bez zbiornika buforowego		1,00						
	System ogrzewczy	Regulacja i wykorzystanie ciepła	-		-						
		Wytwarzanie ciepła	-		3,30	_					
		Przesył ciepła	-		-						
		Resultacia i	System ogrzewczy dez zbornka barorowego	1,00							
Ogrzewanie i wentylacja Cienia woda użytkowa		wykorzystanie ciepła	-		-						
Chłodzenie		systemu	Opis		Sprawność						
D DIVENE SCIONE		Wytwarzanie ciepła	-		1,00						
		Przesył ciepła	Liczba punktów poboru ciepłej wody do 30		0,80						
OBLICZENIA CIEPLNE CERTVEIKAT		Akumulacja ciepla	Zasobnik cieplej wody użytkowej wyprodukow r.	rany po 2005	0,84						
		Wytwarzanie ciepła			0,71						~
ICA PODGLAD PROJEKTU	Raport o blipdach										
H WYDRUKI	Lp. Typ			(Opis						^
	1 Ostrzeżenie Przegroda SZ-44 nie jest zaprojektowana prawidłowo. Brak odprowadzenia kondensatu w okresie letnim. 🗸								~		
< [№14] >	Etap[2/14]:DANE WEIŚCIO	WE->Dane projektu	I TE TE	Δ.,		E.	R,	R.	E4	8	Zamknij

12.3.1.2 Zakładka Charakterystyka techniczno-użytkowa

Okno drugiej strony raportu charakterystyka techniczno-użytkowa

RODZAJ BUDYNKU – pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej typu budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ADRES - pole do edycji przez użytkownika, program domyślnie wstawia wartość z pól Kod pocztowy, Miejscowość, Adres, Nr (okno Dane projektu/Dane budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CZĘŚĆ/CAŁOŚĆ BUDYNKU – pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK ZAKOŃCZENIA BUDOWY/ODDANIA DO UŻYTKOWANIA - pole do edycji przez użytkownika, program domyślnie przenosi wartość z wybranego wcześniej Roku budowy (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK BUDOWY INSTALACJI- pole do wyboru przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CEL WYKONYWANIA ŚWIADECTWA - pole do edycji przez użytkownika, z dodatkowym przyciskiem info, w którym podane są przypadki opisane w rozporządzeniu. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA LOKALI MIESZKALNYCH - pole do wyboru przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZEZNACZENIE BUDYNKU - pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej Przeznaczenia budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA KONDYGNACJI - pole do edycji przez użytkownika, program domyślnie przenosi wartość z pola Liczba kondygnacji (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

TEMPERATURA EKSPLOTACYJNA - pole do edycji przez użytkownika, należ w nie wpisać wewnętrzną temperaturę dla zimy i lata. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE – pole do edycji przez użytkownika, program domyślnie sumuje z wszystkich stref należących do tej grupy powierzchnie Af.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA UŻYTKOWA - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PODZIAŁ POWIERZCHNI - pole do edycji przez użytkownika, należy wpisać albo udział procentowy powierzchni użytkowych do nieużytkowych albo podać wartości tych powierzchni. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA UŻYTKOWNIKÓW - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

KUBATURA - pole do edycji przez użytkownika, program domyślnie sumuje kubaturę wszystkich stref należących do danej grupy. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

RODZAJ KONSTRUKCJI - pole do edycji przez użytkownika, program domyślnie przenosi nazwę wybraną w polu Technologia wznoszenia (okno Dane o budynku).Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

-przycisk służy do pobrania opisów typów instalacji wprowadzonych w poprzednich etapach

OSŁONA BUDYNKU - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej izolacji przegród. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OGRZEWANIE - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu ogrzewania. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

WENTYLACJA - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej wentylacji w budynku. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CHŁODZENIE - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej instalacji chłodniczej.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZYGOTOWANIE CIEPŁEJ WODY - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu przygotowania ciepłej wody. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OŚWIETLENIE WBUDOWANE - pole do edycji przez użytkownika, należy w nim wpisywać opis instalacji oświetlenia. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.3.1.3 Zakładka Uwagi

兵	ArCADia-TERMO PR	tO 6.0 Licencja d	a: Test - ArCAD	ia-TERMO PRO (5 [L01] - 02. Kam	ienica+Sklep(chłó	f)		_ 0 ×
Plik Edycja Ustawienia Pomoc	E & D + + + ?								
CERTYFIKAT	Chłodzenie - Świadectwo chara	kterystyki energ	etycznej 2014, V	VT 2014					
G+×DE 4	Udział (%)	13,04	84,23	0,00	0,00	100,00			^
🖂 — 🧮 Certyfikat	Wskažnik rocznego zapotrzel	owania na energię	użytkowną EU: 72	6,83 kWh/(m*-rok)					
Część mieszkalna	Wskaźnik rocznego zapotrzeł	oowania na energię	końcową EK(kWh	(m²-rok)]**)					
Lista stref	Rodzaj nośnika energii lub energii	Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chłodzenie	Oświetlenie wbudowane**	Suma			
- Cześć usługowa	1	0,00	1390,93	0,00	0.00	1396,21			
Budynek referencyjny	Wartość (kWh/(m*rok))	0,00	1390,93	0,00	0,00	1401,66			
In Sklep	Udział (%)	0,00	99,23	0,00	0,00	100,00			
⊟ Žródla chłodu	Wskażnik rocznego zapotrzeł	owania na energię	końcową EK: 139),93 kWh/(m ^z -rok)					
09 Split 100%	Wskažnik rocznego zapotrzel	owania na nieodna	wialną energię pie	rwotną EP[kWh/(m	*-rok)]**)				
	Rodzaj nośnika energii lub energii	Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chlodzenie	Oświetlenie wbudowane**	Suma			
	Â	0,00	1390,93	0,00	0,00	1396,21			
	Wartość (kWhi(m* rok))	0,00	1129,17	0,00	0.00	1161,36			
	Udział [%]	0,00	97,23	0,00	0,00	100,00			
	Wskaźnik rocznego zapotrzeł	owania na nieodna	wialną energię pie	rwotną EP: 1158,12	kWh/(m³-rok)				
	Zalecenia dotyczące opłacaln	ej ekonomicznie po	prawy charaktery	styki energetyczne	budynku w zakres	ie			
	1) przegród budynku								
	15								
	2) systemów technicznych w	budynku							
Ogrzewanie i wentylacja Ciepła woda użytkowa	 innych uwag dotyczących bardziej szczegółowe inform dotycząca działań, jakie nale 	poprawy charakter acje dotyczące opła ży podjąć w celu wy	ystyki energetyczr icalności ekonomi pelnienia zaleceńj	ej budynku (w tym cznej zawartych w	wskazanie, gdzie n świadectwie załec	nożna uzyskać eń oraz informacja			
Chiodzenie Dane weiściowe	E								
									~
	Raport o blędach								
WYDRUKI	Lp. Typ	dd oie test ynweiddou	ana manifinus. Pra	k odprowadawcja knod	laoratu u olvaria latvi	Opis			^
	Przegroca sz	trine part tap ojektor	na na pravnálovio. Bra	e oopromedzerna konc	Andrea w objese ette			2 0	•

Okno trzeciej strony raportu Uwagi

MOŻLIWE ZMIANY W ZAKRESIE OSŁONY ZEWNĘTRZNEJ BUDYNKU - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE TECHNIKI INSTALACYJNEJ I ŹRÓDEŁ ENERGII - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE OŚWIETLENIA WBUDOWANEGO - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ W CZASIE EKSPLOATACJI - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ ZWIĄZANE Z KORZYSTANIEM Z CIEPŁEJ WODY UŻYTKOWEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej. INNE UWAGI OSOBY SPORZĄDZAJĄCEJ ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.3.1.4 Zakładka Budynek referencyjny

<u>д</u>	ArCADia-TERMO PRO 6.0 Licencja dia: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód) – 🗗 💌
Plik Edycja Ustawienia Pomoc	□ ≄ □ ★ ▼ / ▼ ?
CERTYFIKAT	Ciepła woda użytkowa - Świadectwo charakterystyki energetycznej 2014, WT 2014
□+×@础	Typ budyniu do obliczeń referencytych Budynek mieszkalny jednorodzinny
Certyfikat Craść mieszkalna	Powierzchnia o regulowanej temperaturze
Obliczenia Qw,nd	O A ₂ = <u>100.00</u> m ²
Budynek referencyjny Dródła ciepła	Powierzchnia użytkowa chłodzonego budynku
Fs Kolektory słoneczne 40%	• Arc=0 m ²
Kocioł gazowy 60%	Czastkowa max. wartość EP na ogrzewanie, wentytacje i przygotowanie c.w.u.
Obliczenia Qw.nd	O LEP and ALL AND ADDRESS
Dudynek reterencyjny D-T= Źródła ciepła	Carathene and and the added again
Kolektory 40%	0
Po Kocior gazowy eins	- c m ⁴ rsk
	Maksymaina wartose wisazinia EP
	Crae Look alvok
—	
Ogrzewanie i wentylacja	
Ciepła woda użytkowa	
Uniodzenie	
DANE WEJŚCIOWE	
OBLICZENIA CIEPLNE	
CERTYFIKAT	
C PODGLĄD PROJEKTU	Report a bledach
H WYDRUKI	La Typ 008 A
	1 Ostrzeżenie Przegroda 52-44 nie jest zaprojektowana prawidłowo. Brak odprowadzenia kondensatu w okresie letnin.
7 1914	

Okno Budynek referencyjny (wzór Budynek i Część budynku)

12.3.1.5 Okno źródła chłodu

4	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód)	- 6 ×
Plik Edycja Ustawienia Pomoc	□ ≄ □ ★ 〒 /> 〒 ?	
CERTYFIKAT	Chłodzenie - Świadectwo charakterystyki energetycznej 2014, WT 2014	
の の を し 、 、 に の の 、 、 た の の の 、 、 た の の の 、 、 、 の の の 、 の の 、 の 、 の の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の 、 の の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 の 、 の 、 の 、 の の 、 、 の 、 の 、 の 、 の 、 の 、 の 、 、 、 、 、 の 、 、 、 の の 、	Nazwa źróda chłodu Split	Informacje uzupelniające
Certyfikat Cześć mieszkalna	Procentowy udział źródła w grupie: 100,00 % O Obliczony udział wg Q _{C.me} Othicz	6
Budynek referencyjny	llość chłodu niezbędna na pokrycie potrzeb Qr	
E Sh Zridha abladu	chłodzenia budyniu (okału, strety):	Wanól efektowności
Zreść usługowa	Dortai näise " Ciente sielenese Vonanararii - Weniel Kamienny	Wc=0.80 Wacco=0.09 1CO2
Budynek referencyjny	The super sectors and a sector sector sector and sector se	GJ
L. Sklep	Tablice	ag Baza
Image: Second seco	Rodzaj systemu chłodzenia: Sprężarki spiralne typu scroll + czymnik R407C Baza	SEERre 3,70
		SEER = 3.70 Oblig:
	Serwyność rozdziału chłodu	Sprawność rozdziału
	Typ systemu rozdziału: Bezpośrednie zdecentralizowane Takince	
	Klimatizator monobiokowy ze skraniaczem	n _{c.s} = 1,00
	Rodzaj systemu rozdziaku chłodzonym powietrzem Bisza	
	Sprawność regulacji i wykorzystania chłodu	Sprawność regulacji
	Rodzaj instalacji: wyposażone w zawory regulacyjne dwudrogowe Tablice	0= 0.94
	Wypossženie: Regulacja ciegla Baza	1.2
	Sprawność akumulacji chłodu	Sprawność akumulacji
	Parametry zasobnika buforowego: System chłodzenia bez zbiornika buforowego	η _{C.8} =1,00
	Bradtenia pomorniste	Urradzenia nomornisze
	Roczne zapotrzebowanie energii elektrycznej	0 W 0 100 -
	koncowej do napędu urządzeń pomocniczych Legani, d * 0 * a Ublicz	We - O Wepon C.CO - GJ
	Rodzaj palwa: Odnawialne žródia energii - Energia sioneczna	W0 = 1,00 Gg Bara
		Sprawność całkowita
		η _{C.08} =3,48
Ogrzewanie i wentylacja		
Clepła woda użytkowa Chiedzenia		
chiodzenie		
DANE WEISCIOWE		
BE OBLICZENIA CIEPLNE		
LO PODGLĄD PROJEKTU	Rapot o bledach	
He WYDRUKI	[μ ₂ , Τγp Οpis	^
	1 Ootrzeżenie Przegroda 52-44 nie jest zaprojektowana prawiślowo. Brak odprowadzenia kondensatu w akresie letnim.	×
< [10/14] >		🖓 🖨 Zamknij

Okno certyfikat źródła chłodu

Baza - przycisk dorepu dostępu do bazy urzadzeń. Można też dodawać własne urządzenia.

NAZWA ŹRÓDŁA CHŁODU – pole do edycji przez użytkownika, wartość z tego pola pokazywana będzie na drzewku certyfikatu.

PROCENTOWY UDZIAŁ ŹRÓDŁA W GRUPIE – pole do edycji przez użytkownika, na podstawie wpisanej wartości zostanie pomniejszone $Q_{C,nd}$.

OBLICZONY UDZIAŁ W Qc,nd - zaznaczenie tej opcji pozwala na obliczenie procetowanego udziału wybranego źródła chłodu w budynku

Oblicznenia QCnd dla wybranego źródła 🛛 🗙								
Lp.	Miesiąc	Udział	ΣQH,nd [kWh/mc]	Udział %	ΣQH,nd% [kWh/mc]			
1	Styczeń	✓	0,00	100	0,00			
2	Luty	✓	0,00	100	0,00			
3	Marzec	✓	9,14	100	9,14			
4	Kwiecień		110,50	100	110,50			
5	Maj	~	319,48	100	319,48			
6	Czerwiec	✓	403,00	100	403,00			
7	Lipiec	✓	396,28	100	396,28			
8	Sierpień	~	353,86	100	353,86			
9	Wrzesień	~	117,82	100	117,82			
10	Październik	~	2,62	100	2,62			
11	Listopad	~	0,00	100	0,00			
12	Grudzień	~	0,00	100	0,00			
Razem			1712,70		1712,70			
Anuluj OK								

Obliczenia Qc,nd dla wybranego źródła chłodu

ILOŚĆ CHŁODU NIEZBĘDNA NA POKRYCIE POTRZEB CHŁODZENIA BUDYNKU (LOKALU, STREFY) Q_{c,nd} [kWh/rok] – pole do podglądu obliczonego zapotrzebowania wyliczonego z uwzględnieniem udziału procentowego.

INFORMACJA UZUPEŁNIAJĄCA – pole do wpisywania uwag przez użytkownika.

GRUPAWSPÓŁCZYNNIK EFEKTYWNOŚCI ENERGETYCZNEJ WYTWARZANIA CHŁODU

SYSTEM CHŁODZENIA- użytkownik ma do wyboru następującą listę, od której zależą pozostałe listy wyboru w oknie:

Lp.	Nazwa systemu chłodzenia
1	System bezpośredni
2	System pośredni

RODZAJ ŹRÓDŁA CHŁODU- lista wyboru uzależniona jest od wybranego wcześniej *SYSTEMU CHŁODZENIA*:

Nr	Lp.	Nazwa Rodzaju źródła chłodu
systemu		
chłodzenia		
1	1	Klimatyzator monoblokowy ze skraplaczem chłodzonym powietrzem
1	2	Klimatyzator monoblokowy ze skraplaczem chłodzonym wodą
1	3	Klimatyzator rozdzielny (split) ze skraplaczem chłodzonym powietrzem
1	4	Klimatyzator rozdzielny (split) ze skraplaczem chłodzonym wodą
1	5	Klimatyzator rozdzielny (duo-split) ze skraplaczem chłodzonym powietrzem
1	6	Klimatyzator rozdzielny (duo-split) ze skraplaczem chłodzonym wodą

1	7	System VRV
2	8	Sprężarkowa wytwornica wody lodowej – półhermetyczne sprężarki tłokowe, skraplacz
		chłodzony powietrzem
2	9	Sprężarkowa wytwornica wody lodowej – półhermetyczne sprężarki tłokowe, skraplacz
		chłodzony wodą
2	10	Sprężarkowa wytwornica wody lodowej – sprężarki spiralne, skraplacz chłodzony
		powietrzem
2	11	Sprężarkowa wytwornica wody lodowej – sprężarki spiralne, skraplacz chłodzony wodą
2	12	Sprężarkowa wytwornica wody lodowej – sprężarki śrubowe, skraplacz chłodzony
		powietrzem
2	13	Sprężarkowa wytwornica wody lodowej – sprężarki śrubowe, skraplacz chłodzony wodą
2	14	Sprężarkowa wytwornica wody lodowej – sprężarki przepływowe, skraplacz chłodzony
		wodą
2	15	Bromolitowa jednostopniowa wytwornica wody lodowej zasilana wodą o temperaturze
		95 ℃.
2	16	Bromolitowa jednostopniowa wytwornica wody lodowej zasilana parą wodną o
		nadciśnieniu 2,0 bara.

TYP INSTALACJI/NOŚNIKA - lista wyboru zależna od wybranego wcześniej *RODZAJ ŹRÓDŁA CHŁODU*, na podstawie wybranej w niej wartości ustawiamy wartość parametru *ESEER*:

Nr Rodzaju źródła chłodu	Lp.	Nazwa typu instalacji/nośnika	ESEER
1	1	Klimatyzacja komfortu	3,0-3,2
1	2	Klimatyzacja precyzyjna	3,4-3,6
2	3	Klimatyzacja komfortu	3,2-3,4
2	4	Klimatyzacja precyzyjna	3,6-3,8
3	5	Klimatyzacja komfortu	2,8-3,0
3	6	Klimatyzacja precyzyjna	3,2-3,4
4	7	Klimatyzacja komfortu	3,0-3,2
4	8	Klimatyzacja precyzyjna	3,4-3,6
5	9	-	3,0
6	10	-	3,2
7	11	-	3,3
8	12	Nośnik chłodu-woda	3,6-3,8
8	13	Nośnik chłodu-wody roztwór glikolu	3,4-3,6
8	14	Nośnik chłodu- wody roztwór glikolu z	5,1-5,4
		funkcją free cooling	
9	15	Nośnik chłodu-woda	3,8-4,0
9	16	Nośnik chłodu-wody roztwór glikolu	3,6-3,8
9	17	Nośnik chłodu- wody roztwór glikolu z	5,4-5,7
		funkcją free cooling	
10	18	Nośnik chłodu-woda	3,6-3,8
10	19	Nośnik chłodu-wody roztwór glikolu	3,4-3,6
10	20	Nośnik chłodu- wody roztwór glikolu z	5,1-5,4
		funkcją free cooling	
11	21	Nośnik chłodu-woda	3,8-4,0
11	22	Nośnik chłodu-wody roztwór glikolu	3,6-3,8
11	23	Nośnik chłodu- wody roztwór glikolu z	5,4-5,7
		funkcją free cooling	
12	24	Nośnik chłodu-woda	3,6-3,8
12	25	Nośnik chłodu-wody roztwór glikolu	3,4-3,6
12	26	Nośnik chłodu- wody roztwór glikolu z	5,1-5,4
		funkcją free cooling	
13	27	Nośnik chłodu-woda	3,8-4,0
13	28	Nośnik chłodu-wody roztwór glikolu	3,6-3,8
13	29	Nośnik chłodu- wody roztwór glikolu z	5,4-5,7
		funkcją free cooling	
14	30	Nośnik chłodu-woda	4,2-4,4

14	31	Nośnik chłodu-wody roztwór glikolu	4,0-4,2
14	32	Nośnik chłodu- wody roztwór glikolu z funkcją free cooling	6,0-6,3
15	33	-	0,7
16	34	-	0,8

GRUPA SPRAWNOŚĆ ROZDZIAŁU POWIETRZA

TYP SYSTEMU ROZDZIAŁU- lista wyboru uzależniona od wybranego wcześniej SYSTEMU CHŁODZENIA:

Nr systemu	Lp.	Nazwa typu systemu rozdziału	
chłodzenia			
1	1	Bezpośrednie -zdecentralizowane	
1	2	Bezpośrednie -scentralizowane	
2	3	Pośrednie	

RODZAJ SYSTEMU ROZDZIAŁU- lista wyboru uzależniona od wybranego wcześniej *TYP SYSTEMU ROZDZIAŁU*-na jej podstawie wstawiana jest współczynnik $\eta_{C,d}$:

Lp.	Nazwa rodzaju systemu rozdziału	ηc,d
1	Klimatyzator monoblokowy ze skraplaczem chłodzonym powietrzem	1,0
2	Klimatyzator monoblokowy ze skraplaczem chłodzonym wodą	1,0
3	Klimatyzator rozdzielny (split) ze skraplaczem chłodzonym powietrzem	1,0
4	Klimatyzator rozdzielny (split) ze skraplaczem chłodzonym wodą	1,0
5	Klimatyzator rozdzielny (duo-split) ze skraplaczem chłodzonym powietrzem	0,98
6	Klimatyzator rozdzielny (duo-split) ze skraplaczem chłodzonym wodą	0,98
7	System VRV	0,94-0,98
8	Jednoprzewodowa instalacja powietrzna	0,9
9	Instalacja wody lodowej 5/12 °C układ prosty bez podziału na obiegi	0,92
10	Instalacja wody lodowej 5/12 °C układ z podziałem na obiegi pierwotny i wtórny	0,96
11	Instalacja wody lodowej 15/18 °C układ zasilający belki chłodzące obiegi	0,98

GRUPA SPRAWNOŚĆ REGULACJI WYTWARZANIA CHŁODU

RODZAJ INSTALACJI– lista wyboru zawierająca

wartości z poniższej tabeli:

Lp.	Nazwa rodzaju instalacji
1	Instalacja wody lodowej z termostatycznymi zaworami przelotowymi przy odbiornikach
2	Instalacja wody lodowej z zaworami trójdrogowymi przy odbiornikach

REGULACJA- lista wyboru zawierająca wartości z poniższej tabeli, uzależniona od wybranej wartości w liście**RODZAJ INSTALACJI**, na podstawie wybranej w niej wartości ustawiamy wartość parametru**n**_{C,e}:

Nr rodzaju instalacji	Lp.	Nazwa regulacji	η _{C,e}
1	1	Regulacja skokowa	0,92
1	2	Regulacja ciągła	0,94
2	3	Regulacja skokowa	0,95
2	4	Regulacja ciągła	0,97

GRUPA SPRAWNOŚĆ AKUMULACJI CIEPŁA:

PARAMETRY ZASOBNIKA REGULACYJNEGO- na podstawiewyświetlanej lista w tym Combie powinna, być wstawiany współczynnik **n**Cs⁻

Uyc ws	tawiany wspołezynink ję.s.
Lp.	Nazwa parametry zasobnika buforowego

η_{C,s}

1	Bufor w systemie chłodniczym o parametrach 6/12 °C na zewnątrz osłony termicznej budynku	0,93-0,97
2	Bufor w systemie chłodniczym o parametrach 6/12 °C wewnątrz osłony termicznej budynku	0,91-0,95
3	Bufor w systemie chłodniczym o parametrach 15/18 °C na zewnątrz osłony termicznej budynku	0,95-0,99
4	Bufor w systemie chłodniczym o parametrach 15/18 °C wewnątrz osłony termicznej budynku	0,93-0,97
5	Bez zasobnika buforowego	1,00

ROCZNE ZAPOTRZEBOWANIE ENERGII ELEKTRYCZNEJ KOŃCOWEJ DO NAPĘDU URZĄDZEŃ POMOCNICZYCH SYSTEMU CHŁODZENIA E el,pom,C- wartość podawana przez użytkownika lub wyliczana w oknie aktywowanym przyciskiem

Roczne zapotrzebowanie energii elektrycznej końcowej						
Ro	zaj obliczeń: Wg Rozporządzenia MI					
Lp.	Rodzaj urządzenia pomocniczego Urządzenia dla połużeł gel,+W Ilość Uwzględnij tel Af Eel,pom,H [%] [W/m²] [szt.] sezon grzewczy [h/rok]	+				
1	Naped pomocniczy pompy ciepła glikol/woda w 🔽 0.6d 100,00 0,45 1 🗹 240 36,00 3,89	×				
		ጥ				
		D				
The sea KWh						
ΣE _{#pom,H} =3,89 rok Anuluj OK						

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej wg rozporządzenia MI

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,

RODZAJ URZĄDZENIA POMOCNICZEGO- użytkownik wybiera z listy jedną z pozycji,

 $q_{el,C}$ [W/m2] – wartość wpisywana przez użytkownika lub wybierana z tabeli aktywowanej przyciskiem 🛄

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

ILOŚĆ [szt.] – wartość podawana przez użytkownika,

*t*_{el} [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana domyślnie na podstawie wybranego *RODZAJU URZĄDZENIA POMOCNICZEGO*,

 $A_f[\mathbf{m}^2]$ – powierzchnia pomieszczeń o regulowanej temperaturze,

 $E_{el,pom,C}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,C} = q_{el,C} \cdot ilość \cdot A_f \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,C}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,C}$: $\sum E_{el,pom,C} = \sum (E_{el,pom,C})$

Lp.	Rodzaj urządzenia pomocniczego i instalacji	qel[W/m2]	tel[h/rok]
1	Pompy obiegowe ogrzewania w budynku do A=250 m ² z grzejnikami	0,2-0,7	5000-
	członowymi lub płytowymi, granica ogrzewania 12 °C		6000

2	Pompy obiegowe ogrzewania w budynku ponad A=250 m ² z grzejnikami	0,1-0,4	4000-
	członowymi lub płytowymi, granica ogrzewania 10 °C		5000
3	Pompy obiegowe ogrzewania w budynku do A=250 m2 ² z grzejnikami	0,5-1,2	6000-
	podłogowymi, granica ogrzewania 15 °C		7000
4	Pompy cyrkulacyjne ciepłej wody w budynku do A=250 m ² , praca ciągła	0,1-0,4	8760
5	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m ² , praca	0,05-0,1	7300
	przerywana do 4 godz./dobę		
6	Pompy cyrkulacyjne ciepłej wody w budynku ponad A=250 m ² , praca	0,05-0,1	5840
	przerywana do 8 godz./dobę		
7	Pompy ładujące zasobnik ciepłej wody w budynku do A=250 m ²	0,3-0,6	200-300
8	Pompy ładujące zasobnik ciepłej wody w budynku ponad A=250 m ²	0,1-0,2	300-700
9	Pompy ładujące bufor w układzie ogrzewania w budynku do A=250 m ²	0,2-0,5	1500
10	Pompy ładujące bufor w układzie ogrzewania w budynku ponad A=250 m ²	0,05-0,1	1500
11	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku do A=250 m2	0,8-1,7	200-350
12	Napęd pomocniczy i regulacja kotła do podgrzewu ciepłej w budynku ponad A=250 m2	0,1-0,6	300-450
13	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku do A=250 m2	0,3-0,6	1400- 3000
14	Napęd pomocniczy i regulacja kotła do ogrzewania w budynku ponad A=250 m2	0,05-0,2	2500- 4500
15	Napęd pomocniczy pompy ciepła woda/woda w układzie przygotowania ciepłej wody	1,0-1,6	400
16	Napęd pomocniczy pompy ciepła glikol/woda w układzie przygotowania ciepłej wody	0,6-1,0	400
17	Napęd pomocniczy pompy ciepła woda/woda w układzie ogrzewania	1,0-1,6	1600
18	Napęd pomocniczy pompy ciepła glikol/woda w układzie ogrzewania	0,6-1,0	1600
19	Regulacja węzła cieplnego – ogrzewanie i ciepła woda	0,05-0,1	8760
20	Pompy i regulacja instalacji solarnej w budynkach do A=500 m ²	0,2-0,4	1000-
			1750
21	Pompy i regulacja instalacji solarnej w budynkach ponad A=500 m ²	0,1-0,3	1000-
			1750
22	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza do 0,6	0,2-0,6	6000-
	1/h		8760
23	Wentylatory w centrali nawiewno-wywiewnej, wymiana powietrza ponad 0,6	0,6-1,6	6000-
	1/h		8760
24	Wentylatory w centrali wywiewnej, wymiana powietrza do 0,6 1/h	0,1-0,5	6000-
			8760
25	Wentylatory w centrali wywiewnej, wymiana powietrza ponad 0,6 1/h	0,5-1,1	6000-
			8760
26	Wentylatory miejscowego układu wentylacyjnego	1,1-3,0	6000-
1			8760

Okno certyfikatu obliczenie rocznego zapotrzebowania energii elektrycznej końcowej Ręczny

Lp. – kolejna liczba porządkowa dla dodawanego wiersza,
Podręcznik użytkownika dla programu ArCADia-TERMO

Certyfikat

RODZAJ URZĄDZENIA POMOCNICZEGO- użytkownik wpisuje własną wartość,

UWZGLĘDNIĆ W NAWILŻANIU – zaznaczenia tego pola powoduje, że dane urządzenie pomocnicze będzie uwzględnione w raporcie rtf w kolumnie wentylacja mechaniczna i nawilżanie.

UDZIAŁ [%] – pole do wpisywania udziału procentowego tego urządzenia w całej pracy instalacji, program domyślnie wstawia wartość taką jaka jest wybrana w udziale procentowym źródła ciepła grupy

MOC [kW] - wartość mocy elektrycznej urządzenia pomocniczego podawana przez użytkownika,

tel [h/rok] – czas działania urządzenia pomocniczego w ciągu roku, wartość wstawiana przez użytkownika lub

wstawiana z podpowiedzi ••••.

 $E_{el,pom,C}$ [kWh/rok] – jednostkowe roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji, wartość wpisywana przez użytkownika domyślnie wyliczana z wzoru: $E_{el,pom,C} = Moc \cdot ilość \cdot t_{el} \cdot 10^{-3}$

 $\sum E_{el,pom,C}$ – roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody. Wartość wyliczana z sumy kolumny $E_{el,pom,C}$: $\sum E_{el,pom,C} = \sum (E_{el,pom,C})$

Wyliczenia końcowe dla tego okna:

 $\eta_{C,tot}$ – średnia sezonowa sprawność całkowita systemu chłodzenia budynku ocenianego , wartość wyliczana z wzoru: $\eta_{C,tot} = ESEER \cdot \eta_{C,s} \cdot \eta_{C,d} \cdot \eta_{C,e}$

Q_{P,C} [**kWh/rok**] – roczne zapotrzebowanie energii pierwotnej przez system do podgrzewu ciepłej wody, wartość wyliczana z wzoru:

$$\mathbf{Q}_{\mathbf{P},\mathbf{C}} = \mathbf{3} \cdot \frac{Q_{C,nd}}{\eta_{C,tot}} + \mathbf{3} \cdot E_{el,pom,C}$$

 $Q_{K,C}$ [kWh/rok] – roczne zapotrzebowanie na energie końcową na potrzeby chłodnicze budynku ocenianego, wartość wyliczana z wzoru:

 $\mathbf{Q}_{\mathrm{K,C}} = \frac{Q_{C,nd}}{\eta_{C,tot}}$

12.4 ETAP OŚWIETLENIE

A	ArCADia-TERMO PRO 6.	0 Licencja dla: Test - ArCADi	-TERMO PRO 6 [L01] - 16. Dobor gra	tejników	- 5 ×
Plik Edycja Ustawienia Pomoc	H \$ 10 \$ \$ \$ \$? ?				
	Oświetlenie - Świadectwo charakteryst	yki energetycznej 2014, WT 2			
D+×DE	S Bodzai budwiku: Biarowy				^
B- B. Certyfikat	The resets				
 Budynek referencying 	ryp raporta. Budynes				
Covec tródio swiatta Covec tródio swiatta Covec tródio swiatta Covec tródio swiatta Covec tródio swiatta	Nazwa: Certyfikat		-		
	SWADECTWO CHARAKTERYSTYKI ENERG	ETYCZNEJ BUDYNKU		1	
	Numer świadectwa	1			
	Oceniany budynek				
	Rodzaj budynku	Bisrowy	Contraction of the local division of the loc	A DECEMBER OF	
	Przeznaczenie budynku :	Użyteczności publicznej	Contraction of the local division of the loc		
	Adres budynku	Nowy Adamów ul.			
	Rok oddania do użytkowania budynku i	2010			
	Metoda określenia charakterystyki + energetycznej	metoda oparta na faktycznie zuż	tej ilošci energi	1	
	Powierzchnie pomieszczeń o regulowanej t temperaturze powietrze (powierzchnie ogrzewane lub chłodzone) Af (m ⁴)	¹ m C1,441	L' III	and the second second	
	Powierzchnia użytkowa (m ^p)	542,85 m ²			
	Wažne do (rrrr-mm-dd) 6	19 paździemika 2020 🔻			
	Stacja meteorologiczna, według której danych obliczana jest charakterystyka energetyczna	N Lödž - Lablinek			
	Ocena charakterystyki energetycznej bu	tyriku			
	Wakaźnik charakterystyki energetycznej	Oceniany sudynex Wymagania dia nowego budynku przepisów techniczno-kudowiany		and a	
	Wakaźnik rocznego zapotrzebowania na energię użytkową	EU = 432,00 (m ³⁺⁽³⁴⁾)			
Ogrzewanie i wentylacja	Wsłaźnik rocznego zapotrzebowania na energię końcową	$EK = 11,33 \frac{kHb}{(m^2 rejk)}$			
Ciepła woda użytkowa Otwietlenie	Wskaźnik rocznego zapotrzebowania na ⁶ nieodnawialną energię pierwotną	$EP = 4.06 \frac{W0n}{(m^2 + nR)}$	$EP = 228,90 \frac{k00}{(m^2 \exp k)}$		
DANE WEISCIDWE	Jednostka wielkošci emisji CO2	$E_{CD_2} = 345,00 \frac{100_0}{(m^2 rmk)}$			
CORLECZENIA CIEPUNE	Udział odnawialnych źródel energi w rocznym zapotrzebowaniu na energię	U ₀₂₂ = 145,00 %			
	Abnoowa				
ILL PODSCAD PROJECTO	Report o bledach				
- WYDRUX	Lp. Typ		Op		^
	1 Ostranterial Parameter Współczynski	przenikania UC" w przegrodzie "PG-now	*, powinien anapdować się w przedziale od 0,00 do	0,30	

Okno pierwszej strony raportu Oświetlenie

Okno to wyświetlane jest tylko w przypadku wybrania przeznaczenia budynku:

Służby zdrowia, Szkolno-oświatowe, Użyteczności publicznej, Usługowe, Biurowe Drzewko po lewej stronie służy do grupowania pomieszczeń w grupy w przypadku, kiedy nie ma pomieszczeń a są strefy (włączone obliczenia zapotrzebowania a w projekcie nie ma pomieszczeń) to są one wyświetlane za pomieszczenia.

TYP RAPORTU – pole do wybierania dla pojedynczej grupy wzoru świadectwa. Użytkownik ma do wyboru jeden z czterech wariantów Budynek, Budynek mieszkalny, Lokal mieszkalny, Część budynku stanowiąca samodzielną całość techniczno-użytkową. Należy pamiętać również o tym, że do każdego wzoru świadectwa dopięty jest odpowiedni sposób obliczeń budynku referencyjnego oraz czy grupa zostanie uwzględniona w obliczeniach oświetlenia wbudowanego (oświetlenie wbudowane wyliczane jest w przypadku wybrania wzoru świadectwa budynku lub części budynku stanowiącego samodzielną całość techniczno-użytkową).

NAZWA – pole do wpisywania nazwy grupy, która pojawi się w drzewku świadectwa.

12.4.1.1 Drzewko struktury świadectwa charakterystyki energetycznej-oświetlenie wbudowane

Drzewko to służy do zarządzania strukturą obliczeń świadectwa użytkownik może stworzyć dowolną ilość grup dla których program policzy oddzielnie świadectwa, dodatkowo na podstawie wstawionych grup wyliczy zbiorcze świadectwo EPm (z wszystkich wstawionych grup i policzonych świadectw wylicza średnią ważoną wartość dla poszczególnych energii użytkowych, końcowych, pierwotnych gdzie waga jest powierzchnia A_f). Tworzenie grup ma uzasadnienie w kilku przypadkach:

 gdy mamy doczynienia z budynkiem w którym jest więcej niż jedna funkcja użytkowa np. jest część mieszkalna i lokal usługowy. Wówczas w ciepłej wodzie inne jest V_{cw} dla części mieszkalnej i usługowej (podobnie jest z czasem użytkowania, przerwami urlopowymi i wodomierzami na ciepłej wodzie),
 gdy mamy doczynienia z budynkiem mieszkalnym, w którym każdy lokal ma własne źródło ciepła (wówczas nie wykonujemy świadectwa dla całego budynku tylko dla poszczególnych lokali),

Legenda przycisków drzewka:

-tworzenie nowej grupy/funkcji,

-dodawania nowego typu źródła do grupy/funkcji,

-usuwanie typu źródła z grupy/funkcji

х

-wczytywanie gotowego szablonu drzewka struktury świadectwa

∞

-zapisywanie szablonu drzewka struktury świadectwa

-przełączanie widoku drzewka z struktury świadectwa na podgląd wzorów

Legenda oznaczeń na drzewku:

-przejście do okna zbiorczego świadectwa charakterystyki energetycznej. Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi),

-przejście do okna grupy/funkcji widok ikonki uzależniony jest od wybranego wariantu wzoru świadectwa (budynek, budynek mieszkalny, lokal mieszkalny, część budynku ...). Użytkownik w dostępnych w tym oknie zakładach definiuje dane jakie mają się pojawić na wygenerowanym świadectwie (charakterystyka techniczno-użytkowa, Opis instalacji, Uwagi), a także definiuje roczne zapotrzebowanie na ciepła wodę użytkową. Dodatkowo wybiera jaki wzór świadectwa ma być wygenerowany dla tej grupy

1

- brak obliczeń źródeł oświetlenia

 przejście do okna parametrów źródła ciepła, w którym wybieramy współczynnik i energię pomocniczą dla źródeł,

12.4.1.2 Zakładka Charakterystyka techniczno-użytkowa

Podręcznik użytkownika dla programu ArCADia–TERMO

Certyfikat

A	ArCADia-TERMO PRO 6	.0 Licencja dla: Test	- ArCADia-TERMO PRO 6 [L01] - 16.	Dobór g	rzejników					- 8 ×
Plik Edycja Ustawienia Pomoc	≝ ‡ Ra ♠ ₹ /> ₹ ?									
CERTYFIKAT	Oświetlenie - Świadectwo charakterys	tyki energetycznej 2	2014, WT 2014							1
Image: the second se	+				•					^
i∼= ∭ Budynek referencyjny ⊖-i ♥ Źródła światła ⊖- ♥ Nowe źródło światła	ŚWIADECTWO CHARAKTERYSTYKI ENERG	GETYCZNEJ BUDYNKU			2					
🛄 Strefa O1	Numer świadectwa	1								
	Podstawowe parametry techniczno-u	żytkowe budynku								
	Liczba kondygnacji budynku	3								
	Kubatura budynku [m²]	490,86 m ³								
	Kubatura budynku o regulowanej temperaturze powietrza [m²]	490,86 m ³								
	Podział powierzchni użytkowej budynku 🛛 🗈									
	Temperatury wewnetrane w budynku w E									
	Rodzaj konstrukcji budynku	PBU-59								
	Brannadu budunku	Nazwa przegrody	Opis przegrody	Współczyn ciepła Uc lu	nik przenikania ib U [W/(m²·K)]					
	Pizegrouy bodynka			Uzyskany	Wymagany ¹²⁾					
				0,00	0,00					
		Elementy składowe systemu	Opis		Šrednia sezonowa sprawność					
		Wytwarzanie ciepła			0,85					
	System ogrzewczy	Przesył ciepła								
		Akumulacja ciepła	Zbiornik buforowy w systemie ogrzewczym o p 70/55°C w przestrzeni ogrzewanej	parametrach	0,93					
		Regulacja i wykorzystanie ciepła	**		-					
		Elementy składowe systemu	Opis		Sprawność					
	System przygotowania ciepłej wody	Wytwarzanie ciepła			0,83					
Ogrzewanie i wentylacja Ciepła woda użytkowa	użytkowej	Przesył ciepła	Systemy przygotowania ciepiej wody uzytkowe budynkach jednorodzinnych	ŋ w	0,60					
Oświetlenie		Akumulacja ciepła	Zasobnik ciepiej wody uzytkowej wyprodukowa r.	any po 2005	0,83					
DANE WEJSCIOWE OBLICZENIA CIEPLNE		systemu	Opis		Sprawność					
	System chind zenia	Wytwarzanie chłodu Przeswi chłodu	-		-					
	System cinouzenia	Akumulacia chłodu								~
LC2 PODGLĄD PROJEKTU	Raport o błędach									
WYDRUKI	Цр. Тур				Opis					
	Odśwież listę błędów!									
< [8/11] >		B E			Ε	E.	િ	, là	8	Zamknij

Okno drugiej strony raportu Charakterystyka techniczno-użytkowa

RODZAJ BUDYNKU – pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej typu budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ADRES - pole do edycji przez użytkownika, program domyślnie wstawia wartość z pól Kod pocztowy, Miejscowość, Adres, Nr (okno Dane projektu/Dane budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CZĘŚĆ/CAŁOŚĆ BUDYNKU – pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK ZAKOŃCZENIA BUDOWY/ODDANIA DO UŻYTKOWANIA - pole do edycji przez użytkownika, program domyślnie przenosi wartość z wybranego wcześniej Roku budowy (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

ROK BUDOWY INSTALACJI- pole do wyboru przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CEL WYKONYWANIA ŚWIADECTWA - pole do edycji przez użytkownika, z dodatkowym przyciskiem info, w którym podane są przypadki opisane w rozporządzeniu. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA LOKALI MIESZKALNYCH - pole do wyboru przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZEZNACZENIE BUDYNKU - pole do edycji przez użytkownika, program domyślnie przenosi nazwę z wybranego wcześniej Przeznaczenia budynku (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA KONDYGNACJI - pole do edycji przez użytkownika, program domyślnie przenosi wartość z pola Liczba kondygnacji (okno Dane o budynku). Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

TEMPERATURA EKSPLOTACYJNA - pole do edycji przez użytkownika, należ w nie wpisać wewnętrzną temperaturę dla zimy i lata. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE – pole do edycji przez użytkownika, program domyślnie sumuje z wszystkich stref należących do tej grupy powierzchnie Af.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

POWIERZCHNIA UŻYTKOWA - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PODZIAŁ POWIERZCHNI - pole do edycji przez użytkownika, należy wpisać albo udział procentowy powierzchni użytkowych do nieużytkowych albo podać wartości tych powierzchni. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

LICZBA UŻYTKOWNIKÓW - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

KUBATURA - pole do edycji przez użytkownika, program domyślnie sumuje kubaturę wszystkich stref należących do danej grupy. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

RODZAJ KONSTRUKCJI - pole do edycji przez użytkownika, program domyślnie przenosi nazwę wybraną w polu Technologia wznoszenia (okno Dane o budynku).Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

틡↓

-przycisk służy do pobrania opisów typów instalacji wprowadzonych w poprzednich etapach

OSŁONA BUDYNKU - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej izolacji przegród. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OGRZEWANIE - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu ogrzewania. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

WENTYLACJA - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej wentylacji w budynku. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

CHŁODZENIE - pole do edycji przez użytkownika, należy w nim wpisywać opis zastosowanej instalacji chłodniczej.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

PRZYGOTOWANIE CIEPŁEJ WODY - pole do edycji przez użytkownika, należy w nim wpisywać opis systemu przygotowania ciepłej wody. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

OŚWIETLENIE WBUDOWANE - pole do edycji przez użytkownika, należy w nim wpisywać opis instalacji oświetlenia. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.4.1.3 Zakładka Uwagi

A	ArCADia-TERMO	PRO 6.0 Licencja	a dla: Test - ArC/	ADia-TERMO PR	D 6 [L01] - 16. D	obór grzejników		- 0 ×
Plik Edycja Ustawienia Pomoc	日 & 四 ヘ 〒 /> 〒 ?							
CERTYFIKAT	Oświetlenie - Świadectwo char	akterystyki energ	etycznej 2014, V	/T 2014				
다+×@問 3	Udział (%)	<u>_1</u>		<u></u>		. <u>.</u>		^
- E Certyfikat	Wskaźnik rocznego zapotrzel	bowania na energię	użytkowną EU: k	Whi(m*-rok)				
Domek jednorodzinny Budanek referenciainy	Wskažnik rocznego zapotrzel	bowania na energię	końcową EK[kWh/	[m²-rok)]**				
Žródla światła Šove źródło światła	Rodzaj nośnika energii lub energii	Ogrzewanie i wentylacja	Ciepla woda użytkowa	Chłodzenie	Oświetlenie wbudowane ¹⁹	Suma		
Strefa O1	4	A	11,93	0,00		AL AL		
	Wartość [kWh/(m*-rok)]	1	11,33	0,00		. <u>A</u>		
	Udział (%)	1		. <u>A</u>		<u>A</u>		
	Wskaźnik rocznego zapotrzel	bowania na energię	końcową EK: 11,33	kWh/(m²-rok)				
	Wskaźnik rocznego zapotrzel	bowania na nieodna	wialną energię pier	wotną EP[kWh/(m*	rok]]**		1	
	Rodzaj nośnika energii lub energii	Ogrzewanie i wentylacja	Ciepła woda użytkowa	Chlodzenie	Oświetlenie wbudowane ^{a)}	Suma		
	6	<u>A</u>	11,93	0,00	4	1 A		
	Wartość [kWh/(m*rok)]	Â	4,06	0,00	<u></u>	<u>A</u>		
	Udział (%)	1	4			<u>A</u>	1	
	Wskaźnik rocznego zapotrzel	bowania na nieodna	wialną energię pier	wotną EP: 4,06 kW	hi(m*-rok)			
							1	
	Zalecenia detvozace opiacale	el ekonomicznie no	prawy charakterys	tyki enernetycznej	hudvaku w zakrosi	٥	1	
	1) accord budents	ioj enonemente po	and a second s	die energederied	auguna ir canroon	•		
	m							
	6							
-								
	2) systemów technicznych w	budynku						
	E							
Ogrzewanie i wentylacja	 3) innych uwag dotyczących bardziej szczegółowe inform 	poprawy charaktery acie dotyczace opła	rstyki energetyczni calności ekonomic	ej budynku (w tym v znej zawartych w s	vskazanie, gdzie m wiadectwie zalece	ožna užyskač ni oraz informacia		
Ciepła woda użytkowa	dotycząca działań, jakie nale	ży podjąć w celu wy	pelnienia zaleceń)					
Oświetlenie								
DANE WEISCIOWE								
OBLICZENIA CIEPLNE								
L CERTYFIKAT								
C PODGLAD PROJEKTU	Prest a bladach							~
	In The					Onin		-
	1 Ostrzeżenie Parametr "Ws	półczynnik przenikania i	Uc" w przegrodzie "PG	nowa", powinien znais	lować sie w przedziałe	od 0.00 do 0.30!		<u> </u>
< (8/11) >		R						Zamknij

Okno trzeciej strony raportu Uwagi

MOŻLIWE ZMIANY W ZAKRESIE OSŁONY ZEWNĘTRZNEJ BUDYNKU - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE TECHNIKI INSTALACYJNEJ I ŹRÓDEŁ ENERGII - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY W ZAKRESIE OŚWIETLENIA WBUDOWANEGO - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ W CZASIE EKSPLOATACJI - pole do edycji przez użytkownika.Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

MOŻLIWE ZMIANY OGRANICZAJĄCE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ ZWIĄZANE Z KORZYSTANIEM Z CIEPŁEJ WODY UŻYTKOWEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

INNE UWAGI OSOBY ŠPORZĄDZAJĄCEJ ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ - pole do edycji przez użytkownika. Wartość ta wyświetlana jest w raporcie rtf Świadectwa charakterystyki energetycznej.

12.4.1.4 Zakładka Budynek referencyjny

Typ budynku do obliczeń referencyjnych Bu Powierzchnia o regulowanej temperaturze Ar = 250,00 m ²	udynek mieszkalny wielorodzinny
Powierzchnia użytkowa chłodzonego budyn A _{FC} = <u>200,00</u> m ²	ku
Czas użytkowania oświetlenia i t _o = 2500,00 <u>h</u> rok	
Cząstkowa max. wartość EP na ogrzewanie, ΔΕΡ _{H+W} = 105,00 <u>kWh</u> m ^{2*} rok	wentylację i przygotowanie c.w.u.
Cząstkowa max. wartość EP na chłodzenie ▲EP _c = 8,00 <u>kWh</u> m ^{2*} rok	
Cząstkowa max. wartość EP na oświetlenie $\Delta EP_L = 0 \frac{kWh}{m^{2*}rok}$	
Maksymalna wartość wskaźnika EP i EP _{max} = 113,00 <u>kWh</u> m ² *rok	

Zakładka Budynek referencyjny (wzór budynek i część budynku)

12.4.1.5 Okno źródła oświetlenia wbudowanego

A.	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 16. Dobór grzejników	- 8 ×
Plik Edycja Ustawienia Pomoc		
CERTYFIKAT		
C+×回帰 \$	Nazws grupy: Nowe źródło światła Wybór sposobu obliczeń: Na podstawie natężenia i skuteczności oświetlenia	
Ecryfikat Certyfikat Comek jednorodzinny Domek referencyjny Domek referencyjny Domek referencyjny Domek indite initiate	Vlyhazzanie Biodząpiśnie Skipięczowa wytewrzanie energii w bułgetku - Owj Riodząpiśnie opatowy	Sprawność wytwarzania $W_{e} = 1,10$ $W_{e \perp CO_{2}} = A \frac{1 CO_{2}}{G_{3}}$ $W_{0} = A \frac{TJ}{Gg}$ Bsza
Strefa O1	Wytkowanie okwietlenia Rodzą judysku: Biara Tabice	Czas użytkowania oświetlenia t _o = 2250,00 h t _n = 250,00 h
	Vippivi zvivatna oziennego Rodzaj regularji: Ręczna Tablice	F _D =1,00
	Wpływ nieobecności pracowników w miejscu pracy Rodzą mojulscj: Ręczny łącznik wiączenie wysiączenie Tabice	Wsp. wpływu nieobecności pracowników F _O =1,00
	Wipływ odkolienia natęlania okrówtenia ∭ Bragulacji powiazka do úrzymania natęlenia okrówtetnia na pozionie wymaganym Ø Wipłożzymik wszgłędniący dorzienie natężenia okrówtetnia na pozionie Wir4,00	Wsp. obniženia natężenia oświetlenia $F_C = \frac{(1+MF)}{2} = 0,90$
	Parametry obliczeń jednostkowej mocy opraw oświetleniowych Bisplustacyje natężenie oświetlenia w ponieszczeniu: E _m = 0 tx Tabloc	Suma mocy opraw oświetleniowych P. = 6.3 A ^{Em} = 0.W
	Skuteczność świetina: n ₂ = 60,00 💬 Tablice	· π · · · · η ₂ · · ·
•	Physikerschink us/phone grupy pomieszczań A ₁ = 19633 m ²	8
Ogrzewanie i wentylacja Ciepła woda użytkowa Oświetlenie	Energia pasolytnicza ryczatłowa h la ladowanie baterii opraw awanjitych la podtrzymanie systemów kontroli	
DANE WEIŚCIOWE	Roczne jednostkowe zapotrzebowanie na energię do oświetlenia pomieszczenia/Grupy	
BLICZENIA CIEPLNE	$W_{L,1} = \frac{P_W F_C}{1000} [IF_0 F_0] + (F_0 F_0)] = 0 \frac{kWh}{rok}$ $W_{P,1} = 0 \frac{kWh}{rok}$	
L CERTYFIKAT	$LENI = \frac{W_{1,2} + W_{2,2}}{2} = 0 \frac{4\pi}{2} rap$	
C PODGLAD PROJEKTU		
wydruki	negros expension Ign Trip 1 Ostrzetene Parametr "Vispoliczymik przepikania UC" w przegradzie "PG-rowe", powinien zwajdować se u przedade od 0,00 do 0,001	^ ~
< [8/11] >		😑 Zamknij

Okno certyfikat źródła oświetlenia na podstawie natężenia i skuteczności oswietlenia

<u>A</u>	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 16. Dobór grzejników	- 8 ×
Plik Edycja Ustawienia Pomoc		
CERTYFIKAT	Oświetlenie - Świadectwo charakterystyki energetycznej 2014, WT 2014	
D+×回品 🛇	Nazwa grupy: Nowe źródło światła Wybór sposobu obliczeń: Na podstawie mocy opraw	
B E Certyfikat	Wytwarzanie	Sprawność wytwarzania
Domek jednorodzinny Budynek referencyjny	Miejscowe wytwarzanie energii w budynku - Olej Rodzaj paliwa onakowe	w _{el} =1,10 W _{el_CO₂} =61,60 <u>tCO₂</u> GJ
□	· operating	Wo = 46,40 TJ Eaza
Nowe źródło światła	Użytkowanie oświetlenia	Czas użytkowania oświetlenia
	Rodzaj budynku: Biura Tablice	t _D = 2250,00 h t _N = 250,00 h
	Wpływ światla dziennego	Wsp. wpływu światła dziennego
	Rodzaj regulacji: Ręczna Tablice	F _D = 1,00
	Wpływ nieobecności pracowników w miejscu pracy	Wsp. wpływu nieobecności
	Rodzaj regulacji: Ręczny łącznik włączenie/wyłączenie Tablice	F ₀ =1,00
	Wpływ obniżenia natężenia oświetlenia	Wsp. obniżenia natężenia
	Regulacja prowadząca do utrzymania natężenia oświetlenia na poziomie wymaganym	E _(1+MF) _0.00
	Współczynnik uwzględniający obniżenie natężenia oświetlenia: MF=0,80	· c = _2 = 0,50
	La, Nazwa pomieszczenia Typ portawy Moc Bołć Pnj +	Suma mocy opraw oświetleniowych
	1 (dalka schodowa 200 11 20.00 v	$P_N = \sum P_n = 70,00 \text{ W}$
		Powierzchnia użytkowa grupy pomieszczeń
	le des	A _L = 0 m ²
		Informacje uzupełniające
		E
Ogrzewanie i wentylacja		
Ciepła woda użytkowa Odwiatlania	Energia pasożytnicza ryczałłowa	
	As asdowanie osterni opraw awaryinych As podržymanie systemow kontroli	
DANE WEJŚCIOWE	NOLTHE PERIODS NOW 2 ADDITIZED WATER IN A CONSTRUCTING DOTIES SCILENTIAGO UP	
E OBLICZENIA CIEPLNE	W _{L1} =1000 ⁻ U/ ₂ /5/ ₂ / ₂ /1/5/ ₃ / ₃ = 197.50 ⁻ 106 ⁻ W _{P1} =0 ⁻ 106 ⁻ 106 ⁻ 106 ⁻	
E CERTYFIKAT	$LENI = \frac{W_{L+2}W_{L-2}}{M_{L-2}} = 0.85 \frac{kWh}{m^2 rok}$	
C PODGLAD PROJEKTU	Parent a blockab	
	In Tan Deir	
	1 Ostrzebnie Parametr "Wspólczynnik przenkania Uć" w przegródzie "PG-nowa", powinien znajdować się w przedziale od 0,00 o0,001	Ŷ
(8/11)		Zamknij

Okno certyfikat źródła oświetlenia na podstawie mocy opraw

NAZWA GRUPY – pole do określania nazwy źródła oswieltenia

WYBÓR SPOSOBU OBLICZEŃ – pole do wyboru jednego z dwóch przypadków obliczeń mocy jednostkowej opraw oświetleniowych:

Na podstawie mocy opraw – użytkownik dostaje możliwość wprzypisania do każdego pomieszczenia mocy i ilości opraw oświetleniowych, dodatkowo można skorzystać z bazy opraw oswielteniowych Na podstawie natężenia i skuteczności oświetlenia użytkownik określa natężenie oświeltenia w pomieszsczeniu i określa rodzaj źródła światła.

GRUPA CZASU UŻYTKOWANIA OŚWIETLENIA

RODZAJ BUDYNKU – pole tylko do odczytu wartość wstawiana na podstawie wartości wstawionej w oknie "Dane budynku" pole "Typ budynku". Na podstawie tej danej wstawiane są automatycznie wartości t_D i t_O ,

użytkownik może wstawić własne wartości lub skorzystać z podpowiedzi

Lp.	Typ budynku	Czas użytkowania oświetlenia w ciągu roku [h/rok]				
		t _D	t _N	to		
1	Biura	2250	250	2500		
2	Szkoły	1800	200	2000		
3	Szpitale	3000	2000	5000		
4	Budynki gastronomii i usług	1250	1250	2500		
5	Dworce kolejowe, lotniska,	2000	2000	4000		
	muzea, hale wystawiennicze					
6	Budynki handlowe	3000	2000	5000		

Program domyślnie ustawia wartości na podstawie "Przeznaczenia budynku" wg poniższej tabelki.

GRUPA WPŁYWU ŚWIATŁA DZIENNEGO

RODZAJ REGULACJI- pole służące do wyboru wartości (lista zawiera z tabelki Rodzaj regulacji uzależniony od przeznaczenia budynku) domyślnie ustawiamy wartość Ręczna. Na podstawie tej danej wstawiane są

automatycznie wartości F_D , użytkownik może wstawić własne wartości lub skorzystać z podpowiedzi domyślnie wstawiamy wartość F_D = 1,0

Lp.	Typ budynku	Rodzaj regulacji ¹⁾	FD					
		Ręczna	1.0					
1	Biura, dworce kolejowe, lotniska, muzea, hale	Regulacja światła	0.9					
	wystawiennicze	z uwzględnieniem światła dziennego						
2	Budynki handlowe, budynki gastronomii i usług	Ręczna	1.0					
		Ręczna	1.0					
3	Szkoły, szpitale	Regulacja światła	0.8					
		z uwzględnieniem światła dziennego						
¹⁾ zało	¹⁾ założono, że co najmniej 60 % mocy instalowanej jest sterowane.							

GRUPA WPŁYW NIEOBECNOŚCI PRACOWNIKÓW W MIEJSC PRACY

RODZAJ REGULACJI- pole służące do wyboru wartości (lista zawiera z tabelki Rodzaj regulacji uzależniony od przeznaczenia budynku) domyślnie ustawiamy wartość Ręczna. Na podstawie tej danej wstawiane są automatycznie wartości F_0 , użytkownik może wstawić własne wartości lub skorzystać z podpowiedzi domyślnie wstawiamy wartość $F_0 = 1,0$

Lp.	Typ budynku	Rodzaj regulacji	Fo					
1	Biura, szkoły	Ręczna	1.0					
		Automatyczna ¹⁾	0.9					
2	Budynki handlowe, gastronomii i usług, dworce	Ręczna	1.0					
	kolejowe, lotniska, muzea, hale wystawiennicze							
3	Szpitale	Ręczna (częściowo automat.)	0.8					
1) - W pr.	¹⁾ - W przypadku automatycznej regulacji co najmniej jeden czujnik obecności powinien być zainstalowany w							
pomiesza	pomieszczeniu, a w pomieszczeniach dużych co najmniej jeden czujnik obecności na 30 m ² . Założono, że w							
przypadł	tu automatycznej regulacji co najmniej 60 % mocy ins	talowanej jest sterowane.						

WPŁYW NATĘŻENIA OŚWIETLENIA

REGULACJA PROWADZĄCA DO UTRZYMANIA NATĘŻENIA OŚWIETLENIA NA POZIOMIE

WYMAGANYM – w przypadku, kiedy zaznaczymy brak regulacji wówczas pole MF wyszarza się, a dodatkowo wstawiana jest wartość 1. W przypadku odznaczenia aktywne jest pole MF i domyślnie wstawiamy 0,8.

MF – pole to aktywne jest tylko w przypadku odznaczonego Braku regulacji, domyślnie przyjmujemy wartość 0,8 użytkownik może wstawić własne wartości.

DLA MEODY OBLICZEŃ NA PODSTAWIE NATĘŻENIA I SKUTECZNOSCI OŚWIELTENIA GRUPA PARAMETRY OBLICZEŃ JEDNOSTKOWEJ MOCY OPRAW OŚWIETLENIOWYCH EKSPLOATACYJNE NATĘŻENIE OŚWIETLENIE W POMIESZCZENIU Em [lx] – użytkownik wstawia

własną wartość lub wybiera w której wybieramy Em na podstawie przeznaczenia pomieszczenia.

SKUTECZNOŚĆ ŚWIETLNA η_{Z} [lm/W] – użytkownik wstawia własną wartość lub wybiera wybieramy η_{Z} :

Nazwa	η _z [lm/W]
Lampy rtęciowe	60
Metalohalogenowe	120
Sodowe	150
Żarówka	10
Żarówka halogenowa	24
Świetlówka	104
Świetlówka kompaktowa	88

DLA MEODY OBLICZEŃ NA PODSTAWIE NATĘŻENIA I SKUTECZNOSCI OŚWIELTENIA OBLICZENIA MOCY JEDNOSTKOWEJ P_N [W/m²] – wartość wyliczana jest na podstawie wstawionych wartości E_{mi} η_{zz} wzoru: P_N =4,3 · E_m/ η_z

Użytkownik może wstawić własną wartość, jednak po zmianie w E_m i η_Z zostanie ona od nowa przeliczona.

GRUPA PARAMETRY DO OBLICZEŃ ŚREDNIEJ WAŻONEJ MOCY JEDNOSTKOWEJ I ZAPOTRZEBOWANIA ENERGII

*POWIERZCHNIA UŻYTKOWA GRUPY POMIESZCZE*ŃAf [m²] – w polu tym wyświetlana jest powierzchnia pomieszczenia/strefy, w przypadku, kiedy mamy zgrupowane pomieszczenia wówczas w polu tym jest suma powierzchni poszczególnych pomieszczeń należących do grupy,

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ DO OŚWIETLENIA POMIESZCZENIA/GRUPY EL [kWh/m²rok]- wartość wpisywana przez użytkownika lub domyślnie wyliczana z wzoru:

$$E_{L,j} = F_C \cdot \frac{P_N}{1000} [(F_O \cdot F_D \cdot t_D) + (F_O \cdot t_N)]$$

ROCZNE ZAPOTRZEBOWANIE NA ENERGII ELEKTRYCZNEJ KOŃCOWEJ DO NAPEDU URZĄDZEŃ POMOCNICZYCH SYSTEMU OŚWIELTENIA E_{el,pomL} [kWh/m²rok]- wartość wpisywana przez użytkownika

DLA MEODY OBLICZEŃ NA PODSTAWIE MOCY OPRAW

Wpływ obniżenia natężenia oświetlenia Regulacja prowadząca do utrzymania Współczynnik uwzględniający obniżen	n natężenia oświetlenia na poziomi ie natężenia oświetlenia: MF=1,00	e wymaganym			Wsp. obniženia natężenia oświetlenia $F_c = \frac{(1+MF)}{2} = 1,00$
Lp. Nazwa pomieszczenia 1 B1Część biurowa 1	Typ oprawy Oprawy na suntowe pojedyncze	Moc [W] Ilość [szt.] 30,0 1	Pnj [W] 30,00	+ ×	oświetleniowych $P_n = \sum P_{nj} = 3000.00 \text{ W}$
			[- -	Powierzchnia użytkowa grupy pomieszczeń A _L = 250,00 m ²
					Informacje uzupełniające E
Energia pasożytnicza ryczałtowa					
✓ Na ładowanie baterii opraw awaryjny	ch 🗌 Na podtrzymanie	systemów kontroli			
Roczne jednostkowe zapotrzebowanie i $W_{L,t} = \frac{P_n \cdot F_c}{1000} \cdot [(F_0 F_0 t_0) + (F_0 t_N)] = 7500,00 \frac{-kN}{r_0}$ LENI = $\frac{W_{L,t} + W_{P,t}}{A_L} = 31,00 \frac{kWh}{m^2 \cdot r_0 k}$	na energię do oświetlenia pomiesz <u>Wh</u> W _{P,t} = 250,00 <u>kWh</u> ok	zczenia/Grupy			

Okno certyfikat źródła oświetlenia na podstawie mocy opraw

DLA MEODY OBLICZEŃ NA PODSTAWIE NATĘŻENIA I SKUTECZNOSCI OŚWIELTENIA OBLICZENIA MOCY JEDNOSTKOWEJ P_N [W] – wartość wyliczana jest na podstawie wstawionych wartości P_j i $A_f z$ wzoru: $Pn = \sum (P_j x A_f) / \sum A_f$

*POWIERZCHNIA UŻYTKOWA GRUPY POMIESZCZEŃ*A_f [m²] – w polu tym wyświetlana jest powierzchnia pomieszczenia/strefy, w przypadku, kiedy mamy zgrupowane pomieszczenia wówczas w polu tym jest suma powierzchni poszczególnych pomieszczeń wstawionych do tabeli

GRUPA TABELA OPLICZEŃ MOCY JEDNOSTKOWEJ OPRAW OŚWIETLENIOWYCH

KOLUMNA NAZWA POMIESZCZENIA - pole do wpisywania nazwy pomieszczenia lub wyboru z listy

pomieszczeń przypisanych do tej grupy pomieszczenia ***

KOLUMNA POWIERZCHNIE UŻYTKOWA POMIESZCZENIA $A_f[m^2]$ – pole do pisywania wartości powierzchni użytkowej, w przypadku wybrania pomieszczenia z listy wartość wstawiana automatycznie

KOLUMNA TYP OPRAW – pole do wpisywania typu opraw lub po wciśnięciu przycisku *** wyboru z bazy opraw oświetleniowych.

		Baza opraw oświetleniowych				×
Znajdź Szukaj: 🕑 Wyniki wyszukiwania aktualnie niedostępne					Wyczyść	
╪┽╳≫ҧ҇҇҇҇҇҇҇҇҄҇	Lp.	Model	Тур	Moc [W]	Uwagi	+
Domowe	1	Oprawy na sufitowe pojedyncze 28 W	1x28 W	28,000		~
Świetlówkowe	2	Oprawy na sufitowe podwójne 28 W	2x28 W	56,000		~
🛄 Downlight	3	Oprawy na sufitowe pojedyncze 35 W	1x35 W	35,000		D.
	4	Oprawy na sufitowe podwójne 35 W	2x35 W	70,000		
	5	Oprawy na sufitowe pojedyncze 49 W	1x49 W	49,000		B
	6	Oprawy na sufitowe podwójne 49 W	2x49 W	98,000		
	7	Oprawy na sufitowe pojedyncze 54 W	1x54 W	54,000		\$
	8	Oprawy na sufitowe podwójne 54 W	2x54 W	108,000		
	9	Oprawy na sufitowe pojedyncze 80 W	1x80 W	80,000		
	10	Oprawy na sufitowe podwójne 80 W	2x80 W	160,000		
	11	Oprawy zwieszane pojedyncze 28 W	1x28 W	28,000		
	12	Oprawy zwieszane podwójne 28 W	2x28 W	56,000		
	13	Oprawy zwieszane pojedyncze 54 W	1x54 W	54,000		
	14	Oprawy zwieszane podwójne 54 W	2x54 W	108,000		
	15	Oprawy wpuszczane podwójne 28 W	2x24 W	48,000		
	16	Oprawy wpuszczane podwójne 54 W	2x54 W	108,000		
	17	Oprawy wpuszczane potrójne 14 W	3x14W	42,000		
	18	Oprawy wpuszczane poczwórne 14 W	4x14 W	56,000		
	19	Oprawy wpuszczane potrójne 24 W	3x24 W	72,000		
	20	Oprawy wpuszczane poczwórne 24 W	4x24 W	96,000		
Przywróć do myślne wartości Wybór wersji	bazy da	nych: 6.0		Anuluj	ок	

Baza opraw oświetleniowych

KOLUMNA MOC [W] – pole do wpisywania sumarycznej mocy opraw w pomieszczeniu, w przypadku wybrania opraw z bazy wartość wpisywana automatycznie

KOLUMNA ILOŚĆ [szt.] – pole do wpisywania ilości opraw oświetleniowych

KOLUMNA MOC JEDNOSTKOWA P_j [W/m²] – wartość obliczana na podstawie wzoru P_j=Moc/A_f

ROCZNE JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ DO OŚWIETLENIA POMIESZCZENIA/GRUPY LENI [kWh/m²rok]- wartość wpisywana przez użytkownika lub domyślnie wyliczana z wzoru:

Roczne jednostkowe zapotrzebowanie na energię do oświetlenia pomieszczenia/Grupy

 $W_{L,t} = \frac{P_n \cdot F_c}{1000} \cdot \left[(F_0 \cdot F_D \cdot t_D) + (F_0 \cdot t_N) \right] = 7500,00 \frac{kWh}{rok}$ W_{P,t}=250,00 kWh $LENI = \frac{W_{L,t} + W_{P,t}}{A_1} = 31,00 \frac{kWh}{m^2 \cdot rok}$

ROCZNE ZAPOTRZEBOWANIE NA ENERGII ELEKTRYCZNEJ KOŃCOWEJ DO NAPEDU URZĄDZEŃ POMOCNICZYCH SYSTEMU OŚWIELTENIA E_{el,pomL} [kWh/m²rok]- wartość wpisywana przez użytkownika

Wyliczenia końcowe dla tego okna:

E_{K,L} **[kWh/rok]** – roczne zapotrzebowanie na energie końcową na potrzeby oświetlenia wbudowanego, wartość wyliczana z wzoru:

$\mathbf{E}_{K,L} = \Sigma \left(E_{L,j} \cdot A_f \right)$ (suma wartości dla każdej grupy)

Q_{P,L} **[kWh/rok]** – roczne zapotrzebowanie na energie pierwotną na potrzeby oświetlenia wbudowanego, wartość wyliczana z wzoru:

 $\mathbf{Q}_{\mathrm{P,L}} = \mathbf{3} \cdot \mathbf{E}_{\mathrm{K,L}}$

12.5 RAPORT CERTYFIKAT

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 16. Dobór grzejników – 6
Plik Ustawienia Pomoc	日 傘 四 ◆ 〒 /
PODGLĄD PROJEKTU	Certyfikat - Świadectwo charakterystyki energetycznej 2014, WT 2014
E- E Certyfikat Domek jednorodzinny	ESTIMAN Wikkzinik rocznego zapotrzebowania na nieodowyklaw enersie pierwotne EP RWhitm*rok11
	50 100 150 200 320 300 350 400 500 500
	Wymagania dia newogo budynku
	Transition dis band refer a service sea
	rarameny ua puojina ocenanego Waledni rozmon znovetralomania sa energia nierantea EP-12.44E WAR.meZedo
	vysazne (vcznego zaporzebowania na wrety uji primotuji pr. 15496 kwijimi voki Wikładni (vcznego zaporzebowania zaprimi provinowa EC 98.275 kWowitych)
	vytwo douczen roczniego zaporzątowana na energię pierwoną: Porzna zaporzałowania na energie pierwoną:
	The second approximation of a second approximation of the
	NUCZNE ZADOUZEDUWANE NA ENETYJE JIETWOUNA JIZZE SYSTEM SJZEWICZ I WENIJIACKYM M _{O,N} I – KWN/TOK
	woczne zapostzetowanie na energię pierwomą przez system do przygotowania ciepiej wody dą _{pa} ż 64-6,249 kwrtyrok.
	Wyniki obliczeń rocznego zapotrzebowania na energię końcową:
	Roczne zapotrzebowanie na energię końcową przez system grzewczy i wentylacyjny Q _{CO} i kWh/trok
•	Roczne zapotrzebowanie na energię końcową przez system do przygotowania ciepłej wody O _{K,W} : 10730,120 kWN/rok
	Parametry dla budynku referencyjnego
	Maksymalny wskaźnik rocznego zapotrzebowania na energię pierwotną budynku EP: 120,000 kWł/(Im ² rol)
Obliczenia ciegine	
Certyfikat	
DANE WEJŚCIOWE	
OBLICZENIA CIEPLNE	
CERTYFIKAT	
C PODGLAD PROJEKTU	Rapot to bledach
😑 wydruki	Lp. Typ Cpis
	Otstastenie Parametr "Napółczynnk przemkania Uć" w przegrodzie "PG-rowa", powinien znajdować się w przedziałe od 0,00 do 0,30
< [9/10] >	

Okno Certyfikat, raport

Program pozwala na podgląd wyników dla poszczególnych grup świadectwa i zbiorczego wyniku z wszystkich grup wyliczonego na podstawie EPm (zaznaczenie na drzewku ikonki certyfikat). W programie można wygenerować trzy rodzaje raportów .rtf :

- pierwszy uruchamiany pierwszą ikonką generuje raport świadectwa charakterystyki energetycznej,

- drugi uruchamiany drugą ikonką generuje raport charakterystyki energetycznej,

- trzeci uruchamiany trzecia ikonką pokazuje dane wejściowe do projektu (przyjęte sprawności, wyliczone energie końcowe i pierwotne, energię pomocniczą dla każdego wstawionego źródła)

12.5.1 Parametry dla budynku ocenianego

WSKAŹNIK ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIĘ PIERWOTNĄ EP $(\frac{kWh}{m^2 \cdot rok})$ – wartość wyliczana z wzoru EP = $\frac{Q_p}{A_f}$, gdzie A_f - powierzchnia ogrzewana o regulowanej temperaturze .

WSKAŹNIK ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIĘ KOŃCOWĄ $\text{EK}(\frac{kWh}{m^2 \cdot rok})$ –gdzie A_f - powierzchnia ogrzewana o regulowanej temperaturze.

12.5.2 WYNIKI OBLICZEŃ ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIĘ PIERWOTNĄ

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ Qp $(\frac{kWh}{rok})$ - wartość wyliczana z wzoru Q_p= $Q_{P,H} + Q_{P,W} + Q_{P,C} + Q_{P,L}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ PRZEZ SYSTEM GRZEWCZY I WENTYLACYJNY $Q_{P,H}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{P,H}=w_H \cdot Q_{K,H} + 3 \cdot E_{el,pom,H}$. ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ PRZEZ SYSTEM PRZYGOTOWANIA CIEPŁEJ WODY $Q_{P,W}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{P,W}=w_W \cdot Q_{K,W} + 3 \cdot E_{el,pom,W}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ PRZEZ SYSTEM CHŁODZENIA I WENTYLACJI $Q_{P,C}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{P,C}=3 \cdot Q_{K,C} + 3 \cdot E_{el,pom,C}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ PRZEZ SYSTEM OŚWIETLENIA WBUDOWANEGO $Q_{P,L}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{P,C}=3 \cdot E_{K,L}$.

12.5.3 WYNIKI OBLICZEŃ ROCZNEGO ZAPOTRZEBOWANIA NA ENERGIĘ KOŃCOWĄ

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ PRZEZ SYSTEM GRZEWCZY I WENTYLACYJNY $Q_{K,H}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{K,H}=\frac{Q_{H,nd}}{\eta_{H,tot}}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ PRZEZ SYSTEM PRZYGOTOWANIA CIEPŁEJ WODY QK,w $(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{K,H} = \frac{Q_{W,nd}}{\eta_{W,tot}}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ PRZEZ SYSTEM CHŁODZENIA I WENTYLACJI $Q_{K,C}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $Q_{K,H}=\frac{Q_{C,nd}}{\eta_{C,tot}}$.

ROCZNE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ PRZEZ SYSTEM OŚWIETLENIA WBUDOWANEGO $\mathbf{E}_{\mathbf{K},\mathbf{L}}(\frac{kWh}{rok})$ - wartość wyliczana z wzoru $\mathbf{E}_{\mathbf{K},\mathbf{L}} = \Sigma(\mathbf{E}_{Lj} \cdot \mathbf{A}_f)$.

13 EFEKT EKOLOGICZNY

13.1 WSTĘP DO EFEKTU EKOLOGICZNEGO

Nakładka na ArCADia-TERMO efekt ekologiczny pozwala na obliczenie zużycia poszczególnych paliw przez systemy grzewczo-wentylacyjne, przygotowania ciepłej wody, chłodzenia, oświetlenia wbudowanego i systemy pomocnicze, a także emisji zanieczyszczeń do atmosfery SO₂, NO_X, CO, CO₂, Pył, Sadza, B-a-P. Obliczenia wykonywane są zarówno dla danych wpisanych w części certyfikat jak i audytu na podstawie wybranego wariantu optymalnego.

Efekt ekologiczny potrzebny jest w przypadku kiedy wykonujemy audyt do dotacji unijnych lub Funduszu Ochrony Środowiska.

W przypadku obliczeń dla ŚCHE lub Projektowanej Charakterystyki Energetycznej użytkownik dostaje możliwość porównania zaprojektowanych systemów w budynku z alternatywnymi (np. z systemami na paliwa odnawialne), co przydatne do analizy oddziaływania na środowisko inwestycji. Dodatkowo możemy zobaczyć ile paliwa zużywa nasz budynek dla zaprojektowanych systemów i ile mógłby zużywać w przypadku gdy użylibyśmy alternatywnych źródeł.

Podstawą obliczeń emisji zanieczyszczeń są Materiały informacyjno-instruktarzowe MOŚZNiL 1/96 "Wskaźniki emisji substancji zanieczyszczających wprowadzanych do powietrza z procesów energetycznego spalania paliw" Dz. U. 04.281.2784.

13.2 WYBÓR OBLICZEŃ EFEKTU EKOLOGICZNEGO

Użytkownik efekt ekologiczny może wybrać w dowolnym momencie obliczeń zarówno certyfikatu jak i audytu

energetycznego, w tym celu musi zaznaczyć ikonkę wybrane obliczenia audytu czy certyfikatu pojawi się w dolnej części dodatkowy pasek "Efekt ekologiczny" z dwoma podgrupami Audyt i certyfikat.

A	- A	ArCADia-TERMO PRO 6	.0 Licencja dla: Test - A	IrCADia-TERMO PI	tO 6 [L01] - 16. D	lobór grzejnikó	w				. 6 ×
Plik Ustawienia Pomoc	8004	h∓⁄∻∓?									
DANE WEJŚCIOWE											
Containing by water Containing by water Containing by water Containing by water Containing by the state of the sta	OPIS PROJEKTU Miejscowość: Opis:	kódž 2	Nir projektu: Wersja proj	t itu: 1					DANE JEDNOSTI Logo:	TERSO	o ft [.] Dia
Constraint Programming The State And Andreas State Stat	Data opracowania: DANE BUDYNKU Nazwa:	17 września 2014 ▼ ArCADiasoft Chudzik sp.		0					Nazwa: NIP: REGON: Adres:	ArCADiasoft Chud 725-16-76-810 472347809	tzik sp. j.
	Adres: Miejscowość: Województwo:	ul. Sienkiewicza Łódź łódzkie	Nr. Kođ	85487 90-057					Adres: Nr: Mejscowość: Kod: Wejswództwo:	ul. Sienkiewicza 85/87 Łódź 90-057 łódzkie	
•	Nazwa: Adres: Adres:	ArCADiasoft Chudzik sp.	j. No	85487					Telefon: Fax: Dane osobowe Lista:	+45 42 6091111 +45 42 6091100 projektantów	
	Miejscowość: Województwo: Telefon:	Lódž Kódzkie +48 42 6891111	Kođ. Fax:	90-057 +48 42 6891100							+ ×
Wydd obloan Seel ywda	Broot a bladeri										
	Lp. Typ					Opis					^
	1 Ostrzeżenie	Parametr "Współczynnik	przenikania Uc* w przegrodzie	"PG-nowa", powinien zna	jdować się w przedział	e od 0,00 do 0,301					~
< (218) > (218) > (218			E A	1 ø	* 9	-	0 R.	R.	G G	- ⊠ ≃ © 6	Zamknij 16:44

Okno Wybór obliczeń

13.3 EFEKT EKOLOGICZNY DLA CERTYFIKATU

W przypadku kiedy wykonujemy obliczenia ŚCHE lub PCHE program przenosi nam dane odnośnie zapotrzebowania na moc, sprawności, rodzaju paliwa, zużycia energii elektrycznej na urządzenia pomocnicze, dla wszystkich zaprojektowanych systemów w budynku. Program na podstawie wybranego rodzaju paliwa wstawia domyślnie wartość opałową Hu (użytkownik może też wybrać inną wartość korzystając z bazy wartości opałowej).

13.3.1 OKNO ZUŻYCIE PALIWA

Pik Udavinia Pomor				
UZYGEPALIW	Certyfikat - Projektowana charaktervstyka energetyczna. WT 2014			
Zużycje pałky	Poblect date 1 perturbation			
Alternatywne źródła	Zużycie pałw systemów grzewczo - wentylacyjnych			
	Lp. Rodon peline Udalal Qhnd nint Qk,1 Wartold Jednostka Zužyce 15 Whitnot nint kitilitik opeline Nu Jednostka peline B	Jednostia +		
	1 Patrio - bionase 100,00 17393,05 0,71 24644,49 4.90 kith/kp 5029,49 kg/rok	×		
	🗹 Uwzgłędnij ruczne zużycie energi przez urządzena pomocnicze. 50	R2 XVVII TOK		
	Zużycie pałw wyatemów przygotowania ciepłej wody			
	Lp. Radzaj palwa Udželi Qvrni ntot Ok.w Wartość Jednostka Zużyrce nu kothuhok ntot kothuhok opalowa Hu	Jednostia +		
	1 Palino - biomana 100,00 1026,98 0,41 4661,98 4,90 Mithyleg 951,42 lightek	×		
	🕑 Uwzgładnij roczne zużycie energi przez urzątzenie pomocnicze 🛛 🛉	08 4 <u>104</u>		
	Zużycie paliw systemów chłodzenia			
	Lan Rodraj palwa Uddiał Qond ntot QN,c. Wartość Jednostka Zużyce % kothytrok ntot kolitytrok opatowa Hu	Jednostka -		
		2		
		E		
	Uwzgłędnij roczne zazycie energii przez wządzenia pomocnicze.	1. 1989		
	Zulytie peliw systemów oświetlenia włudowanego			
	Roczne zużycie energi elektrycznej przez wysteny oświetlenie włodówanego 🥂	TOK TOK		
	T nysteidulaistas seala laites esala laites esala laites atalitas douncaste. T	708		
Castelland				
Audyt				
DANE WEISCIOWE				
DELICZENIA CIEPLNE				
CERTVEIKAT				
TUŻYCIE PALIW				
EFEKT EKOLOGICZNY				
EFEKT EKONOMICZNY				
	Report o bligdach			
MADERIX	Lp. Typ Ope			
	Cetratomie Parametr "Wapółczymik przenkana Lic" w przegródzie "PG-nowa", pownieri znajdować się w przednałe od 0,00 do 0,301			

Okno Zużycie paliw certyfikat, włączone pobieranie danych z certyfikatu

POLE POBIERZ DANE Z CERTYFIKATU – w przypadku zaznaczenia **I** program pobiera dane odnośnie zużytej energii, paliwa i sprawności z Certyfikatu, gdy odznaczymy to pole wówczas użytkownik będzie mógł wstawiać własne wartości.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 📝

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{hnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{H,nd}kWh/rok - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w strefach cieplnych, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{hnd}.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{H,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w certyfikacie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,H}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{H,nd}i\eta_{H,tot}$ z wzoru: $Q_{K,H}=Q_{H,nd}/\eta_{H,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

Baza wartości opałowej

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,H}}{H_u}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZE E_{el,pom,H} [**kWh/rok**]- w przypadku zaznaczenia w awtość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 📝

	Zużycie paliw systemów przy	goto	wania ciep	lej wody								
Lp	. Rodzaj paliwa		Udział %	Qwnd kWh/rok	ηtot	Qk,w kWh/rok	Wartość opałowa Hu	Jednos	itka	Zużycie paliwa B	Jednostka	+
1	Paliwo - biomasa		100,00	1926,98	0,41	4661,98	4,90 .	kWh/kg		951,42	rg/rok	×
L												
4	Uwzględnij roczne zużycie energ	gii prz	ez urządzer	nia pomocnic	ze:						110,08 kWh rok	

Tabela zużycia paliw dla systemów przygotowania ciepłej wody

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{wnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Qw,ndkWh/rok - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w przygotowaniu ciepłej wody, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Qwnd.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{w,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w certyfikacie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Q_K,wkWh/rok - pole obliczane automatycznie na podstawie danych z kolumny Q_{w,nd}iη_{w,tot} z wzoru: Q_K,w=Q_{w,nd}/η_{w,tot}

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,W}}{H_{H}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,W} [**kWh/rok**]- w przypadku zaznaczenia w awtość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW CHŁODZENIA

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 📝

Podręcznik użytkownika dla programu ArCADia–TERMO

EFEKT EKOLOGICZNY

	Zużycie paliw systemów chłodzen	nia								
Lp.	Rodzaj paliwa	Udział %	Qcnd kWh/rok	ηtot	Qk,c kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednosťka	+
										×

Tabela zużycia paliw dla systemów chłodzenia

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{cnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{C,nd}**kWh/rok** - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w strefach chłodu, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{Cnd}.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{C,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła chłodu ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach chłodu w certyfikacie poprzez przycisk ··· .

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,C}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{C,nd}i\eta_{C,tot}$ z wzoru: $Q_{K,C}=Q_{C,nd}/\eta_{C,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ••••.

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,C}}{H_u}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,C} [kWh/rok]- w przypadku zaznaczenia W wartość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW OŚWIETLENIA WBUDOWANEGO

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 📝

✓ Zużycie paliw systemów oświetlenia wbudowanego	
Roczne zużycie energii elektrycznej przez systemy oświetlenia wbudowanego:	2345,90 kWh
🗹 Uwzględnij roczne zużycie energii przez urządzenia pomocnicze:	6,00 kWh rok

Tabela zużycia paliw dla systemów oświetlenia wbudowanego

ROCZNE ZUŻYCIE ENERGII ELEKTRYCZNEJ PRZEZ SYSTEM OŚWIETLENIA

WBUDOWANEGO – pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w oświetleniu wbudowanym, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość $E_{K,L}$.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,L}

[kWh/rok]- w przypadku zaznaczenia wartość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

13.3.2 OKNO ALTERNATYWNE ŹRÓDŁO

🥂 ArCADia-TERMO Niekomercyjna wersja czaso	iwa 3.0 Niekomercyjna w pełni funkcjonalna wersja czasowa ważna przez następne 30 dni All_Jedn_2b	×
Plik Wersja Raporty Ustawienia Por	noc 🕐 🔻 🐴 🐨 💿 Efekt ekologiczny) 🕖 Efekt ekonomiczny) 🗰 Dobór grzejników) 🔅 Klimatyzacja	\supset
ZUŻYCIE PALIW	Certyfikat	
Atternatywne źródła	V Wykonaj obliczenia porównawcze V Zużycie paliw systemów grzewczo - wentylacyjnych Rozne zapotrzetowane na energie użytkową systemu grzewczo - wentylacyjnych: 1228.3,4 Wh Totk	
	L.p. Rodzaj paliwa 96 kWh/rok ntot kWh/rok opałowa Hu Jednostka 202902 Jednostka	F
	1 Energia elektryczna - produkcja 100,00 12283,34 3,16 3890,39 1,00 kWh/kWh 3890,39 kWh/rok	
	Uwzględnį roczne zużycie energii przez urządzenie pomocnicze: 126,00 1100 rok	
	Zużycie paliw systemów przygotowania ciepłej wody Roczne zapotrzebowanie na energię użytkową systemu przygotowania ciepłej wody: 1204,36 KWh Tojk	
	L.p. Rodzaj paliwa Udział Qwnd ntot Qk,w Wartość Jednostka Zużycie paliwa B Jednostka	F
	1 Energia elektryczna - produkcja 100,00 1204,36 1,60 752,73 1,00 kWh/kWh 752,73 kWh/rok	
	V uzględni noczne sużycie energi przez urządzenia pomocnicze: 105,12 1000 Zużycie paliw systemów chłodzenia Zużycie paliw systemów chłodzenia O two	
Sertyfikat	Rodzine zapoli zebo wanie na eliergię uzyskową sysielnu cinouzenia. O rok Udział Ocnd Ok.c. Wartnóć Zużwcie	
Audyt	L.p. Rodzaj paliwa % kWh/rok ntot kWh/rok opałowa Hu Jednostka paliwa B Jednostka	
Z DANE WEJŚCIOWE	1 Energia elektryczna - produkcja 0,00 0,00 1,00 0,00 1,00 kWh/kWh 0,00 kWh/hok	
CERTYFIKAT		8
	Uwzględnij roczne zużycie energii przez urządzenia pomocnicze: 🗥 rok	
	Raport o bledach	_
	Lp. Typ Opis Opis Opis Opis Opis Opis Opis Opis Opis	Ô
1	Octrastania Derematr "Wendersinnik nrianikania 11" u nriannottia "17 1111/11" nnuknan makhuusé ela u nriadtala nd 11 11 d n 1 1111	-
[11/19] >	Zamkn	ij

Okno Zużycie Paliw, alternatywne źródła certyfikat

WYKONAJ OBLICZENIA PORÓWNAWCZE – pole do wyboru czy w efekcie ekologicznym uwzględniamy alternatywne źródła wówczas zaznaczmy ☑, lub czy obliczenia wykonujemy tylko dla projektowanego budynku wówczas pole zostawiamy odznaczone.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

.p.	Rodzaj paliwa	Udział %	Qhnd kWh/rok	ηtot	Qk,h kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka
1	Paliwo - biomasa	100,00	14737,90	0,8	18565,14	4,28	kWh/kg	4337,65	kg/rok

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{hnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{H,nd}kWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA η_{H,tot} - pole do wpisywania sprawności systemu poprzez przycisk ····.

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Q_{K,H}kWh/rok - pole obliczane automatycznie na podstawie danych z kolumny Q_{H,nd}iη_{H,tot} z wzoru: Q_{K,H}=Q_{H,nd}/η_{H,tot}

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,H}}{H_{H}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,H} [kWh/rok]- w przypadku zaznaczenia 🗹 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

1 Paliwo - biomasa 100,00 8411,43 0,4 18965,15 4,28 kWh/kg 4431,11 kg/rok	L.p.	Rodzaj paliwa	Udział %	Qwnd kWh/rok		ηtot	Qk,w kWh/rok	Wartość opałowa H	: Hu	Jednost	ka	Zużycie paliwa B	Jednostka
	1	Paliwo - biomasa	 100,00	8411,43	0,4		 18965,15	4,28		kWh/kg		4431,11	kg/rok

Tabela zużycia paliw dla systemów przygotowania ciepłej wody

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{wnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{W,nd}kWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{w,tot}$ - pole do wpisywania sprawności systemu poprzez przycisk

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Q_K,wkWh/rok - pole obliczane automatycznie na podstawie danych z kolumny Q_{w,nd}iη_{w,tot} z wzoru: Q_K,w=Q_{w,nd}/η_{w,tot}

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,W}}{H_{y}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE el.pom, w [kWh/rok]- w przypadku zaznaczenia 🗹 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW CHŁODZENIA

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

Roc:	zne zapotrzebowanie na energię i	użytko	wą syste	emu chłodzei	dzenia: 25348,12 KVIII rok									
L.p.	Rodzaj paliwa		Udział %	Qcnd kWh/rok		ηtot		Qk,c kWh/rok	Wartość opałowa ł	łu	Jednost	a	Zużycie paliwa B	Jednostka
1	Energia elektryczna - system PV	1	00,00	25348,12	2,8			9073,64	1,00		kWh/kWh		9073,64	kWh/rok

Tabela zużycia paliw dla systemów chłodzenia

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{cnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{C,nd}kWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{C,tot}$ - pole do wpisywania sprawności systemu poprzez przycisk

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Qκ,c**kWh/rok** - pole obliczane automatycznie na podstawie danych z kolumny Qc,ndiηc,tot z wzoru: Qκ,c=Qc,nd/ηc,tot

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,C}}{H_{T}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,C} [kWh/rok]- w przypadku zaznaczenia 🕼 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

13.3.3 OKNO EMISJA ZANIECZYSZCZEŃ

Okno to służy do wpisywania emisyjności poszczególnych zanieczyszczeń, program na podstawie rodzaju paliwa i alternatywnych źródeł wpisuje występujące w projekcie rodzaje paliwa i wstawia do nich domyślne wartości emisyjności na podstawie MOŚZNiL 1/96 "Wskaźniki emisji substancji zanieczyszczających wprowadzanych do powietrza z procesów energetycznego spalania paliw" Dz. U. 04.281.2784. Użytkownik może również ręcznie wstawić własne wartości wykorzystując do tego bazę emisji zanieczyszczeń.

4		ArCADia-TERMO P	RO	6.0 Licencja	a dla	a: Test - A	rCADia-TE	RMO PRO	6 [L01] - 02	. Kamienica	a+Sklep(o	hłód)						-	6 X
Plik Ustawienia Pomoc	8	\$ D + + + ?																	
- [] Emisja zanieczyszczeń	Opia	systemów Enisja zanieczyszczeń																	
	Sp	osób obliczeń			in the	nformacje u	zupełniające												
		uwzględnij wszystkie systemy	r w	jednej tabelce	E	3													
	۲	rozbij na poszczególne system	Ŋ																
	Par	rametry emisji systemu grzew	czo	- wentylacyjni	ego														
	Lp	Rodzej peliwe		Jednostka		502	NOX	00	CO2	Pył	Sadza					BeP			
	1	Paliwo - gaz ziemny		kg/1,056-m ^a		0,000120	1280,000000	360,000000	1964000,000	15,000000	0,000000								0,000000
	2	Energia elektryczna - produkcja mieszana		kg/kWh		0,009100	0,002300	0,000690	1,000000	0,001500	0,000003								0,000000
	3	Paliwo - Kolektory sloneczne termiczne		kg/kWh		0,000000	0,000000	0,000000	0,000000	0,000000	0,000000								0,000000
	Pau	rametry emisji ayatemu przygo	itos	vania ciepłej w	vody														
	[lp	Rodzej peliwe	_	Jednostka		502	NOX	00	CO2	Pył	Sadza					BaP			
	1	Paliwo - Kolektory sloneczne termiczne		kg/kWh		0,000000	0,000000	0,000000	0,000000	0,000000	0,000000								0,000000
Certyfikat	2	Paliwo - gaz ziemny		kg/1,056-m ²		0,000120	1280,000000	360,000000	296-4000,000 000	15,000000	0,000000								0,000000
P3 pase we stronge	3	Energia elektryczna - produlicja mieszana		kg/kWh		0,009100	0,002300	0,000690	1,000000	0,001500	0,000003								0,000000
DANE WEDGLIOWE	Par	rametry emisji systemów chłor	ize	nia i oświetlen	nia w	budowanes	30												
BE OBLICZENIA CIEPUNE	Lp	Rodzaj paliwa	_	Jednostka		502	NOX	00	CO2	Pył	Sadza					BaP			
CERTYFIKAT	1	Energia elektryczna - produkcja mieszana		kg/kWh		0,009100	0,002300	0,000690	1,000000	0,001500	0,000003								0,000000
2UŻYCIE PALIW																			
EFEKT EKOLOGICZNY																			
C EFEKT EKONOMICZNY																			
	_																		
	Rapi	ort o blędach																	
	<u>ι</u> ρ.	Typ Ostracturia Braconda 67	- 14	nia (ast manufal)	in	ana nemifin	un Brak odern	undania kees	incente un obran	in Intrin	Opes								^
	-	Przegrosi sz		- an pear zaproje		a la presidente	www.unak.oppro	water his corts	An owned to Division	a and.	_	_	_	_	_				
< [81/07] >	ł	3 1 3 13		R 1	E.	L.	1 A			0	0	0	- G	િ	<u>5</u>	<u>م</u>	- R	0	Zamknij

Okno emisja zanieczyszczeń z rozbiciem na poszczególne systemy

GRUPA PARAMETRY EMISJI SYSTEMU GRZEWCZO WENTYLACYJNEGO

Z tabeli "Zużycie paliwa systemów grzewczo wentylacyjnych" w oknie "Zużycie paliwa" i "Źródła alternatywne" pobierane są dane odnośnie "Rodzaju paliwa" następnie sortowane wg nazwy i wstawiane do kolejnych wierszy tabeli "Parametry emisyjności systemów grzewczo wentylacyjnych".

KOLUMNA RODZAJ PALIWA – pole tylko do odczytu pokazujące nazwę paliwa wstawionego do okna *"Zużycia paliwa"* i *"Alternatywne źródła"*.

KOLUMNA BAZA EMISYJNOŚCI – pole to służy do wejścia do bazy emisyjności poprzez przycisk ••• otwiera nam się nowe okienko, w którym po wciśnięciu przycisku ok. przenoszone są dane do pozostałych kolumn SO₂, NO_x, CO, CO₂, Pył, Sadza, B-a-P [Benzo[a]Piren].

KOLUMNA JEDN. – pole to służy do wyboru jednej z poniższych jednostek w przypadku przekazania danych z bazy wartość jest wstawiana taka jaka dla wybranego elementu była jednostka. Możliwości wyboru (kg/m³, kg/10⁶m³, kg/Mg, kg/kWh)

Rodzaj paliwa	Jedn.	SO ₂	NO _X	CO	CO ₂	Pył	Sadza	B-a-P
Paliwo - Olej opławy	kg/m ³	8,55	5	0,6	1650	1,8	0	0
Paliwo - Gaz ziemny	kg/106m3	0,0001	1280	360	1964	15	0	0
		2			000			
Paliwo - Gaz płynny	kg/m ³	0	0	0	0	0	0	0
Paliwo – Węgiel kamienny	kg/Mg	19,2	1	45	2000	10,5	0,35	0,014
Paliwo – Węgiel brunatny	kg/Mg	64	1,5	25	2400	60	0	0
Paliwo – Biomasa	kg/Mg	0,69	19,9	1,17	0	0,69	0	0
			7					
Ciepło z kogeneracji – Węgiel	kg/kWh	0,0003	0,00	0,00	0,37	0,00	0	0
kamienny		4	077	013	24	013		
Ciepło z kogeneracji – Gaz ziemny	kg/kWh	-	-	-	-	-	-	-
Ciepło z kogeneracji – Gaz biogaz	kg/kWh	-	-	-	-	-	-	-
Ciepło z kogeneracji – Biomasa	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni węglowej	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni gazowej/olejowej	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni na biomasę	kg/kWh	-	-	-	-	-	-	-
Energia elektryczna – Produkcja	kg/kWh	0,0091	0,00	0,00	1	0,00	0,0000	0,00000
mieszana			23	069		15	027	0054
Energia elektryczna – System PV	kg/kWh	0	0	0	0	0	0	0
Paliwo – Kolektory słoneczne	kg/kWh	0	0	0	0	0	0	0

Okno baza emisji zanieczyszczeń

KOLUMNA NAZWA PALIWA – pole do edycji przez użytkownika,

KOLUMNA JEDN. – pole do wyboru jednej z możliwych jednostek [kg/kWh], [kg/Mg], [kg/m³], [kg/10⁶ m³]

KOLUMNA SO₂– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA NOx– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA CO– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA CO₂– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA PYL– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA SADZA– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA B-a-P– użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

Kalkulator emisji zanieczyszczeń	X
Rodzaj paliwa: stałe Zawartość siarki: 1,20 mg m ³	Oblicz na podstawie zawartości
Zawartość popiołu: 7,00 %	- popiola
Wynik = s • 16,00 = 19,20	Anuluj OK

Okno kalkulator emisji zanieczyszczeń

RODZAJ PALIWA – użytkownik wybiera tutaj jeden z trzech wariantów *"stale"*, *"ciekle"*, *"gazowe"*. Gdy wybierzemy jako rodzaj paliwa *"stale"* wówczas pojawiają się nam dwa nowe pola *"zawartość siarki s=…* [%]" i *"zawartość popiołu A^t=…[%]"*. Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/Mg].

Gdy wybierzemy jako rodzaj paliwa *"ciekle"* wówczas pojawiają się nam dwa nowe pola *"zawartość siarki* $s = \dots [\%]$ ". Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/m³].

Gdy wybierzemy jako rodzaj paliwa "*gazowe*" wówczas pojawiają się nam dwa nowe pola "*zawartość siarki* $s = \dots [mg/m^3]$ ".Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/10⁶ m³].

ZAWARTOŚĆ SIARKI s – pole do edycji przez użytkownika zasada działania opisana powyżej

ZAWARTOŚĆ POPIOŁU A^t – pole do edycji przez użytkownika zasada działania opisana powyżej

13.3.4 Obliczenia

OBLICZENIA ZUŻYCIE PALIWA B :

Dla ogrzewania i wentylacji: $B = \frac{Q_{K,CO}}{H_u}$ Dla ciepłej wody z wzoru $B = \frac{Q_{K,CW}}{H_u}$ Dla chłodu z wzoru $B = \frac{Q_{K,C}}{H_u}$ Gdzie: $H_u - wartość opałowa, B - zużycie paliwa, Q_{K,CO} - energia końcową systemu ogrzewania i wentylacji, Q_{K,CW} - energia końcową systemu przygotowania ciepłej wody, Q_{K,C} - energia końcową systemu chłodzenia,$

OBLICZENIA EMISJI ZANIECZYSZCZEŃ :

L.p.	Jednostka zużycia B	Jednostka emisyjności	mnożnik m
1	m ³ /rok	kg/ m ³	1
2	m ³ /rok	kg/ 10 ⁶ m ³	1/106
3	kg/rok	kg/Mg	1/10 ³
4	kWh/kWh	kg/kWh	1
5	l/rok	Kg/m ³	1/10 ³

Obliczenie emisji NO_X:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji $NO_{XH0} = B_{H0} \cdot NO_X \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $NO_{XW0} = B_{W0} \cdot NO_X \cdot m$ Emisja dla każdego Rodzaju paliwa systemu chłodzenia $NO_{XC0} = B_{C0} \cdot NO_X \cdot m$ Emisja dla każdego Rodzaju paliwa systemu oświetlenia $NO_{XL0} = B_{L0} \cdot NO_X \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) $NO_X - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)$ m - mnożnik jednostkowy wg tabelki

Obliczenie emisji CO:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji $CO_{H0} = B_{H0} \cdot CO \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $CO_{W0} = B_{W0} \cdot CO \cdot m$ Emisja dla każdego Rodzaju paliwa systemu chłodzenia $CO_{C0} = B_{C0} \cdot CO \cdot m$ Emisja dla każdego Rodzaju paliwa systemu oświetlenia $CO_{L0} = B_{L0} \cdot CO \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) CO - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)m – mnożnik jednostkowy wg tabelki

Obliczenie emisji CO2:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji $CO_{2H0} = B_{H0} \cdot CO_2 \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $CO_{2W0} = B_{W0} \cdot CO_2 \cdot m$ Emisja dla każdego Rodzaju paliwa systemu chłodzenia $CO_{2C0} = B_{C0} \cdot CO_2 \cdot m$ Emisja dla każdego Rodzaju paliwa systemu oświetlenia $CO_{2L0} = B_{L0} \cdot CO_2 \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) $CO_2 - \text{emisja zanieczyszczeń}$ (dane z okna emisja zanieczyszczeń)

Obliczenie emisji PYŁ:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji $PYL_{H0} = B_{H0} \cdot PYL \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $PYL_{W0} = B_{W0} \cdot PYL \cdot m$ Emisja dla każdego Rodzaju paliwa systemu chłodzenia $PYL_{C0} = B_{C0} \cdot PYL \cdot m$ Emisja dla każdego Rodzaju paliwa systemu oświetlenia $PYL_{L0} = B_{L0} \cdot PYL \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) PYL – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

Obliczenie emisji SADZA:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji SADZA $_{H0} = B_{H0} \cdot SADZA \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody SADZA $_{W0} = B_{W0} \cdot SADZA \cdot m$ Emisja dla każdego Rodzaju paliwa systemu chłodzenia SADZA $_{C0} = B_{C0} \cdot SADZA \cdot m$ Emisja dla każdego Rodzaju paliwa systemu oświetlenia SADZA $_{L0} = B_{L0} \cdot SADZA \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) SADZA – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

Obliczenie emisji B-a-P:

Emisja dla każdego Rodzaju paliwa systemu ogrzewania i wentylacji B-a-P_{H0} = B_{H0} · B-a-P · m Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody B-a-P_{W0} = B_{W0} · B-a-P · m Emisja dla każdego Rodzaju paliwa systemu chłodzenia B-a-P_{C0} = B_{C0} · B-a-P · m Emisja dla każdego Rodzaju paliwa systemu oświetlenia B-a-P_{L0} = B_{L0} · B-a-P · m B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa)

B-a-P – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

Obliczenie emisji całego budynku:

$$\begin{split} &SO_{20}{=}SO_{2L0}{+}SO_{2C0}{+}SO_{2W0}{+}SO_{2H0} \\ &NO_{x0}{=}NO_{XL0}{+}\ NO_{XC0}{+}\ NO_{XW0}{+}\ NO_{XH0} \\ &CO_{0}{=}CO_{L0}{+}\ CO_{C0}{+}\ CO_{W0}{+}\ CO_{H0} \\ &CO_{20}{=}CO_{2L0}{+}CO_{2C0}{+}CO_{2W0}{+}CO_{2H0} \\ &PYL_0{=}PYL_{L0}{+}PYL_{C0}{+}PYL_{W0}{+}PYL_{H0} \\ &SADZA_0{=}SADZA_{L0}{+}SADZA_{C0}{+}SADZA_{W0}{+}SADZA_{H0} \\ &B{-}a{-}P_0{=}B{-}a{-}P_{L0}{+}B{-}a{-}P_{C0}{+}B{-}a{-}P_{W0}{+}B{-}a{-}P_{H0} \end{split}$$

OBLICZENIE EMISJI RÓWNOWAŻNEJ

Na podstawie obliczonych emisyjności (SO₂,NO_X, PYŁ,SADZA,B-a-P) dla całego projektu i dla źródeł alternatywnych wyliczamy emisje równoważną dla poszczególnych substancji:

Obliczenie emisji równoważnej dla całego projektu (O):

 $\begin{array}{l} E_{SO20}{=}\;SO_{20}\cdot 1\\ E_{NO:0}{=}\;NO_{X0}\cdot 0,75\\ E_{PYL0}{=}\;PYL_0\cdot 0,75\\ E_{SADZA0}{=}\;SADZA_0\cdot 3,75\\ E_{B\text{-}a\text{-}P0}{=}\;B\text{-}a\text{-}P_0\cdot 30000 \end{array}$

Obliczenie emisji równoważnej dla źródeł alternatywnych (1):

Obliczenie całkowitej emisji równoważnej dla całego projektu: E_{r0}=E_{SO20}+ E_{NOx0}+ E_{PYŁ0}+ E_{SADZA0}+ E_{B-a-P0} [kg/rok]

13.3.5 Raporty i wyniki

W panelu Raport/Efekt ekologiczny mamy do podglądu wykresy zużyć poszczególnych paliw w całym budynku, emisji zanieczyszczeń, z rozbiciem na poszczególne systemy z porównaniem do źródeł

alternatywnych. W przypadku kiedy chcemy wydrukować raport rtf należy wcisnąć przycisk składa się z kilkunastu stron na których pokazane jest zużycie paliwa, emisja zanieczyszczeń i emisja równoważna.

Okno zużycie paliwa certyfikat

Okno emisji zanieczyszczeń certyfikat

13.4 EFEKT EKOLOGICZNY DLA AUDYTU

W przypadku kiedy wykonujemy obliczenia audytu energetycznego lub remontowego program przenosi nam dane odnośnie zapotrzebowania na moc, sprawności, rodzaju paliwa, dla systemów grzewczych i przygotowania ciepłej wody w budynku przed i po modernizacji. Program na podstawie wybranego rodzaju paliwa wstawia domyślnie wartość opałową Hu (użytkownik może też wybrać inną wartość korzystając z bazy wartości opałowej).

13.4.1 OKNO ZUŻYCIE PALIWA

A		ArCADia-TERMO PRO 6.0) Licencja dla: T	Fest - ArCA	Dia-TERMO PR	0 6 [L01] -	02. Kamienica+Sklep(chłód)		- 6	×
Plik Ustawienia Pomoc	8	\$ D + + + + ?								
ZUŻYCIE PALIW	Aud	yt - Projektowana charakterystył	ka energetyczn	ia, WT 2014	1					
- 🔛 Zużycie pałłw	Zuž	cie paliwa przed termomodernizacją	talassionsh							_
		Rodrai oalwa	ed co.	Q0,ce	Wartość opałowa	Induction	Zużycie pałwa	Induction		+
	H.	Contra Internet and history	0.60	ki/th/rok	Hu		8 21.67 (Sel			÷
	2	Oepio z kogeneracji - gaz ziemny	0,61	198,00	11,66	wh/kg	27,73 kg/rok			<u>_</u>
	Zui	ycie paliw systemów przygotowania c	iepilej wody							
	Lp.	Rodzaj palma	r(0,cw	Q0,cw kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie pałiwa B	Jednostka		+
	1	Ciepio z ciepitowni gazowej/olejowej	0,36	3456,0	10,50	(Whijkinh	902,85 kWh/tok			×
	Zuż	rcie paliwa po termomodernizacji								
	Zui	ycle pallw systemów grzewczo - wen	tylacy(nych							
	Lp.	Rodzaj palma	η1,co	Q1/co kWh/rok	Wartosc opatowa Hu	Jednostka	zuzyce pałwa B	Jednostka		+
										×
										Ē
	Zul	ycie paliw systemów przygotowania c	iepiej wody							
	6	Rodzaj palma	nLow	Q1,cm	Wartość opałowa	Jednostka	Zużycie pałwa	Jednostka		+
	E			KNITUTOK	Hu		0			×
										-
—										
Certyfikat										
Audyt										
DANE WEJSCIOWE										
E OBLICZENIA CIEPLNE										
CERTYFEKAT										
2UŽYCIE PALIW										
EFEKT EKOLOGICZNY										
EFEKT EKONOMICZNY										
C PODGLĄD PROJEKTU	Ben	et o bledarb								
🖨 wydruki	Le.	Typ					Opis			^
	1	Ostrzeżenie Przegroda SZ-44 nie j	jest zaprojektowana	pravidiovo. I	Brak odprowadzenia k	ondensatu w oi	kresie letnim.			~
	100									

Okno zużycie paliwa certyfikat, włączone pobieranie danych z audytu

POLE POBIERZ DANE Z AUDYTU – w przypadku zaznaczenia **I** program pobiera dane odnośnie zużytej energii, paliwa i sprawności z Audytu, gdy odznaczymy to pole wówczas użytkownik będzie mógł wstawiać własne wartości.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH PRZED MODERNIZACJĄ

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach audytu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗹

Zuży	cie paliwa przed termomodernizacją cie paliw systemów grzewczo - wen	tylacyjnych						
Lp.	Rodzaj paliwa	η0,co	Q0,co kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+
1	Paliwo - węgiel kamienny	0,60	14567,90	7,70	. kWh/kg	3145,24 kg/rok	ж	X

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole w przypadku pobrania danych z audytu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{0,co}$ - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych wstawionych w systemie grzewczym Audytu, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w audycie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{0,co}**kWh/rok** - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w audycie, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{0co}.

WARTOŚĆ OPAŁOWA H_u – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

		Baza wartości opałow	ych				- 🗆	×
Znajdź Szukaj: 🖪 Wyniki wyszukiwania aktualnie niedostępne.							Wyczy	ść
	Lp.	Nazwa	Rodzaj pali	wa	Wartość opałowa Hu	Jednost	ka	+
Gaz Węgiel	1	Paliwo - Gaz ziemny	9,970	kWh/m³		∩ ∿		
Biomasa	2	Paliwo - Gaz płynny	Gaz ciekły		6,500	kWh/m³		100
Energia elektryczna	3	Paliwo - Gaz płynny luzem [m³]	Gaz ciekły		6,500	kWh/m³		
Inne Drewno	4	Paliwo - Gaz płynny butle 11 kg (propan)	Gaz ciekły		12,780	kWh/kg		\$
	5	Paliwo - Gaz płynny butle 30 kg (propan)	Gaz ciekły		13,050	kWh/kg		
	6	Paliwo - Gaz LPG mieszanka [litr]	Gaz ciekły		6,950	kWh/l		
	7	Paliwo - Gaz LPG 50/50 % [kg]	Gaz ciekły		12,780	kWh/kg		
	8	Paliwo - Gaz ziemny GZ-50	Gaz ziemny wysokometano wy		9,970	kWh/m³		
	<							•
Przywróć domyślne wartości Wybór wersji t	oazy o	anych: 6.0			A	nuluj	0	<

Baza wartości opałowej

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie H _u	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{0,co}}{H_u}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY PRZED MODERNIZACJĄ

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach audytu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗹

Zuży	użycie paliw systemów przygotowania ciepłej wody								
Lp.	Rodzaj paliwa	η0,cw	Q0,cw kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+	
1	Paliwo - węgiel kamienny	0,36	4688,80	7,70	kWh/kg	. 1670,33 kg/rok		×	

Tabela zużycia paliw dla systemów przygotowania ciepłej wody

RODZAJ PALIWA – pole w przypadku pobrania danych z audytu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{0,cw}$ - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych wstawionych w przygotowanie ciepłej wody Audytu, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w audycie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{0,cw}kWh/rok</sub> - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w audycie, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{0cw}.

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{0,cw}}{H_u}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH PO MODERNIZACJI

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach audytu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

Zuż Zu	Zułycie paliwa po termomodernizacji Zułycie paliw systemów grzewczo - wentyłacyjnych									
Lp	Rodzaj palwa	η1,co	Q1,co kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+		
1	Paliwo - węgiel kamienny	0,30	4688,80	7,70	kWh/kg	2029,78	kg/rok	×		

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole w przypadku pobrania danych z audytu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{1,co}$ - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych wstawionych w systemie grzewczym Audytu, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w audycie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{1,co}kWh/rok - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w audycie, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{1co}.

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{1,co}}{H}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY PO MODERNIZACJI

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach audytu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

r.	Zużycie paliw systemów przygotowania ciepłej wody											
I	Lp.	Rodzaj paliwa	η1,cw	Q1,cw kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+			
I	1	Paliwo - węgiel kamienny	0,30	14567,90	7,70	kWh/kg .	6306,45	kg/rok	×			

Tabela zużycia paliw dla systemów przygotowania ciepłej wody

RODZAJ PALIWA – pole w przypadku pobrania danych z audytu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{1,cw}$ - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych wstawionych w przygotowanie ciepłej wody Audytu, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w audycie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{1,cw}kWh/rok - pole w przypadku pobrania danych z audytu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w audycie, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{1cw}.

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ••••.

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B				
1	kWh/l	l/rok				
2	kWh/m ³	m³/rok				
3	kWh/kWh	kWh/rok				
4	kWh/kg	kg/rok				

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{1,cw}}{H}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

13.4.2 OKNO EMISJA ZANIECZYSZCZEŃ

Okno to służy do wpisywania emisyjności poszczególnych zanieczyszczeń, program na podstawie rodzaju paliwa i alternatywnych źródeł wpisuje występujące w projekcie rodzaje paliwa i wstawia do nich domyślne wartości emisyjności na podstawie MOŚZNiL 1/96 "Wskaźniki emisji substancji zanieczyszczających wprowadzanych do powietrza z procesów energetycznego spalania paliw" Dz. U. 04.281.2784. Użytkownik może również ręcznie wstawić własne wartości wykorzystując do tego bazę emisji zanieczyszczeń.

Plik Ustawienia Pomoc	凹 ゆ Da キャ / テマ ?	
EFEKT EKOLOGICZNY	Audyt - Projektowana charakterystyka energetyczna, WT 2014	
[] Fminja zanioczynzczoń	Parametry enisji zanioczyszczeń przed termomodersizacja	_
	Lp. Rodzaj paliwa lodnosti 502 NXX CO CO2 Pyl 5dza Ba ^p	0.000000
		0.0000
	Parametry emisji zanieczyszczeń po termomodernitzaji	
	42. rototaj para 2001002 20. rotota 20. roto	0,014000
Certyfikat		
Audyt		
DANE WEISCIOWE		
📕 OBLICZENIA CIEPUNE		
CERTYFIKAT		
202YCEE PALEW		
EFEKT EKOLOGICZNY		
EFEKT EKONOMICZNY		
C PODGLAD PROJEKTU	Para chine in	
H WYDRUKI	Peper Corpany	-
	Uni 197 Uli Vila Vila Vila Vila Vila Vila Vila Vi	Ţ,
trutal D		24mmili

Okno emisja zanieczyszczeń audytu

GRUPA PARAMETRY EMISJI PRZED TERMOMODERNIZACJĄ

Z tabeli "*Zużycie paliwa systemów grzewczo wentylacyjnych przed modernizacją*" w oknie "*Zużycie paliwa*" pobierane są dane odnośnie "*Rodzaju paliwa*" następnie sortowane wg nazwy i wstawiane do kolejnych wierszy tabeli "*Parametry emisyjności przed modernizacją*".

KOLUMNA RODZAJ PALIWA – pole tylko do odczytu pokazujące nazwę paliwa wstawionego do okna "*Zużycia paliwa*".

KOLUMNA BAZA EMISYJNOŚCI – pole to służy do wejścia do bazy emisyjności poprzez przycisk ••• otwiera nam się nowe okienko, w którym po wciśnięciu przycisku ok. przenoszone są dane do pozostałych kolumn SO₂, NO_x, CO, CO₂, Pył, Sadza, B-a-P. Baz zawiera dane emsji CO2 i innych zanieczyszczeń dla obliczeń NFOŚiGW za lata 2014 i następne (jeśli będą dostępne).

KOLUMNA JEDN. – pole to służy do wyboru jednej z poniższych jednostek w przypadku przekazania danych z bazy wartość jest wstawiana taka jaka dla wybranego elementu była jednostka. Możliwości wyboru (kg/m³, kg/10⁶m³, kg/Mg, kg/kWh)

Rodzaj paliwa	Jedn.	SO ₂	NO _X	CO	CO_2	Pył	Sadza	B-a-P
Paliwo - Olej opławy	kg/m ³	8,55	5	0,6	1650	1,8	0	0
Paliwo - Gaz ziemny	kg/106m3	0,0001	1280	360	1964	15	0	0
		2			000			
Paliwo - Gaz płynny	kg/m ³	0	0	0	0	0	0	0
Paliwo – Węgiel kamienny	kg/Mg	19,2	1	45	2000	10,5	0,35	0,014
Paliwo – Węgiel brunatny	kg/Mg	64	1,5	25	2400	60	0	0
Paliwo – Biomasa	kg/Mg	0,69	19,9	1,17	0	0,69	0	0
			7					
Ciepło z kogeneracji – Węgiel	kg/kWh	0,0003	0,00	0,00	0,37	0,00	0	0
kamienny		4	077	013	24	013		
Ciepło z kogeneracji – Gaz ziemny	kg/kWh	-	-	-	-	-	-	-
Ciepło z kogeneracji – Gaz biogaz	kg/kWh	-	-	-	-	-	-	-
Ciepło z kogeneracji – Biomasa	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni węglowej	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni gazowej/olejowej	kg/kWh	-	-	-	-	-	-	-
Ciepło z ciepłowni na biomasę	kg/kWh	-	-	-	-	-	-	-
Energia elektryczna – Produkcja	kg/kWh	0,0091	0,00	0,00	1	0,00	0,0000	0,00000
mieszana			23	069		15	027	0054
Energia elektryczna – System PV	kg/kWh	0	0	0	0	0	0	0
Paliwo – Kolektory słoneczne	kg/kWh	0	0	0	0	0	0	0

Baza emisji zanieczyszczeń – 🗖 🗙											
Znajdź Szukaj: 🖻 Wyczyść									ć		
Wyniki wyszukiwania aktualnie niedostępne.											
╪╪╅╳╳╔┝╠╠	Lp.	Nazwa	Jednost	ka	502	NOX	со	C02	Pył	Sadz B-a- a P	+
HIN KOBIZE	1	Moc cieplna <= 0,5	kg/M g		19,20 0	2,200	45,00 0	1850, 000	7,000	3,500 0,014	×
Ciąg naturalny	2	Moc cieplna > 0,5 ÷ <= 5	kg/M g		19,20 0	1,000	45,00 0	2000, 000	10,50 0	0,350 0,014	Ψh
ruszt mechaniczny											D
i⊡ in ruszt stały in ciąg naturalny											\$
Ciąg sztuczny											
ruszt stały											
Lekki olej opałowy Ciężki olej opałowy											
Gaz ziemny MOŚZNiL											
🗄 🖿 Węgiel kamienny 📩 🎦 Paleniska											
🖃 🗝 ruszt mechaniczny 👘 wydajność pa											
wydajność pa											
<											
Przywróć domyślne wartości Wybór wersji ba	zy dai	nych: 6.0						Anı	uluj	ок	

Okno baza emisji zanieczyszczeń

Okno Baza emisji zanieczyszczeń. Dane dla NFOŚiGW na 2014 r.

KOLUMNA NAZWA PALIWA - pole do edycji przez użytkownika,

KOLUMNA JEDN. – pole do wyboru jednej z możliwych jednostek [kg/kWh], [kg/Mg], [kg/m³], [kg/10⁶ m³]

KOLUMNA SO₂ – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA NO_X – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku \cdots i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA CO – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA CO₂ – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA PYŁ – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA SADZA – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

KOLUMNA B-a-P – użytkownik ma dwie opcje albo wpisuje ręcznie wartość albo korzysta z przycisku … i wówczas wartość jest wstawiana z bazy emisyjności.

Kalkulator emisji zanieczyszczeń									
Rodzaj paliwa:	stałe	Oblicz na podstawie zawartości							
Zawartość siarki: Zawartość popiołu:	7,00 %	🔘 роріоłи							
Wynik = s • 16,00	= 19,20	Anuluj OK							

Okno kalkulator emisji zanieczyszczeń

RODZAJ PALIWA – użytkownik wybiera tutaj jeden z trzech wariantów "*stałe*", "*ciekłe*", "*gazowe*". Gdy wybierzemy jako rodzaj paliwa "*stałe*" wówczas pojawiają się nam dwa nowe pola "*zawartość siarki s*=... [%]" i "*zawartość popiołu* A^t =...[%]". Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/Mg].

Gdy wybierzemy jako rodzaj paliwa "*ciekle*" wówczas pojawiają się nam dwa nowe pola "*zawartość siarki* $s = \dots [\%]$ ". Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/m³].

Gdy wybierzemy jako rodzaj paliwa *"gazowe"* wówczas pojawiają się nam dwa nowe pola *"zawartość siarki* $s = \dots [mg/m^3]$ ". Dodatkowo wówczas jednostki w kolumnach bazy są podawane w [kg/10⁶ m³].

ZAWARTOŚĆ SIARKI s – pole do edycji przez użytkownika zasada działania opisana powyżej

ZAWARTOŚĆ POPIOŁU A^t - pole do edycji przez użytkownika zasada działania opisana powyżej

13.4.3 Obliczenia

OBLICZENIA ZUŻYCIE PALIWA B:

Dla ogrzewania i wentylacjiprzed modernizacją: $B = \frac{Q_{0,CO}}{H_u}$ Dla ciepłej wody przed modernizacją z wzoru $B = \frac{Q_{0,CW}}{H_u}$ Dla ogrzewania i wentylacji po modernizacji z wzoru $B = \frac{Q_{1,CO}}{H_u}$ Dla ciepłej wody po modernizacji z wzoru $B = \frac{Q_{1,CW}}{H_u}$

Gdzie:

H_u - wartość opałowa,

B – zużycie paliwa,

 $Q_{0,CO}$ – zapotrzebowanie na energię przed modernizacją systemu ogrzewania i wentylacji, $Q_{0,CW}$ – zapotrzebowanie na energię przed modernizacją systemu przygotowania ciepłej wody,

Q_{1,CO}- zapotrzebowanie na energię po modernizacji systemu ogrzewania i wentylacji,
EFEKT EKOLOGICZNY

Q_{1,CW}- zapotrzebowanie na energię po modernizacji systemu przygotowania ciepłej wody,

L.p.	Jednostka zużycia B	Jednostka emisyjności	mnożnik m
1	m ³ /rok	kg/ m ³	1
2	m ³ /rok	kg/ 10 ⁶ m ³	1/106
3	kg/rok	kg/Mg	1/10 ³
4	kWh/kWh	kg/kWh	1
5	l/rok	Kg/ m^3	1/10 ³

OBLICZENIA EMISJI ZANIECZYSZCZEŃ :

Na podstawie danych wypełnionych w oknie zużycie paliwa i emisyjność wykonujemy obliczenia dla każdego Rodzaju paliwa i systemu wg poniższego wzoru:

Obliczenie emisji SO2:

Emisja dla każdego Rodzaju paliwa systemu grzewczego $SO_{2H0} = B_{H0} \cdot SO_2 \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $SO_{2W0} = B_{W0} \cdot SO_2 \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) SO_2 – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń) m – mnożnik jednostkowy wg tabelki nr 4

Obliczenie emisji NO_X:

Emisja dla każdego Rodzaju paliwa systemu grzewczego $NO_{XH0} = B_{H0} \cdot NO_X \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $NO_{XW0} = B_{W0} \cdot NO_X \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) $NO_X - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)$ m – mnożnik jednostkowy wg tabelki nr 4

Obliczenie emisji CO:

Emisja dla każdego Rodzaju paliwa systemu grzewczego $CO_{H0} = B_{H0} \cdot CO \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $CO_{W0} = B_{W0} \cdot CO \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) CO - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)m – mnożnik jednostkowy wg tabelki nr 4

Obliczenie emisji CO2:

Emisja dla każdego Rodzaju paliwa systemu grzewczego $CO_{2H0} = B_{H0} \cdot CO_2 \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $CO_{2W0} = B_{W0} \cdot CO_2 \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) $CO_2 - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)$

Obliczenie emisji PYŁ:

Emisja dla każdego Rodzaju paliwa systemu grzewczego $PYL_{H0} = B_{H0} \cdot PYL \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody $PYL_{W0} = B_{W0} \cdot PYL \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) PYL - emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

Obliczenie emisji SADZA:

Emisja dla każdego Rodzaju paliwa systemu grzewczego SADZA $_{H0} = B_{H0} \cdot SADZA \cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody SADZA $_{W0} = B_{W0} \cdot SADZA \cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) SADZA – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

EFEKT EKOLOGICZNY

Obliczenie emisji B-a-P:

Emisja dla każdego Rodzaju paliwa systemu grzewczego B-a-P_{H0} = $B_{H0} \cdot B$ -a-P $\cdot m$ Emisja dla każdego Rodzaju paliwa systemu przygotowania ciepłej wody B-a-P_{W0} = $B_{W0} \cdot B$ -a-P $\cdot m$ B –zużycie paliwa dla wybranego rodzaju paliwa i systemu (dane z okna zużycie paliwa) B-a-P – emisja zanieczyszczeń (dane z okna emisja zanieczyszczeń)

Obliczenie emisji całego budynku przed modernizacją:

 $\begin{array}{l} SO_{20} = SO_{2W0} + SO_{2H0} \\ NO_{x0} = NO_{XW0} + NO_{XH0} \\ CO_0 = CO_{W0} + CO_{H0} \\ CO_{20} = CO_{2W0} + CO_{2H0} \\ PYL_0 = PYL_{W0} + PYL_{H0} \\ SADZA_0 = SADZA_{W0} + SADZA_{H0} \\ B-a-P_0 = B-a-P_{W0} + B-a-P_{H0} \end{array}$

OBLICZENIE EMISJI RÓWNOWAŻNEJ

Na podstawie obliczonych emisyjności (SO₂,NO_x, PYŁ,SADZA,B-a-P) przed i po modernizacji wyliczamy emisje równoważną dla poszczególnych substancji:

Obliczenie emisji równoważnej przed modernizacją (0):

 $\begin{array}{l} E_{SO_20} = SO_{20} \cdot 1 \\ E_{NO_40} = NO_{X0} \cdot 0,75 \\ E_{PYL0} = PYL_0 \cdot 0,75 \\ E_{SADZA0} = SADZA_0 \cdot 3,75 \\ E_{B-a-P0} = B-a-P_0 \cdot 30000 \end{array}$

 $\begin{array}{l} \underline{Obliczenie\ emisji\ równoważnej\ po\ modernizacji\ (1):}\\ E_{SO^2l}=SO_{21}\cdot 1\\ E_{NOsl}=NO_{X1}\cdot 0,75\\ E_{PYL1}=PYL_1\cdot 0,75\\ E_{SADZA1}=SADZA_1\cdot 3,75\\ E_{B-a-P1}=B-a-P_1\cdot 30000 \end{array}$

Obliczenie całkowitej emisji równoważnej przed modernizacją: E_{r0}=E_{SO20}+ E_{NOx0}+ E_{PYŁ0}+ E_{SADZA0}+ E_{B-a-P0} [kg/rok]

 $\frac{Obliczenie całkowitej emisji równoważnej po modernizacji:}{E_{r1}=E_{SO21}+E_{NOx1}+E_{PYL1}+E_{SADZA1}+E_{B-a-P1} [kg/rok]}$

<u>Obliczenie efektu ekologicznego dla emisji równoważnej:</u> Efekt ekologiczny $E = E_{r0} \cdot E_{r1} [kg/rok]$

13.4.4 Raporty i wyniki

W panelu Raport/Efekt ekologiczny mamy do podglądu wykresy zużyć poszczególnych paliw w całym budynku, emisji zanieczyszczeń, z rozbiciem na poszczególne systemy z porównaniem przed i po modernizacji. W przypadku kiedy chcemy wydrukować raport rtf należy wcisnąć przycisk Raport składa się z kilkunastu stron na których pokazane jest zużycie paliwa, emisja zanieczyszczeń i emisja równoważna.

EFEKT EKOLOGICZNY

Porównanie emisji zanieczyszczeń, audyt

Okno Emisji zanieczyszczeń, audyt

14 EFEKTEKONOMICZNY

14.1 WSTĘP DO EFEKTU EKONOMICZNEGO

ArCADia-EFEKT EKONOMICZNY jest programem ściśle współpracującym z systemem *ArCADia-TERMO* służącym do szacowania kosztów eksploatacyjnych budynku. Program na podstawie danych wprowadzonych w Świadectwie Charakterystyki Energetycznej wyliczy zużycie paliw poszczególnych systemów zastosowanych w budynku, a następnie na tej podstawie koszty ogrzewania, przygotowania ciepłej wody, chłodzenia, oświetlenia wbudowanego wraz z uwzględnieniem urządzeń pomocniczych. Dodatkowo program umożliwia przeprowadzenie analizy ekonomicznej wybranych systemów w budynku z systemami alternatywnymi. Porównuje koszty eksploatacyjne, inwestycyjne, a także wykonuje obliczenia prostego czasu zwrotu inwestycji SPBT. Analizy oszczędności i kosztów wykonywane są w przeliczeniu na m² powierzchni. Wyniki można podejrzeć w programie lub w kilkunasto stronnicowym raporcie rtf.

14.2 WYBÓR OBLICZEŃ EFEKTU EKOLOGICZNEGO

Użytkownik efekt ekonomiczny może wybrać w dowolnym momencie obliczeń dla wstawionych danych w certyfikacie, w tym celu musi zaznaczyć ikonkę Araliza środowiskowo-ekonomiczna

Okno wyboru obliczeń

14.3 EFEKT EKONOMICZNY

W przypadku kiedy wykonujemy obliczenia ŚCHE lub PCHE program przenosi nam dane odnośnie zapotrzebowania na moc, sprawności, rodzaju paliwa, zużycia energii elektrycznej na urządzenia pomocnicze, dla wszystkich zaprojektowanych systemów w budynku. Program na podstawie wybranego rodzaju paliwa wstawia domyślnie wartość opałową H_u (użytkownik może też wybrać inną wartość korzystając z bazy wartości opałowej).

14.3.1 OKNO ZUŻYCIE PALIWA

Α.	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód)	- 6 ×									
<u>Plik</u> Ustawienia P <u>o</u> moc											
Zużycie pałiw	Poblerz dane z certyfikatu										
Alternatywne źródła	Zulysie palw systemów grzewszo - wentylasyjnych										
	Lp. Rodost palwa Uddał Qhnd ntot Qk,h Wartość Jednostka Żużycie 1% ktilhytok ntot ktilhytok opałowa Hu Jednostka palwa B	Jednostka									
	1 Palwo - węgiel brunatny 40,77 4676,17 0,63 7406,03 9,97 kWh/m* 742,83 m³/rok										
		ATTON MIR									
	Oriespendinterne sectore energiptistes inseptene pontonistes	Trive Tok									
	Zużycie paliw systemów przygotowania ciepłej wody										
	Lp. Rodzaj palwa % k0th/tok ntot k0th/tok Hu Jednostka palwa B	Jednostka									
	Uwzględnij roczne zużycie energi przez urządzenia pomocnicze:	508,63 kWh									
		101.									
Card-Good											
Audyt											
DANE WEJŚCIOWE											
BUICZENIA CIEPUNE											
	Rapot o bledach										
- WYDRUKI	Lp. Typ Opis Opis Opis Opis Opis Opis Opis										
		•									
< [5/18] >		i là là là là 😑 Zeminij									

Okno zużycie paliwa certyfikat, włączone pobieranie danych z certyfikatu

POLE POBIERZ DANE Z CERTYFIKATU – w przypadku zaznaczenia **I** program pobiera dane odnośnie zużytej energii, paliwa i sprawności z Certyfikatu, gdy odznaczymy to pole wówczas użytkownik będzie mógł wstawiać własne wartości.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

	Zułycie paliw systemów grzewczo - wentylacyjnych										
Lp	. Rodzaj paliwa	Udział %	Qhnd kWh/rok	ηtot	Qk,h kWh/rok	Wartość opałowa Hu	Jednostk		Zużycie paliwa B	Jednostka	
1	Paliwo - węgiel brunatny	40,77	4676,17	0,63	7406,03	9,97	kWh/m³		742,83	n²/rok	
4	Uwzględnij roczne zużycie energii przez urządzenia pomocnicze: 177,04 KWh rok										

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{hnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{H,nd}kWh/rok - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w strefach cieplnych, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{hnd}.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA $\eta_{H,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w certyfikacie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,H}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{H,nd}i\eta_{H,tot}$ z wzoru: $Q_{K,H}=Q_{H,nd}/\eta_{H,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem … .Baza zawiera także wartości opałowe paliw specjalnie przygotowane do obliczeń zgodnych z NFOŚiGW w roku 2014 i w latach nastepnych (gdy zostaną opublikowane).

Baza emisji zanieczyszczeń – 🗖	×
Znajdź Szukaj: 🗐 Wyczyść	
Wyniki wyszukiwania aktualnie niedostępne.	
+++ × >8 Th I F	+
Biomasa 1 Cieptownie. Węgiel kamienny kg/G3 0,000 0,000 0,000 0,000 0,000 0,000 0,000	×
WFOS/GW D	n,
	Đ
	\$
T Tab. 5 - PRODUK S T Tab. 6 - PRODUK. ST	
- Can Tab. 7 - PROD. CHEN - Can Tab. 8 - PROD. CELU	
- In Tab. 9 - PROD. ART. - In Tab. 10 - ININE DZIAŁ	
□ □ Ruszt mechar □ □ Ruszt stałv	
Ciąg natu V	
Przywróć domyślne wartości Wybór wersji bazy danych: 6,0 Anuluj OK	

Baza wartości opałowej dla NFOŚiGW (strzałka)

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m ³ /rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok
5	MJ/kg	kg/rok
6	MJ/m3	m³/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,H}}{H_{H}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,H} [**kWh/rok**]- w przypadku zaznaczenia w awtość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗹

-	V Zużycie paliw systemów grzewczo - wentylacyjnych										
Lp	. Rodzaj paliwa		Udział %	Qhnd kWh/rok	ηtot	Qk,h kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+
1	Paliwo - węgiel kamienny		100,00	272009,77	0,73	372616,12	7,70	kWh/kg	48391,70 k	g/rok	×

Tabela zużycia paliw dla systemów ogrzewania dla NFOŚiGW

/ Z	użycie paliw systemów przyg	joto	wania ciepł	lej wody								
Lp.	Rodzaj paliwa		Udział %	Qwnd kWh/rok	ηtot	Qk,w kWh/rok	Wartość opałowa Hu	Jednost	ka	Zużycie paliwa B	Jednostka	+
1	Paliwo - węgiel kamienny		100,00	8411,43	0,30	28038,10	7,70	kWh/kg		3641,31	kg/rok	×

Tabela zużycia paliw dla systemów przygotowania ciepłej wody i ogrzewania

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{wnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Q_{w,nd}kWh/rok - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w przygotowaniu ciepłej wody, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{wnd}.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{w,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach ciepła w certyfikacie poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,W}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{W,nd}$ i $\eta_{W,tot}$ z wzoru: $Q_{K,W} = Q_{W,nd} / \eta_{W,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok
5	MJ/kg	kg/rok
6	MJ/m3	m³/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,W}}{H_V}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,W} [**kWh/rok**]- w przypadku zaznaczenia w awtość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW CHŁODZENIA

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

V	Zu	rżycie paliw systemów chłodzer	ia								
L	р.	Rodzaj paliwa	Udział %	Qcnd kWh/rok	ηtot	Qk,c kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+
Г	1	Energia elektryczna - produkcja	100,00	25348,12	3,48	7288,13	1,00	kWh/kWh	7288,13	kWh/rok	×
	U	względnij roczne zużycie energii pra	ez urządze	nia pomocnicz	te:					0 kWh rok	

Tabela zużycia paliw dla systemów chłodzenia

RODZAJ PALIWA – pole w przypadku pobrania danych z certyfikatu jest nie do edycji, a w przypadku ręcznego wpisywania danych dostajemy możliwość wybrania typu paliwa z bazy poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła ciepła ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych wyliczana jest na podstawie wstawionego Q_{cnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ $Q_{C,nd}kWh/rok$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w strefach chłodu, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość Q_{Cnd} .

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{C,tot}$ - pole w przypadku pobrania danych z certyfikatu jest nie aktywne a wartość w nim wpisywana jest na podstawie danych wstawionych w źródła chłodu ŚCHE lub PCHE, w przypadku ręcznego wpisywania danych użytkownik ma możliwość wybrania cząstkowych sprawności tak jak to ma miejsce w źródłach chłodu w certyfikacie poprzez przycisk ··· .

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,c}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{C,nd}$ i $\eta_{C,tot}$ z wzoru: $Q_{K,C} = Q_{C,nd} / \eta_{C,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m ³ /rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok
5	MJ/kg	kg/rok
6	MJ/m3	m³/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,C}}{H_{y}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZE $E_{el,pom,C}$ [kWh/rok]- w przypadku zaznaczenia w wartość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW OŚWIETLENIA WBUDOWANEGO

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

V Zuzycie paliw systemow oswietiema woudowanego	
Roczne zużycie energii elektrycznej przez systemy oświetlenia wbudowanego:	2563,88 kWh rok
Uwzględnij roczne zużycie energii przez urządzenia pomocnicze:	6,00 kWh rok

Tabela zużycia paliw dla systemów oświetlenia wbudowanego

ROCZNE ZUŻYCIE ENERGII ELEKTRYCZNEJ PRZEZ SYSTEM OŚWIETLENIA

WBUDOWANEGO – pole w przypadku pobrania danych z certyfikatu jest nie aktywne, a wartość w nim wpisywana jest na podstawie danych obliczonych w oświetleniu wbudowanym, w przypadku ręcznego wpisywania danych użytkownik wpisuje obliczoną wartość $E_{K,L}$.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZE Eel,pom, L

[kWh/rok]- w przypadku zaznaczenia wartość ta będzie uwzględniana w zużyciu paliwa, program w przypadku pobrania danych z certyfikatu wstawia sumę mocy urządzeń pomocniczych wybranego systemu, w przypadku ręcznego wstawiania pobiera informację z okna sprawności systemu.

14.3.2 OKNO ALTERNATYWNE ŹRÓDŁO

Okno alternatywne źródło certyfikat

WYKONAJ OBLICZENIA PORÓWNAWCZE – pole do wyboru czy w efekcie ekologicznym uwzględniamy alternatywne źródła wówczas zaznaczmy ☑, lub czy obliczenia wykonujemy tylko dla projektowanego budynku wówczas pole zostawiamy odznaczone.

GRUPA ZUŻYCIE PALIW SYSTEMÓW GRZEWCZO-WENTYLACYJNYCH

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

-	Zużycie paliw systemów grzewo	zo - wenty	lacyjnych							
Ro	czne zapotrzebowanie na energię uż	ytkową syst	emu grzewczo	o - wentylacyjn	ych:			272009,77 kWh rok		
Lp	. Rodzaj paliwa	Udział %	Qhnd kWh/rok	ηtot	Qk,h kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+
1	Ciepło z kogeneracji - biomasa	. 100,0	0 272009,77	0,80	340012,21	4,28	kWh/kWh	79442,11 kW	n/rok	×
L										
	Uwzględnij roczne zużycie energii p	rzez urządz	enia pomocnic:	ze:					177,04 kWh rok	

Tabela zużycia paliw dla systemów grzewczo-wentylacyjnych

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{hnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ QH,ndkWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU OGRZEWANIA η_{H,tot} - pole do wpisywania sprawności systemu poprzez przycisk….

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Q_{K,H}kWh / rok - pole obliczane automatycznie na podstawie danych z kolumny Q_{H,nd} i η_{H,tot} z wzoru: Q_{K,H}=Q_{H,nd}/η_{H,tot}

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie … . Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok
5	MJ/kg	kg/rok
6	MJ/m3	m³/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,H}}{H}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,H} [kWh/rok]- w przypadku zaznaczenia 🗹 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW PRZYGOTOWANIA CIEPŁEJ WODY

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 🗵

Rot	Zużycie paliw systemów przyg zne zapotrzebowanie na energię (gotowania ci użytkową sys	e płej wody iemu przygotov	vania ciepłej wo	idy:				8411,43 <u>kWh</u> TOK	
Lp.	Rodzaj paliwa	Udział %	Qwnd kWh/rok	ηtot	Qk,w kWh/rok	Wartość opałowa Hu	Jednostka	Zużycie paliwa B	Jednostka	+
1	Ciepło z kogeneracji - biomasa	100,	0 8411,43	0,40	21028,58	4,28	kWh/kWh	4913,22	kWh/rok	×
	Uwzględnij roczne zużycie energi	ii przez urząd	enia pomocnic	ze:					508,68 kWh rok	

Tabela zużycia paliw dla systemów przygotowania ciepłej wody

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{wnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Qw,ndkWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{w,tot}$ - pole do wpisywania sprawności systemu poprzez przycisk

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ $Q_{K,W}kWh/rok$ - pole obliczane automatycznie na podstawie danych z kolumny $Q_{W,nd}i\eta_{W,tot}$ z wzoru: $Q_{K,W}=Q_{W,nd}/\eta_{W,tot}$

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,W}}{H_u}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,W} [kWh/rok]- w przypadku zaznaczenia 🗹 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

GRUPA ZUŻYCIE PALIW SYSTEMÓW CHŁODZENIA

Program domyślnie zaznacza wszystkie systemy uwzględnione w obliczeniach certyfikatu, w przypadku kiedy chcemy uwzględnić lub nie uwzględnić wybranego systemu należy zaznaczyć lub odznaczyć pole 📝

	Zużycie paliw systemów chłodz	enia									
R	oczne zapotrzebowanie na energię uż	ytkową syste	mu chłodzeni	ia:						25348,12 kWh rok	
4	. Rodzaj paliwa	Udział %	Qcnd kWh/rok	ηtot	Qk,c kWh/rok	Wartość opałowa Hu	Jednostka	a Zu pa	lużycie aliwa B	Jednostka	+
	Energia elektryczna - produkcja mieszana	100,00	25348,12	2,80	9052,90	1,00	. kwh/kwh	9	9052,90	Wh/rok	×
L											
	Uwzględnij roczne zużycie energii p	vrzez urządze	nia pomocnic	ze:						0 kWh rok	

Tabela zużycia paliw dla systemów chłodzenia

RODZAJ PALIWA – pole do wyboru rodzaju paliwa z rozwijanej listy uruchamianej poprzez wciśnięcie przycisku ….

UDZIAŁ PROCENTOWY% - pole do ustalania udziału procentowego źródła na tej podstawie program przeliczy wartość Q_{cnd}.

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ Qc,ndkWh/rok - pole tylko do odczytu, wartość wyliczana na podstawie udziału procentowego.

CAŁKOWITA SPRAWNOŚĆ SYSTEMU $\eta_{C,tot}$ - pole do wpisywania sprawności systemu poprzez przycisk

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWĄ Qκ,c**kWh/rok** - pole obliczane automatycznie na podstawie danych z kolumny Q_{C,nd}iη_{C,tot} z wzoru: Q_{K,C}=Q_{C,nd}/η_{C,tot}

WARTOŚĆ OPAŁOWA Hu – pole do edycji przez użytkownika, program na podstawie wstawionego rodzaju paliwa wstawia wartość domyślną, użytkownik może skorzystać z bazy wartości opałowej odpalanej przyciskiem ….

JEDNOSTKA WARTOŚCI OPAŁOWEJ – pole do wyboru jednostki wartości opałowej wstawiane domyślnie na podstawie danych z bazy wartości opałowej, lub ręcznie przy pomocy przycisku kontynuacji …. Na tej podstawie zostanie dobrana jednostka zużycia paliwa wg poniższej tabeli.

L.p.	Jednostka w kolumnie Hu	Jednostka w kolumnie B
1	kWh/l	l/rok
2	kWh/m ³	m³/rok
3	kWh/kWh	kWh/rok
4	kWh/kg	kg/rok

ZUŻYCIE PALIWA B – pole do edycji, program wylicza wartość domyślnie na podstawie wzoru: $B = \frac{Q_{K,C}}{H_{T}}$

JEDNOSTKA ZUŻYCIA PALIWA – pole wstawia automatycznie wartość jednostki paliwa na podstawie tabelki powyżej.

UWZGLĘDNIĆ ROCZNE ZUŻYCIE ENERGII PRZEZ URZĄDZENIA POMOCNICZEE_{el,pom,C} [kWh/rok]- w przypadku zaznaczenia 🗹 wartość ta będzie uwzględniana w zużyciu paliwa, program pobiera informację z okna sprawności systemu.

14.3.3 OKNO EFEKT EKONOMICZNY

Okno to służy podzielone jest na dwa warianty "Koszty projektowane" i "Koszty alternatywne", a także 1-5 zakładek uzależnionych od wybranych systemów do analizy. Na pierwszej zakładce "Opis systemu" opisujemy porównywane systemy, podajemy dla jakiego okresu będziemy wykonywać obliczenia, na zakładach od 2-5 podajemy koszty eksploatacyjne i koszty inwestycyjne.

4	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód) – 🗗 🗙
Plik Ustawienia Pomoc	
	Certyfikat - Projektowana charakterystyka energetyczna, WT 2014
6 Katip preklemen 6 Katip alternativene	la do la de
Certyfixat	
DANE WEJŚCIOWE	
08LICZENIA CIEPLNE	
CERTYFIKAT	
2UŻYCIE PALIW	
EFEKT EKOLOGICZNY	
EFEKT EKONOMICZNY	
	Rapot o bledach
KI WYDRUKI	Les Typ Oper Oblinez bisz biszkówi
< [12/18] >	📴 📴 📴 🗮 🗮 🛎 💣 🛷 🥏 🥥 🗛 🖓 🖓 🖓

Okno opis systemu do raportu efektu ekonomicznego

ZAKŁADKA OPIS SYSTEMÓW

OPIS OGÓLNY – pole do wpisywania ogólnego opisu instalacji lub budynku, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

PRZYCISK POBIERZ – po wciśnięciu tego przycisku program z ustawionych szablonów wypełni na podstawie wybranych sprawności opisy systemów ogrzewania, wentylacji, przygotowania cieplej wody, oświeltenia wbudowanego i chłodu,

OGRZEWANIE - pole do wpisywania opisu instalacji grzewczej, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

WENTYLACJA - pole do wpisywania opisu instalacji wentylacyjnej, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

PRZYGOTOWANIE CIEPŁEJ WODY - pole do wpisywania opisu instalacji przygotowania ciepłej wody, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

CHŁODZENIE - pole do wpisywania opisu instalacji chłodzenia, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

OŚWIETLENIE WBUDOWANE - pole do wpisywania opisu instalacji oświetlenia, jeśli pozostawimy nie wypełnione program nie pokaże tego w raporcie rtf,

TEMAT ANALIZY PORÓWNAWCZEJ KOSZTÓW INWESTYCYJNO-EKSPLOATACYJNYCH – pole do wpisywani tematu analizy jaki pojawi się na pierwszej stronie raportu rtf,

PRZYJĘTY OKRES ROZLICZENIA – pole do wpisywania długości analizowanego okresu, w większości przypadku jest to czas trwałości urządzenia, program na tej podstawie będzie budował wykres kosztów inwestycyjno – eksploatacyjnych,

ZAKŁADKA SYSTEM GRZEWCZO-WENTYLACYJNY

Podręcznik użytkownika dla programu ArCADia-TERMO

EFEKT EKONOMICZNY

Pik Utawinia Pennec Image: Centry likks	
EFEKT EKONOMICZNV Certyfikat - Projektowana cenergetyczna, WT 2014 Opie systemic Opie systemic Wytercewerktowy (system chydowana cenergetyczna, WT 2014) Dodatkowana opie wody System chydowana cenergie wody System chydowana	
Ops systems Ops systems Ops systems Ops systems System objectores wouldowango Ops system Ops systems Ops system System objectores System objectores Ops system Ops systems Ops systems Ops system System objectores System objectores Ops systems Ops systems </th <th></th>	
	+
Certyflust Image: Data WesK10WE Image: DataWesK10WE </th <th></th>	
Image: Report a Diplaceh Typ Opsie WYD BUKI Lp. Typ Opsie 1 Distracterine Przegrada 52-411 nie jest zaprojektowana prawidłowe. Brak odprowedzenia kondersału w obresie ktelm. Opsie	Ĵ

Okno system grzewczo-wentylacyjny efekt ekonomiczny

GRUPA CENA JEDNOSTKOWA PALIW

Cer	y jednostkowe paliw					Dodatkowe koszty el	ksploatacyjne
Lp.	Rodzaj paliwa	Cena jedn.	Jednostk	a .	Uwagi	Oplaty stale Om:	0 <u>zł</u>
1	Paliwo - gaz ziemny	2,410	zł/m²			Ilwank	m-c
2	Energia elektryczna - produkcja mieszana	0,500	zł/kWh			E	
						Abonamenty Ab: Uwagi: 🕑	0 <u>2†</u> m-c
Zas	tosuj ceny jednostkowe paliw w p	ozostałych sysl	emach		Zastosuj		

Okno ceny jednostkowe paliwa

RODZAJ PALIWA – pole do odczytu, program pobiera dane z zużycia paliw i szereguje paliwa na podstawie nazwy,

CENA JEDNOSTKOWA – pole do edycji przez użytkownika, dodatkowo można skorzystać z edytora cen uruchamianej przyciskiem ••••. Program domyślnie na podstawie wybranego paliwa wstawia cene wg poniższej tabelki.

т	D 1 ' 1'	T 1	C
L.p	Rodzaj paliwa	Jedn.	Cena
			Jedn.
1	Paliwo - Olej opławy	zł/l	1,514
2	Paliwo - Gaz ziemny	zł/m ³	2,41
3	Paliwo - Gaz płynny	zł/l	2,45
4	Paliwo – Węgiel kamienny	zł/kg	0,7
5	Paliwo – Węgiel brunatny	zł/kg	64
6	Paliwo – Biomasa	zł/kg	0,69
7	Ciepło z kogeneracji – Węgiel	zł/kWh	0.0708
	kamienny	Z1/K VV 11	0,0700
8	Ciepło z kogeneracji – Gaz ziemny	zł/kWh	0,0708
9	Ciepło z kogeneracji – Gaz biogaz	zł/kWh	0,0708
10	Ciepło z kogeneracji – Biomasa	zł/kWh	0,0708
11	Ciepło z ciepłowni węglowej	zł/kWh	0,0708
12	Ciepło z ciepłowni gazowej/olejowej	zł/kWh	0,0708
13	Ciepło z ciepłowni na biomasę	zł/kWh	0,0708
14	Energia elektryczna – Produkcja	zł/kWh	0.5
	mieszana	Z1/K VV 11	0,5
15	Energia elektryczna – System PV	zł/kWh	0

r	•		
16	Paliwo – Kolektory słoneczne	zł/kWh	0

JEDNOSTKA – pole to służy do wyboru jednej z poniższych jednostek w przypadku przekazania danych z bazy wartość jest wstawiana taka jaka dla wybranego elementu była jednostka. Możliwości wyboru (zł/m³, zł/kg, zł/l, zł/kWh), program ma wstawione domyślne wartości na podstawie rodzaju paliwa z poniższej tabelki:

L.p.	Jednostka w zużyciu B	Jednostka w kosztach Jedn.
1	kg/rok	zł/kg
2	l/rok	zł/l
3	kWh/rok	zł/kWh
4	m³/rok	zł/m ³

UWAGI – pole do wpisywania tekstu, np. uzasadniającego przyjęta cenę. Wartość będzie pokazywana w raporcie rtf efektu ekonomicznego.

		Edytor cen					×
Znajdž Szukaj: 🗐 Wyniki wyszukiwania aktualnie niedostępne.						Wyczy	ść
+ ←↓ × ≫ ♪ ♪ ♪ ₽aliwa	Lp.	Nazwa	Cena jednostko wa	Jednos	tka	Uwagi	+
Gaz	1	Ciepło z kogeneracji – Węgiel kamienny	0,071	zł/kWh			×
Węgiel Biomasa Ciepto Energia elektryczna Inne	2	Ciepło z kogeneracji – Gaz ziemny	0,071	zł/kWh			חי
	3	Ciepło z kogeneracji – Gaz biogaz	0,071	zł/kWh			
	4	Ciepło z kogeneracji – Biomasa	0,071	zł/kWh			\sim
	5	Ciepło z ciepłowni węglowej	0,071	zł/kWh			
	6	Ciepło z ciepłowni gazowej/olejowej	0,071	zł/kWh			
	7	Ciepło z ciepłowni na biomasę	0,071	zł/kWh			
Przywróć domyślne wartości Wybór wersji b	l azy da	nych: 6.0				Anuluj O	к

Okno edytora cen

ZASTOSUJ CENY JEDNOSTKOWE PALIW W POZOSTAŁYCH SYSTEMACH – włączenie przycisku zastosuj powoduje wstawienie takich sam cen do pozostałych systemów,

GRUPA "DODATKOWE KOSZTY EKSPLOATACYJNE"

OPŁATA STAŁA Om [zl/m-c] – pole do edycji przez użytkownika, służące do wpisywania dodatkowych opłat związanych z danym paliwem,

UWAGI - pole do wpisywania textu przez użytkownika

ABONAMENTAb [zl/m-c] – pole do edycji przez użytkownika, służące do wpisywania dodatkowych kosztów typu abonament, koszty palacza itp.

ÚWAGI – pole do wpisywania textu przez użytkownika

CAŁKOWITE KOSZTY EKSPLOATACYJNE K_{H,E} [zł/rok] – pole tylko do odczytu, wartość wyliczana z wzoru:

 $K_{H,E} = 12 \cdot O_m + 12 \cdot Ab + \Sigma B \cdot Cena jednostkowa$

	Rodzaj robót	lość robót	Cena jedn.	Koszty netto	VAT [%]	Koszty brutto	Uzasadnienie przyjętych kosztów
Kotownia		1,00	14000,00	14000,0 0	22	17080,0 0	

Okno koszty inwestycyjne

GRUPA "KOSZTY INWESTYCYJNE"

CAŁKOWITE KOSZTY INWESTYCYJNE K_{H,I} [zł/rok] – pole tylko do odczytu, wartość wyliczana z sumy z kolumny koszty robót.

DODATKOWE INFORMACJE – pole do wpisywania tekstu przez użytkownika.

14.3.4 RAPORTY I WYNIKI

GRUPA ZESTAWIENIE ANALIZY EKONOMICZNEJ

KOSZTY INWESTYCYJNE WARIANT PROJEKTOWANY KIP [zł] – program pobiera dane z kosztów inwestycyjnych z systemów ogrzewania-wentylacji, ciepłej wody użytkowej, chłodu i oświetlenia wbudowanego (sumuje wartości) dla wariantu projektowanego.

KOSZTY INWESTYCYJNE WARIANT ALTERNATYWNEGO KIA [zł] – program pobiera dane z kosztów inwestycyjnych z systemów ogrzewania-wentylacji, ciepłej wody użytkowej, chłodu i oświetlenia wbudowanego (sumuje wartości) dla wariantu alternatywnego.

KOSZTY EKSPLOATACYJNE WARIANT PROJEKTOWANY K_{EP} [zł] – program pobiera dane z kosztów eksploatacyjne z systemów ogrzewania-wentylacji, ciepłej wody użytkowej, chłodu i oświetlenia wbudowanego (sumuje wartości) dla wariantu projektowanego.

KOSZTY EKSPLOATACYJNE WARIANT ALTERNATYWNEGO KEA [zł] – program pobiera dane z kosztów eksploatacyjne z systemów ogrzewania-wentylacji, ciepłej wody użytkowej, chłodu i oświetlenia wbudowanego (sumuje wartości) dla wariantu alternatywnego.

PROSTY CZAS ZWROTU SPBT ALTERNATYWNYCH ŹRÓDEŁ SPBT [lat] – program oblicza tą wartość z poniższego wzoru:

 $SPBT = (K_{IA} - K_{IP}) / (K_{EP} - K_{EA})$

K_{IA}=[wariant alternatywny (K_{H,I}+ K_{W,I}+ K_{C,I}+ K_{L,I})],

KIP=[wariant projektowany (KH,I+ KW,I+ KC,I+ KL,I)],

KEA=[wariant alternatywny (KH,E+ KW,E+ KC,E+ KL,E)],

KEP=[wariant projektowany (KH,E+ KW,E+ KC,E+ KL,E)]

ROCZNE OSZCZĘDNOŚCI W PRZYPADKU WARIANTU ALTERNATYWNEGO (zł/rok) - program wylicza wartość na podstawie wzoru:

 $\Delta Or = [wariant projektowany (K_{H,E} + K_{W,E} + K_{C,E} + K_{L,E})] - [wariant alternatywny (K_{H,E} + K_{W,E} + K_{C,E} + K_{L,E})]$

KOSZTY EKSPLOTACJI NA m² POWIERZCHNI OGRZEWANEJ WARIANTU

PROJEKTOWANEGO [zł/m²] - program wylicza wartość na podstawie wzoru:

[wariant projektowany (K_{H,E} + K_{W,E} + K_{C,E} + K_{L,E})]/Af

KOSZTY EKSPLOTACJI NA m² POWIERZCHNI OGRZEWANEJ WARIANTU

ALTERNATYWNEGO [zł/m²] - program wylicza wartość na podstawie wzoru:

[wariant ALTERNATYWNY (K_{H,E} + K_{W,E} + K_{C,E} + K_{L,E})]/Af

A	ArCADia-TERMO PRO 6.0 Licencja dla: Test - ArCADia-TERMO PRO 6 [L01] - 02. Kamienica+Sklep(chłód) -	8 ×
Plik Ustawienia Pomoc	四 � 집 ★ 〒 / 〒 ?	
PODGLĄD PROJEKTU	Efekt ekonomiczny - Projektowana charakterystyka energetyczna, WT 2014	
Certyfikat Koszty inwestycyjne i eksploatacyjne Budynek projektowany	KOSZY INMETRICA I BORIONIACA	
 Budynek z alternatywnymi źródiami 	Zestawienie analizy ekonomicznej	^
	Koszty investycyjne wariantu projektowanego Kip = 23546,0 zł	
	Koszty investycyjne wariantu alternatywnego Kia = 4880,0 zł	
	Koszty eksploatacyjne wariantu projektowanego Kep = _ z0/rok	
	Koszty eksploatacyjne wariantu alternatywnego Kea =zt/rok	
	Prosty czas zwrotu inwestycji w ałternatywne źródło SPBT = lat	
	Roczne oszczędności w przypadku wariantu alternatywnego ⩔ + złytok	
	Koszty eksploatacyjne na m ¹ powierzchni ogrzewanej wariantu projektowanego Kep.A = zł/m ²	
	Koszty eksploatacyjne na m ³ powierzchni ogrzewanej wariantu alternatywnego Kea,A = złym ³	
	Zestawienie kosztow inwestycyjnych	
	Calkovite	
	co	
	CWU	
	[27]	
Ohliczenia zienine	Child	
Obliczenia chłodu	[21]	
Certyfixat	Odwidtenie tat	
Efect exploreiczny	1-1 00 50000 50000 50000 20000	
Efekt ekonomiczny	Całkowite CO CWU Chłód Oświetlenie	
Dane welściowe		
OBLICZENIA CIEPLNE	Alternative 25940,0 4780,0 400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	
TUŻYCIE PALIW	Zestawienie kosztów eksploatacyjnych	
EFEKT EKOLOGICZNY		Ť
C EFEKT EKONOMICZNY		
C PODGLAD PROJEKTU		
He wyonuka	napri ovjeson	-
	Ostrzebnie Przegroda 52-44 nie jest zaprojektowana przwieliawa Brak odprowadzenia kondensatu w okresie letnim.	
([2021])		Zamknij

Okno raport analiza ekonomiczna. Strzałka - raport analizy środowiskowej i ekonomicznej.

Okno raport zestawienie kosztów eksploatacyjnych

15.1 WSTĘP DO DOBORU GRZEJNIKÓW

ArCADia-DOBÓR GRZEJNIKÓW jest programem ściśle współpracującym z systemem **ArCADia-TERMO** służącym do dobóru odbiorników ciepła w pomieszczeniach. Program na podstawie danych wprowadzonych w *Strukturze budynku*, oblicza moc, a następnie umozliwia dobór ogrzewania grzejnikowego, ogrzewania podłogowego, ogrzewania powietrznego lub innych odbiorników. Wyniki można podejrzeć w programie lub w kilkunasto stronnicowym raporcie rtf.

15.2 WYBÓR OBLICZEŃ DOBORU GRZEJNIKÓW

Użytkownik doboru grzejników może wybrać w dowolnym momencie obliczeń dla wstawionych danych z struktury budynku, w tym celu musi zaznaczyć ikonkę

Okno wyboru obliczeń

15.3 DOBÓR GRZEJNIKÓW

W przypadku kiedy wykonujemy obliczenia strat ciepła w pomieszczeniach (struktura budynku) normą PN EN 12831:2006 lub PN-B\B-03406 program przenosi nam dane odnośnie projektowanego obciążenia cieplnego z poszczególnych pomieszczeń ogrzewanych. Program następnie na podstawie wybranego rodzaju ogrzewania i założonych warunków wymiarowych dobiera nam grzejnik, ogrzewanie podłogowe lub powietrzne.

15.3.1 OPCJE DOBORU ODBIORNIKÓW

Użytkownik w opcjach programu uruchamianych z górnego menu *Ustawienia/Opcje* może dla poszczególnych rodzajów ogrzewania ustawić parametry domyślne typu:

- domyślny typoszereg grzejników,
- domyślne ustawienia wymiarowe,
- domyślne mnożniki,
- domyślne nastawy dla ogrzewania podłogowego.

			O	pcje	
Ogólne	Wybór obliczeń	Certyfikat	Audyt	Dobór odbiomikó	w
Ogrze	ewanie grzejnikov	/e			Ustawienia domyślne
Ogrze	ewanie podłogow	e			Ustawienia domyślne
Ogrze	ewanie powietrzn	e			Ustawienia domyślne
Ogrze	ewanie innego typ	u			Ustawienia domyślne
					Dobierz grzejniki w projekcie
					Zamknii
					Zamknij

Okno opcji doboru odbiorników

15.3.1.1 USTAWIENIA DOMYŚLNE DLA OGRZEWANIA GRZEJNIKOWEGO

Opcje włączane poprzez przycisk ^{Ustawienia domyślne}. Wypełnienie ustawień domyślnych powoduje automatyczne przekazanie danych do pomieszczeń (w przypadku istniejących pomieszczeń już istniejących należy wcisnąć pobierz dane domyślne).

Ustawienia dom	yślne grze	ejników		×
Wczytane katalogi producentów grzejników:			Katalog	
Domyślny typoszereg grzejników:	Grzejniki pły	rtowe/Purmo/Pla	n Ventil Compact	t
Domyślne ustawienia zblokowanych wymiarów:			Oblicz	
Domyślne dodatki:			Oblicz	
Nr kondygnacji na której znajduje się źródło ciepła	: 0			
Temperatura zasilania obiegu grzewczego tz:	80,0	°C		
Temperatura powrotu obiegu grzewczego tp:	60,0	°C		
Współczynnik dopasowania L/H:	1,5			
🗌 Nie uwzględniaj dodatków, gdy w pomie	szczeniach	i фrh ≥ 0		
		Anuluj	ОК	

Okno ustawień domyślnych grzejników

WCZYTAJ KATALOG PRODUCENTÓW GRZEJNIKÓW – użytkownik wciskając przycisk otwiera katalog grzejników w którym wpisane są domyślni producenci i typoszeregi. Wciśnięcie – przenosi nam wybrany katalog do projektu (okno po prawej stronie), użycie = prznoesi nam cały katalog. Anulować wybór można poprzez przyciski = i –. Włączenie przycisku Edytor bazy grzejników otwiera nam bazę do edycji gdzie użytkownik może edytować istniejące grzjeniki lub dodawać własne katalogi.

	Katalog grz	ejników	– 🗆 ×
Pozostałe katalogi		Katalogi w projekcie	
Correliniki płytowe Plan Ventil Compact Plan Ventil Compact M Plan Ventil Compact M Plan Ventil Compact M Plan Ventil Hygiene Plan Ventil Hygiene Plan Ventil Hygiene Venti Compact M Venti Compact M Venti Compact M Venti Compact M Ventil Compact M CosmoNIOVA Plan MULTI CosmoNIOVA Plan MULTI CosmoNIOVA Plan PloNOWE CosmoNIOVA A HIGIENICZNE CosmoNIOVA HIGIENICZNE CosmoNIOVA Plan KULTI CosmoNIOVA HIGIENICZNE CosmoNIOVA Plan Compace CosmoNIOVA Plan Comp	< *	Purmo / Plan Ventil Compact	
Edytor bazy grzejników		Anuluj	ок

Okno katalog grzejników

DOMYŚLNY TYPOSZEREG GRZEJNIKÓW – użytkownik w polu tym wybiera na podstawie wczytanych katalogów do projektu, jaki typoszereg ma być wstawiany domyślnie do doboru.

DOMYŚLNE USTAWIENIA ZBLOKOWANYCH WYMIARÓW – użytkownik poprzez przycisk

może ustawić domyślne wymiary dla jakich mają być dobierane grzejniki.

	Zblokowane wymiar	у		×
534	 Wysokość Zakres wysokości grzejnika: Dopasuj do wnęki: 	min 0,10 m H _{wnęki} 0,60 m	<pre>/ max 0,60 m uwzględnij prześwit:</pre>	0,10 m
	 Długość Zakres długości grzejnika: Dopasuj do wnęki: 	min 0,40 m L _{wnęki} 1,00 m	/ max 1,20 m uwzględnij prześwit:	0,10 m
H unqú	 Szerokość Zakres szerokości grzejnika: Dopasuj do wnęki: 	min 0,01 m S _{wnęki} 0,20 m	/ max 0,20 m uwzględnij prześwit:	0 m
			Anuluj	ок
Zblokowane wymiary	the property		-	X
	 Wysokość Zakres wysokości grzejnika: Dopasuj do wnęki: 	min 0,10 m H _{Wnęśc} 0,60 m	/ max 0,60 m uwzględnij prześwit:	0,10 m
	 Długość Zakres długości grzejnika: Dopasuj do wnęki: 	min 0,40 m L _{Wnęki} 1,00 m	/ max 1,20 m uwzględnij prześwit:	0,10 m
H angli	 Szerokość Zakres szerokości grzejnika: Dopasuj do wnęki: 	min 0,01 m S _{Wnęki} 0,20 m	/ max 0,20 m uwzględnij prześwit:	0 m
			Anuluj	ок

Okno zblokowane wymiary

Odznaczenie jednej z grup powoduje że nie uwzględniamy jej warunków przy doborze grzejnika. **GRUPA WYSOKOŚĆ**– użytkownik wybiera jeden z trzech przypadków:

- Zakres wówczas do doboru wstawiamy tylko te grzejniki które znajdują się w zakresie wpisanym przez użytkownika, wybieramy ten który jest najbliżej 100 % A' dopasowania,
- Dopasuj do wnęki wówczas dla wartość wstawioną przez użytkownika H_{wnęki} 2 x prześwit , obliczamy wysokość i szukamy grzejnika który odpowiada najbardziej temu wymiarowi i nie jest od niego większy, np. mamy wnękę 0,9 m prześwit 0,1 m wychodzi nam szukana wysokość grzejnika 0,7 m w katalogu dla wybranego typu grzejnika mamy 0,9; 0,8;0,6 m wybieramy 0,6 m,

GRUPA DŁUGOŚĆ– użytkownik wybiera jeden z trzech przypadków:

- Zakres wówczas do doboru wstawiamy tylko te grzejniki które znajdują się w zakresie wpisanym przez użytkownika, wybieramy ten który jest najbliżej 100 % A' dopasowania,
- Dopasuj do wnęki wówczas dla wartość wstawioną przez użytkownika L_{wnęki} 2 x prześwit , obliczamy wysokość i szukamy grzejnika który odpowiada najbardziej temu wymiarowi i nie jest od niego większy, np. mamy wnękę 0,9 m prześwit 0,1 m wychodzi nam szukana wysokość grzejnika 0,7 m w katalogu dla wybranego typu grzejnika mamy 0,9; 0,8;0,6 m wybieramy 0,6 m,
 GRUPA SZEROKOŚĆ - użytkownik wybiera jeden z trzech przypadków:

- Zakres wówczas do doboru wstawiamy tylko te grzejniki które znajdują się w zakresie wpisanym przez użytkownika, wybieramy ten który jest najbliżej 100 % A' dopasowania,
- Dopasuj do wnęki wówczas dla wartość wstawioną przez użytkownika S_{wnęki} 2 x prześwit, obliczamy wysokość i szukamy grzejnika który odpowiada najbardziej temu wymiarowi i nie jest od niego większy, np. mamy wnękę 0,9 m prześwit 0,1 m wychodzi nam szukana wysokość grzejnika 0,7 m w katalogu dla wybranego typu grzejnika mamy 0,9; 0,8;0,6 m wybieramy 0,6 m,

DOMYŚLNE DODATKI - użytkownik poprzez przycisk może ustawić domyślne mnożniki do mocy grzejnika.

Okno domyślne dodatki

DODATEK NA ZAWÓR TERMOSTATYCZNY β_T – pole do edycji przez użytkownika, domyślnie wstawiamy 1,15. Odznaczenia wyłącza ten mnożnik,

DODATEK NA USYTUOWANIE GRZEJNIKA β_U – pole do edycji przez użytkownika, pod przyciskiem "Tablica" mamy podpowiedź wg poniższej tabelki, domyślnie wstawiamy 1,0. Odznaczenia wyłącza ten mnożnik,

L.p.	Usytuowanie	βυ
1	Dla grzejników umieszczonych przy ścianie wewnętrznej przeciwległej do	1,1
	ściany zewnętrznej z oknem	
2	Dla grzejników usytuowanych przy ścianie wewnętrznej z dala od okien i drzwi	1,2-1,25
	balkonowych	
3	Dla grzejników usytuowanych pod stropem pomieszczenia	1,1
4	Dla grzejników usytuowanych przy ścianie zewnętrznej pod oknem	1,0

DODATEK UWZGLĘDNIAJĄCY OBUDOWĘ β_0 – pole do edycji przez użytkownika, pod przyciskiem "Tablica" mamy podpowiedź wg poniższej tabelki, domyślnie wstawiamy 1,0. Odznaczenia wyłącza ten mnożnik,

Okno dodatku na obudowę

DODATEK UWZGLĘDNIAJĄCY SPOSÓB PODŁĄCZENIA GRZEJNIKAβP – pole do edycji przez użytkownika, pod przyciskiem "Tablica" mamy podpowiedź wg poniższej tabelki, domyślnie wstawiamy 1,0. Odznaczenia wyłącza ten mnożnik,

DODATEK UWZGLĘDNIAJĄCY OCHŁODZENIE WODYβs – pole do edycji przez użytkownika, pod przyciskiem "Tablica" mamy podpowiedź wg poniższej tabelki, domyślnie wstawiamy 1,0. Odznaczenia wyłącza ten mnożnik,

Wariant 1 : Obliczenia automatyczne przez program

Program automatycznie sprawdza ilość kondygnacji w projekcie (na tej podstawie odszukuje wartości z kolumny Liczba kondygnacji), następnie z okna "Ustawienia domyślne" pobiera Nr kondygnacji na której znajduje się źródło i sprawdza na której kondygnacji znajduje się pomieszczenie. Na podstawie tych dwóch parametrów oblicza różnice kondygnacji [Kondygnacja pomieszczenia – kondygnacja źródła] w przypadku kiedy wyjdą wartości ujemne wstawiamy je jako dodatnie. Przykład:

Źródło na kondygnacji nr 1, pomieszczenie na kondygnacji -3, liczba kondygnacji w projekcie 5. Różnica wysokości -3 – 1=-4 wstawiamy 4 wynik 1,05 (zaznaczony na czerwono w tabelce).

Wariant 2 : Wstaw ręcznie β_S

Użytkownik ręcznie wstawia wartość do dyspozycji ma podpowiedź na podstawie tabeli poniżej, domyślnie wstawiamy 1,0.

Licz	Kondyg	nacja buo	lynku, lio	cząc od p	oziomu z	zasilania										
ba	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
kond																
у.																
1	1,00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	1,00	1,05	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	1,00	1,03	1,08	-	-	-	-	-	-	-	-	-	-	-	-	-
4	1,00	1,02	1,04	1,09	-	-	-	-	-	-	-	-	-	-	-	-
5	1,00	1,01	1,03	1,05	1,10	-	-	-	-	-	-	-	-	-	-	-
6	1,00	1,01	1,02	1,04	1,06	1,11	-	-	-	-	-	-	-	-	-	-
7	1,00	1,01	1,02	1,03	1,05	1,07	1,12	-	-	-	-	-	-	-	-	-

8	1,00	1,01	1,02	1,03	1,04	1,05	1,08	1,13	-	-	-	-	-	-	-	-
9	1,00	1,01	1,01	1,02	1,03	1,04	1,06	1,09	1,14	-	-	-	-	-	-	-
10	1,00	1,01	1,01	1,02	1,03	1,04	1,05	1,07	1,09	1,14	-	-	-	-	-	-
11	1,00	1,01	1,01	1,02	1,02	1,03	1,04	1,05	1,07	1,10	1,15	-	-	-	-	-
12	1,00	1,00	1,01	1,02	1,02	1,03	1,04	1,05	1,06	1,08	1,10	1,15	-	-	-	-
13	1,00	1,00	1,01	1,01	1,02	1,03	1,03	1,04	1,05	1,06	1,08	1,11	1,16	-	-	-
14	1,00	1,00	1,01	1,01	1,02	1,02	1,03	1,04	1,04	1,05	1,07	1,08	1,11	1,16	-	-
15	1,00	1,00	1,01	1,01	1,02	1,02	1,03	1,03	1,04	1,05	1,06	1,07	1,09	1,11	1,16	-
16	1,00	1,00	1,01	1,01	1,02	1,02	1,03	1,03	1,04	1,04	1,05	1,06	1,07	1,09	1,12	1,17

Dodatek uwzględniający o	chłodzenie wody
Kondygnacja budynku, licząc od poziomu zasilania:	
Sugerowany współczynnik β _s = 1,00	
	Anuluj

Okno dodatek uwzględniający ochłodzenie wody

 $\label{eq:calibor} \begin{array}{l} CAŁKOWITY DODATEK NA MOC GRZEJNIKA \beta - \mbox{pole tylko do odczytu wyliczane z wzoru:} \\ \beta = \beta_T \bullet \beta_U \bullet \beta_O \bullet \beta_P \bullet \beta_S \end{array}$

NUMER KONDYGNACJI NA KTÓREJ ZNAJDUJE SIĘ ŹRÓDŁO CIEPŁA – użytkownik ma listę wszystkich numerów kondygnacji (pokazujemy też nazwy kondygnacji),

TEMPERATURA ZASILANIA OBIEGU GRZEWCZEGO t_z **lub** θ_z [°C] – pole do wyboru z listy przez użytkownika: 115, 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30,

TEMPERATURA POWROTU OBIEGU GRZEWCZEGO t_p **lub** $\theta_p[$ °C **]** – pole do wyboru z listy przez użytkownika: 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 25, 20, 15,

WSPÓŁCZYNNIK DOPASOWANIA LH – pole do wpisywania współczynnika dopasowania długości grzejnika do jego wysokości, na podstawie tego parametru dobierany będzie grzejnik w sposobie proporcjonalnym.

NIE UWZGLĘDNIAJ DODATKÓW GDY W POMIESZCZENIU $\phi_{RH} > 0$ – gdy użytkownik zaznaczy checkboxa wówczas dla danych pomieszczeń w których $\phi_{RH} > 0$ jako dodatek β wstawiamy 1,0 nawet jak są wstawione dodatki,

15.3.1.2 USTAWIENIA DOMYŚLNE DLA OGRZEWANIA PODŁOGOWEGO

Opcje włączane poprzez przycisk Ustawienia domyślne. Wypełnienie ustawień domyślnych powoduje automatyczne przekazanie danych do pomieszczeń (w przypadku istniejących pomieszczeń już istniejących należy wcisnąć pobierz dane domyślne).

	D	odatkowe	parametry	ogrzewania pod	lłogowego	×
Rodzaj ułożenia: Parametry wody grzewczej: Domyślny typoszereg: Głębokość posadowienia rur w	W warstwie ja 0 _z =55,00 °C Purmo/Rura g warstwie jastryc	astrychu θ _p =45,00 ° Irzejna PE-X thu: s _u =0,05 m	°C	0 Katalog		
Nazwa		Współczynn ik λ [W/m-K]	Grubość warstwy s [m]	Opór warstwy R [m2·K/W]	wykończeniowa warstwa podłogł	
Warstwa wykończenia posadz	ġ				izoracja brzegowa jastrych	
Terakota		1,000	0,010	0,010	izolacja termiczna	۰.
Warstwa wylewki / jastrychu					strop	
Jastrych		1,000	0,070	0,070		
					Anuluj OK	

Okno dodatkowe parametry ogrzewania podłogowego ułożenie w warstwie jastrychu

Rodzaj ułożenia: Parametry wody grzewczej: Domyślny typoszereg:	W warstwie i θ _z =55,00 °C Purmo/Rura g	zolacji θ _p =45,00 ° grzejna PE-X	c	0 Katalog	
Nazwa		Współczynn ik λ [W/m·K]	Grubość warstwy s [m]	Opór warstwy R [m2·K/W]	wrkończeniowa warstwa podło
Warstwa wykończenia posadzk	i				izoracja przegowa jastrych
Terakota		1,000	0,010	0,010	izolacja termiczna
Ivarstwa wyiewki / jastrychu		1 000	0.070	0.070	Strop
Warstwa przewodzaca		1,000	0,070	0,070	
Folia aluminiowa		200,000	0,001	0,000	

Okno dodatkowe parametry ogrzewania podłogowego ułożenie w warstwie izolacji

RODZAJ UŁOŻENIA – użytkownik ma do wyboru jeden z dwóch wariantów:

- wariant A w warstwie jastrychu tok obliczeń 1
- wariant B w warstwie izolacji tok obliczeń 2

PARAMETRY WODY GRZEWCZEJ - użytkownik ma do edycji dwa pola:

- θ_z temperatura zasilania,
- θ_p temperatura powrotu, spełniony musi być warunek $\theta_z \leq \theta_p$

DOMYŚLNY TYPOSZEREG – użytkownik wciskając przycisk ^{Katalog} otwiera katalog ogrzewania podłogowego w którym wpisane są domyślni producenci i typoszeregi. Wciśnięcie – przenosi nam wybrany katalog do projektu (okno po prawej stronie), użycie = prznoesi nam cały katalog. Anulować wybór można poprzez przyciski = i –. Włączenie przycisku ^{Edytor bazy grzejników} otwiera nam bazę do edycji gdzie użytkownik może edytować istniejące ogrzewanie podłogowe lub dodawać własne katalogi.

Katalog grzejników – 🗆						
Kisan Comfort - Rura grzejna PE-KT/AL/PE - Rura grzejna PE-RT/AL/PE-RT - Rura grzejna PE-RT - Rura grzejna PE-X/AL/PE-X - Rura grzejna PE-X/AL/PE-RT	grzejr → ‡ ¢	līków Katalogi w projekcie - Rura grzejna PE-X				
Edytor bazy grzejników		Anuluj	ок			

Okno katalogu ogrzewania podłogowego

GŁĘBOKOŚĆ POSADOWIENIA RUR GRZEWCZYCH W JASTRYCHU su [m] – pole do edycji przez użytkownika, należy wpisać grubośc warstwy wylewki jaka będzie nałożona nad rurą wraz z grubościa rury.

Nazwa		Współczynn ik λ [W/m·K]	Grubość warstwy s [m]	Opór warstwy R [m2·K/W]
Warstwa wykończenia posadzki				
Terakota		1,000	0,010	0,010
Warstwa wylewki / jastrychu				
Jastrych		1,000	0,070	0,070
Warstwa przewodząca				
Folia aluminiowa		200,000	0,001	0,000

Okno tabelki warstw posadzkowych

GRUPA WARSTWA WYKOŃCZENIA POSADZKI

 $NAZWA - pole do edycji przez uzytkownika, można wstawić parametry z bazy materiałów poprzez przycisk "…", gdy użytkownik wybierze wartość z bazy wówczas automatycznie wypełniają się pola nazwa, <math>\lambda$,

WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA λ_B [W/m*K] – pole do edycji przez użytkownika, wartość może być przekazana z bazy materiałów,

GRUBOŚĆ WARSTWY WYKOŃCZENIA POSADZKI s_B [m] - pole do edycji przez użytkownika,

OPÓR PRZEWODZENIA WARSTWY WYKOŃCZENIA POSADZKI R_B [m²K/W] – wartość wyliczana z wzoru R_B= s_B / λ_B

GRUPA WARSTWA WYLEWKI/JASTRYCHU

NAZWA – pole do edycji przez uzytkownika, można wstawić parametry z bazy materiałów poprzez przycisk "…", gdy użytkownik wybierze wartość z bazy wówczas automatycznie wypełniają się pola nazwa, λ ,

WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA λ_E [W/m*K] – pole do edycji przez użytkownika, wartość może być przekazana z bazy materiałów,

GRUBOŚĆ WARSTWY JASTRyCHU sE [m] - pole do edycji przez użytkownika,

OPÓR PRZEWODZENIA WARSTWY Jastrychu R_E [m²K/W] – wartość wyliczana z wzoru R_E= s_E / λ_E

GRUPA WARSTWA PRZEWODZĄCA

NAZWA – pole do edycji przez uzytkownika, można wstawić parametry z bazy materiałów poprzez przycisk "…", gdy użytkownik wybierze wartość z bazy wówczas automatycznie wypełniają się pola nazwa, λ ,

WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA λw [W/m*K] – pole do edycji przez użytkownika, wartość może być przekazana z bazy materiałów,

GRUBOŚĆ WARSTWY PRZEWODZĄCEJ sw [m] - pole do edycji przez użytkownika,

OPÓR PRZEWODZENIA WARSTWY PRZEWODZĄCEJ R_w [m²K/W] – wartość wyliczana z wzoru R_w= s_w / λ_w

15.3.1.3 USTAWIENIA DOMYŚLNE DLA OGRZEWANIA POWIETRZNEGO

Opcje włączane poprzez przycisk ^{Ustawienia domyślne}. Wypełnienie ustawień domyślnych powoduje automatyczne przekazanie danych do pomieszczeń (w przypadku istniejących pomieszczeń już istniejących należy wcisnąć pobierz dane domyślne).

Okno katalogu ogrzewania podłogowego

Użytkownik wciskając przycisk domyślni producenci i typoszeregi. Wciśnięcie -> przenosi nam wybrany katalog do projektu (okno po prawej stronie), użycie => prznoesi nam cały katalog. Anulować wybór można poprzez przyciski = i --. Włączenie przycisku Edytor bazy grzejników otwiera nam bazę do edycji gdzie użytkownik może edytować istniejące ogrzewanie powietrzne lub dodawać własne katalogi.

15.3.2 ETAP DOBÓR GRZEJNIKÓW

Okno składa się z dwóch części:

- górnej gdzie użytkownik definiuje straty i zyski ciepła, a także wybiera jakie występują systemy grzewcze,
- dolna gdzie użytkownik definiuje dane do doboru poszczególnych odbiorników.

Okno doboru odbiorników

DLA NORMY PN-B/B-03406

L.p.	Rodzaj systemu ogrzewania	Wybór	Udział [%]	Mod [W]	Moc [W]	
1	Moc cieplna z siąsiadujących pomieszczeń Qs	-	-	0,00		
2	Zyski ciepła od niezolowanych rurociągów Qpp	-	-	0,00		
3	Obliczeniowe zapotrzebowanie na moc Qpom	-	-	1000,00		
4	Moc cieplna do doboru Q = Qpom + Qs - Qpp	-	-	1000,00		
5	Rozdział do innych pomieszczeń Qsr	✓	20	200,00		
6	Ogrzewanie grzejnikowe Qog	~	20	200,00		
7	Ogrzewanie podłogowe Qop	~	20	200,00		
8	Ogrzewanie powietrzne Qp	~	20	200,00		
-	Inne Oin	v	20	200.00		

Okno rodzaj systemu ogrzewania norma PN B 03406

MOC CIEPLNA Z SĄSIEDNICH POMIESZCZEŃ Q_s[W] – pole do edycji, wartość wstawiana domyślnie na podstawie zakładki Rozdział do/z innych pomieszczeń. Zasada działania jest taka, że użytkownik może zdefiniować w innych pomieszczeniach, że ich wartość obliczeniowa Q_i ma być przekazana do innego pomieszczenia (dodatkowo należy uwzględnić udział procentowy tak aby Q_i z pomieszczenia sąsiadującego było pomnożone %/100 jaki jest przypisany do aktualnie włączonego pomieszczenia), jeżeli w więcej niż jednym pomieszczeniu sąsiadującym zdefiniowana jest rozdział do aktualnego pomieszczenia to Q_i (zsąsiednich pomieszczeń) należy sumować (wartości minusowe traktowane są jak 0 w sumowaniu).Pole ma tooltipa z tekstem:

Całkowita strata przekazana przez rozdział z innych pomieszczeń zwiększającą moc dobieranego grzejnika.

ZYSKI CIEPŁA OD NIEIZOLOWANYCH RUROCIĄGÓW Q_{PP} [W] – pole do edycji, użytkownik ma dodatkowy przycisk "..", który odpala okno obliczeń (rysunek poniżej),

Zyski ciepła od nieizolowanych przewodów							
Lp.	Dz [mm]	L [m]	Lokalizacja rurociągi	u tz [℃]	tp [℃]	Qpp [W]	4
1	21,300 •••	2,000	Pionowo	90,000	. 70,000	16,329	
							X
							Т
							+
-							
q	_{op} = 16,33 W			Anul	uj	ОК	

Okno obliczeń zysków ciepła od nieizolowanych przewodów PN-B/B-03406

Średnica zewnętrzna Dz [mm] – pole do edycji, użytkownik może wstawić wartość z podpowiedzi wg tabelki poniżej:

L.p.	Średnica wyświetlana Dz [mm]							
	Rura stalowa ze szwem							
1	14,0 x 2,0	14,0						
2	16,0 x 2,2	16,0						
3	20,0 x 2,8	20,0						
4	25,0 x 3,5	25,0						
5	32,0 x 4,0	32,0						
6	40,0 x 4,0	40,0						
7	50,0 x 4,5	50,0						
8	63,0 x 6,0	63,0						
	Rura stalowa bez szwu							
1	21,3 x 2,3	21,3						
2	26,9 x 2,3	26,9						
3	33,7 x 3,2	33,7						
4	42,4 x 3,2	42,4						
5	48,3 x 3,2	48,3						
6	60,3 x 3,2	60,3						
7	76,1 x 3,6	76,1						
8	88,9 x 3,6	88,9						
9	108,0 x 3,6	108,0						
10	114,3 x 4,0	114,3						

Rura miedziana					
1	6,0 x 1,0	6,0			
2	8,0 x 1,0	8,0			
3	10,0 x 1,0	10,0			
4	12,0 x 1,0	12,0			
5	15,0 x 1,0	15,0			
6	18,0 x 1,0	18,0			
7	22,0 x 1,2	22,0			
8	28,0 x 1,2	28,0			
9	35,0 x 1,5	35,0			
10	42,0 x 1,5	42,0			
11	54,0 x 2,0	54,0			
12	64,0 x 2,0	64,0			
13	76,1 x 2,0	76,1			
14	88,9 x 2,0	88,9			
15	108,0 x 2,5	108,0			
16	133,0 x 3,0	133,0			
17	159,0 x 3,0	159,0			
18	219,0 x3,0	219,0			
19	267,0 x 3,0	267,0			

Długość rurociągu L [mm] – pole do edycji przez użytkownika,

Lokalizacja rurociągu – użytkownik ma do wyboru jeden z dwóch wariantów:

- Rurociągi pionowe wówczas obliczenia Q_{pp} wykonujemy z wzoru:

$$Q_{PP} = 2.27 \cdot L \cdot \pi \cdot D_Z \cdot (\boldsymbol{t}_z - \boldsymbol{t}_p)^{1.2}$$

- Rurociągi poziome wówczas obliczenia $Q_{\mbox{\scriptsize pp}}$ wykonujemy z wzoru:

$$Q_{PP} = 2.47 \cdot L \cdot \pi \cdot D_Z^{0.88} \cdot (t_z - t_p)^{1.32}$$

Temperatura zasilania wody grzewczej rurociągu t_z [$^{\circ}$ C] – użytkownik wpisuje ręcznie wartość lub wybiera z listy otwieranej przyciskiem "…": 115, 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, **Temperatura powrotu wody grzewczej rurociągu t**_p [$^{\circ}$ C] – użytkownik wpisuje ręcznie wartość lub wybiera z listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 2 listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 80, 80

Zyski ciepła od nieizolowanych rurociągów Q_{PP} [W] – pole do odczytu wyliczane wg powyższych wzorów uzależnionych od wybranej lokalizacji rurociągu.

ZAPOTRZEBOWANIE NA CIEPŁO POMIESZCZENIAQpom [W]– pole tylko do odczytu, wartość pobierana jest z obliczonej dla tego pomieszczenia mocy Q_i, w polu będzie tooltip z tekstem: Całkowita strata w pomieszczeniu wyliczona z strat przez przenikanie, grunt, wentylację.

 $\frac{\textbf{MOC CIEPLNA DO DOBORU Q = Q_{pom} + Q_s - Q_{pp} [W]}{Q_{pom} + Q_s - Q_{pp} [W]} - \text{ pole do odczytu wartość wyliczana z wzoru Q} = Q_{pom} + Q_s - Q_{pp},$

DLA NORMY PN EN 12831

Lp.	Rodzaj systemu ogrzewania	Wybór	Udział [%]	Moc [W]			
1	Obciążenie cieplne z pomieszczeń sąsiadujących Φs	-	-	101,93			
2	Zyski ciepła od niezolowanych rurociągów Φpp	-	-	0,00			
3	Projektowane obciążenie cieplne pomieszczenia ΦHL	-	-	917,51			
4	Obciążenie cieplne do doboru $\Phi = \Phi HL + \Phi s - \Phi pp$	-	-	1019,44			
5	Rozdział do innych pomieszczeń Φsr		-	-			
6	Ogrzewanie grzejnikowe Φog	✓	40	407,78			
7	Ogrzewanie podłogowe Φop	✓	60	611,66			
8	Ogrzewanie powietrzne Φp		-	-			
9	Inne Φin		-	-			

Okno obliczeń zysków ciepła od nieizolowanych przewodów PN-EN 12831

OBCIĄŻENIE CIEPLNE Z SĄSIEDNICH POMIESZCZEŃ \Phi_s[W] – pole do edycji, wartość wstawiana domyślnie na podstawie zakładki Rozdział do/z innych pomieszczeń. Zasada działania jest taka, że użytkownik może zdefiniować w innych pomieszczeniach, że ich wartość obliczeniowa $\Phi_{HL,i}$ ma być przekazana do innego pomieszczenia (dodatkowo należy uwzględnić udział procentowy tak aby $\Phi_{HL,i}$ z pomieszczenia sąsiadującego było pomnożone %/100 jaki jest przypisany do aktualnie włączonego pomieszczenia), jeżeli w więcej niż jednym pomieszczeniu sąsiadującym zdefiniowana jest rozdział do aktualnego pomieszczenia to $\Phi_{HL,i}$ (zsąsiednich pomieszczeń) należy sumować (wartości minusowe traktowane są jak 0 w sumowaniu).Pole ma tooltipa z tekstem:

Całkowita strata przekazana przez rozdział z innych pomieszczeń zwiększającą moc dobieranego grzejnika.

ZYSKI CIEPŁA OD NIEIZOLOWANYCH RUROCIĄGÓW Φ_{pp} [W] – pole do edycji, użytkownik ma dodatkowy przycisk •••, który wyświetla okno obliczeń (rysunek poniżej).

Zyski ciepła od nieizolowanych przewodów								×	
Lp.	Dz [mm]		L [m]	Lokalizacja rurociąg	ju	θz [°C]	θp [°C]	Фрр [W]	+
1	16,000		2,000	Pionowo		90,000	. 70,000	12,266	· ·
									×
									+
									Ŧ
¢	_{pp} = 12,27 W	1				Anu	uj	ок	

Okno obliczeń zysków ciepła od nieizolowanych przewodów PN-EN 12831

Średnica zewnętrzna Dz [mm] – pole do edycji, użytkownik może wstawić wartość z podpowiedzi wg tabelki taka sama jak dla normy PN-B 03406

Długość rurociągu L mm] – pole do edycji przez użytkownika,

Lokalizacja rurociągu – użytkownik ma do wyboru jeden z dwóch wariantów:

- Rurociągi pionowe wówczas obliczenia Q_{pp} wykonujemy z wzoru:

$$Q_{PP} = 2.27 \cdot L \cdot \pi \cdot D_Z \cdot \left(\Theta_z - \Theta_p\right)^{1.33}$$

- Rurociągi poziome wówczas obliczenia Q_{pp} wykonujemy z wzoru:

$$Q_{PP} = 2.47 \cdot L \cdot \pi \cdot D_z^{0.88} \cdot (\Theta_z - \Theta_p)^{1.33}$$

Temperatura zasilania wody grzewczej rurociągu \theta_z [°C] – użytkownik wpisuje ręcznie wartość lub wybiera z listy otwieranej przyciskiem "…": 115, 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30,

Temperatura powrotu wody grzewczej rurociągu θ_p [C] – użytkownik wpisuje ręcznie wartość lub wybiera z listy otwieranej przyciskiem "…": 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 40, 35, 30, 25, 20, 15.

Zyski ciepła od nieizolowanych rurociągów Φ_{PP} [W] – pole do odczytu wyliczane wg powyższych wzorów uzależnionych od wybranej lokalizacji rurociągu.

CAŁKOWITE PROJEKTOWANE OBCIĄŻENIE CIEPLNE POMIESZCZENIA $\Phi_{HL,i}$ [W] – pole tylko do odczytu, wartość pobierana jest z obliczonej dla tego pomieszczenia mocy Φ_{HL} , w polu info użytkownik będzie maił text:

Całkowita strata w pomieszczeniu wyliczona z strat przez przenikanie, grunt, wentylację i osłabienie nocnego.

<u>**OBCIAŻENIE CIEPLNE DO DOBORU** $\Phi = \Phi_{HL_i} + \Phi_s - \Phi_{pp}$ [**W**]</u>– pole do odczytu wartość wyliczana z wzoru $Q = Q_{pom} + Q_s - Q_{pp}$,

TABELA RODZAJ SYSTEMÓW OGRZEWANIA W POMIESZCZENIU

Tabela ta służy do definiowania na jakie wartości Q/Φ ma być dobrany odbiornik typu grzejnik, ogrzewanie podłogowe, aparat grzewczo-wentylacyjny. Użytkownik może zdefiniować wartości Q/Φ albo na podstawie udziału procentowego, albo wstawionej mocy, dodatkowo wybiera jakie systemy ogrzewania są w pomieszczeniu i czy pojawią się pozostałe zakładki (grzejniki, ogrzewanie podłogowe, aparat grzewczo-wentylacyjny).

5	Rozdział do innych pomieszczeń Φsr		-	-
6	Ogrzewanie grzejnikowe Φog	✓	40	407,78
7	Ogrzewanie podłogowe Φop	✓	60	611,66
8	Ogrzewanie powietrzne Φp		-	-
9	Inne Фin		-	-

Tabela wyboru systemów ogrzewania norma PN EN 12831

5	Rozdział do innych pomieszczeń Qsr		-	-
6	Ogrzewanie grzejnikowe Qog	✓	100	1000,00
7	Ogrzewanie podłogowe Qop		-	-
8	Ogrzewanie powietrzne Qp		-	-
9	Inne Qin		-	-

Tabela wyboru systemów ogrzewania norma PN-B 03406

KOLUMNA RODZAJ SYSTEMU OGRZEWANIA – użytkownik ma 5 wariantów, rozdział do innych pomieszczeń, ogrzewanie grzejnikowe, ogrzewanie podłogowe, ogrzewanie powietrzne, inne, jeśli nie zostanie wybrany 1 lub 2 lub 3 lub 4 wówczas nie pojawiają się zakładki (1-Rozdział, 2-Grzejniki, 3-Ogrzewanie podłogowe, 4-Ogrzewanie powietrzne).

KOLUMNA WYBÓR – użytkownik zaznaczając haczyk decyduje, że dany system będzie w pomieszczeniu,

KOLUMNA UDZIAŁ PROCENTOWY % - pole do edycji przez użytkownika, jeśli użytkownik wstawia wartość mocy lub Φ wówczas udział procentowy powinien się sam wyliczyć (ile mocy przypada na wybrany system grzewczy), jeśli wstawia udział procentowy wówczas moc się wylicza. Wzór wygląda następująco %= Moc(lub Φ) / Φ (lub Q) z "Moc/Pojemność cieplna do doboru"

KOLUMNA MOC(LUB Φ) **W** - pole do edycji przez użytkownika, jeśli użytkownik wstawia wartość mocy wówczas udział procentowy powinien się sam wyliczyć (ile mocy przypada na wybrany system grzewczy), jeśli wstawia udział procentowy wówczas moc się wylicza. Wzór wygląda następująco moc=(%/100) x Φ (lub Q)
15.3.2.1 ZAKŁADKA ROZDZIAŁ POMIĘDZY POMIESZCZENIAMI

Zakładka ta pojawia się tylko w dwóch przypadkach, albo jeśli w zakładce System ogrzewania wybrany jest rozdział, albo jeśli do tego pomieszczenia przypisane są moce z pomieszczeń sąsiadujących.

R	Rozdział pomiędzy pomieszczeniami													
	Obci	ążenie cieplne z pomieszczeń sąsiad	lujących	Obci	ążenie cieplne do	pomi	ieszczeń sąsiadujący	ch						
	Lp.	Pomieszczenie	Ф [W]	Lp.	Pomieszczenie		Udział [%]	Ф [W]	M					
	1	0.1 Wiatrołap	0,00	1	0.1 Wiatrołap		100	337,94	+					
									×					
									Π'n					
									Ē					
									1					
									Ŧ					
				,										

Zakładka Rozdział pomiędzy pomieszczeniami

TABELA OBCIŻENIE CIEPLNE Z POMIESZCZEŃ SĄSIADUJĄCYCH

Tabela pojawia się tylko wówczas gdy z innych pomieszczeń do tego przypisany jest rozdział mocy cieplnej. Cała tabela jest tylko do odczytu. Pokazane są w niej pomieszczenia, które mają przypisany rozdział mocy do tego pomieszczenia i dodatkowo pokazujemy ile tej mocy przekazuje pomieszczenie sąsiadujące.

KOLUMNA NR POMIESZCZENIA – przedrostek i numer pomieszczenia, które ma przekazanie mocy do tego pomieszczenia,

KOLUMNA NAZWA POMIESZCZENIA – nazwa pomieszczenia, które ma przekazanie mocy do tego pomieszczenia,

KOLUMNA MOC ROZDZIELONA – użytkownik w kolumnie tej widzi ile z danego pomieszczenia jest przekazane mocy do tego pomieszczenia,

TABELA OBCIŻENIE CIEPLNE DO POMIESZCZEŃ SĄSIADUJĄCYCH

Tabela pojawia się tylko wtedy kiedy użytkownik zaznaczy w zakładce systemy grzewcze/ tabela systemy grzewcze haczyk w pozycji Rozdział do innych pomieszczeń. Do edycji przez użytkownika, funkcjonalność, dodawania, usuwania, kalkulator. Użytkownik plusikiem dodaje nowe pomieszczenia w nazwie pomieszczenia z

💻 wybiera którego się to tyczy pomieszczenia. Powinien mieć też dodatkową funkcje (przy plusiku):

- A. Rozdziel moc na wszystkie pomieszczenia ogrzewane w projekcie (bez tych w których jest już włączony rozdział)- wówczas wstawiamy do tabelki wszystkie pomieszczenia ogrzewane w których nie ma włączonego rozdziału mocy i przypisujemy im równy udział procentowy. W przypadku kiedy użytkownik zmieni w wpisanym już do rozdziału pomieszczeniu że też ma być w nim zrobiony rozdział do innych pomieszczeń wówczas wyskakuje ono z listy a program zmienia udział procentowy. Gdy jest już wstawiona tabelka i użytkownik naciśnie przycisk dodaj i wybierze opcje A,B,C,D wówczas cała tabelka jest tworzona od nowa a program usuwa poprzednie wpisy,
- B. Rozdziel moc na wszystkie pomieszczenia ogrzewane w kondygnacji (bez tych w których jest już włączony rozdział) -wówczas wstawiamy do tabelki wszystkie pomieszczenia ogrzewane w których nie ma włączonego rozdziału mocy dla danej kondygnacji (tej samej w której jest obliczane pomieszczenie)i przypisujemy im równy udział procentowy. W przypadku kiedy użytkownik zmieni w wpisanym już do rozdziału pomieszczeniu że też ma być w nim zrobiony rozdział do innych

pomieszczeń wówczas wyskakuje ono z listy a program zmienia udział procentowy. Gdy jest już wstawiona tabelka i użytkownik naciśnie przycisk dodaj i wybierze opcje A,B,C,D wówczas cała tabelka jest tworzona od nowa a program usuwa poprzednie wpisy,

- C. Rozdziel moc na wszystkie pomieszczenia ogrzewane w grupie (bez tych w których jest już włączony rozdział) -wówczas wstawiamy do tabelki wszystkie pomieszczenia ogrzewane w których nie ma włączonego rozdziału mocy dla danej grupy (tej samej w której jest obliczane pomieszczenie) i przypisujemy im równy udział procentowy. W przypadku kiedy użytkownik zmieni w wpisanym już do rozdziału pomieszczeniu że też ma być w nim zrobiony rozdział do innych pomieszczeń wówczas wyskakuje ono z listy a program zmienia udział procentowy. Gdy jest już wstawiona tabelka i użytkownik naciśnie przycisk dodaj i wybierze opcje A,B,C,D wówczas cała tabelka jest tworzona od nowa a program usuwa poprzednie wpisy,
- D. Rozdziel moc na wszystkie pomieszczenia ogrzewane sąsiadujących z obliczanym pomieszczeniem (bez tych w których jest już włączony rozdział) -wówczas wstawiamy do tabelki wszystkie pomieszczenia ogrzewane w których nie ma włączonego rozdziału mocy i których przynajmniej jedna przegroda za sąsiada po drugiej stronie ma obliczane pomieszczenie i przypisujemy im równy udział procentowy. W przypadku kiedy użytkownik zmieni w wpisanym już do rozdziału pomieszczeniu że też ma być w nim zrobiony rozdział do innych pomieszczeń wówczas wyskakuje ono z listy a program zmienia udział procentowy (tyczy się też tego gdy usunie przegrodę sąsiadującą z obliczanym pomieszczeniem w swojej tabelce strat przez przenikanie). Gdy jest już wstawiona tabelka i użytkownik naciśnie przycisk dodaj i wybierze opcje A,B,C,D wówczas cała tabelka jest tworzona od nowa a program usuwa poprzednie wpisy,
- E. Rozdziel moc indywidualny wówczas użytkownik ma aktywne ... przy nazwie pomieszczenia i indywidualnie wybiera pomieszczenia jakie mają wchodzić w skład rozdziału.

KOLUMNA NR POMIESZCZENIA – przedrostek i numer pomieszczenia, do którego ma być przekazanie moc z obliczanego pomieszczenia,

KOLUMNA NAZWA POMIESZCZENIA – nazwa pomieszczenia, do którego ma być przekazanie moc z obliczanego pomieszczenia, możliwość edycji tylko w przypadku E

KOLUMNA UDZIAŁ PROCENTOWY % – wartość do edycji przez użytkownika, program wylicza ją sam jeśli wybrany jest wariant A-D na podstawie ilości wstawionych pomieszczeń 100/ilość pomieszczeń

KOLUMNA MOC ROZDZIELONA – wartość do edycji gdy mamy wybrany wariant E, wstawiamy wartość moc obliczanego pomieszczenia podana w tabeli system grzewczy w pozycji rozdział Φ x UDZIAŁ PROCENTOWY %

15.3.2.2 ZAKŁADKA OGRZEWANIE GRZEJNIKOWE

Zakładka widoczna jest tylko wówczas gdy w tabelce wybór rodzaju ogrzewania zaznaczony jest wiersz "Ogrzewanie grzejnikami".

Podręcznik użytkownika dla programu ArCADia-TERMO

DOBÓR GRZEJNIKÓW

ób doboru: optymalny				Ustawie	nia dor	nyślne							
Tabela doboru grzejników													
	Kŋ	rteria dobo	ru					Dobrany gi	rzejn	ik		Т	
Typ grzejnika	Udzia [%]	Dodatki	Qobl [W]	Przegroda	H [m]	L [m]	S [m]	Symbol		A' [%]	L / H	× Л	
Venti Compact/CV	100	1,00	1696		O	1,00	O	CV 21s/900/1000	•	108	1,11	5	
												↑ ↓	
	ób doboru: optymalny Ila doboru grzejników Typ grzejnika Venti Compact/CV	ób doboru: optymalny Ila doboru grzejników Typ grzejnika Udzia [%] Venti Compact/CV 100	ób doboru: optymalny Ila doboru grzejników Typ grzejnika Udział Venti Compact/CV 100 1,00	ób doboru: optymalny Ia doboru grzejników Typ grzejnika Udział Doda tw [W] Venti Compact/CV … 100 1,00 … 1696	Obb doboru: optymalny Ustawie Id doboru grzejników Typ grzejnika Udział [%] Dodatki Qobl [W] Przegroda Venti Compact/CV 100 1,00 1696	Optimalny Ustawienia dor La doboru grzejników Typ grzejnika Udział [%] Dodatki Qobl [W] Przegroda H [m] Venti Compact/CV 100 1,00 1696 •	ób doboru: optymalny Ustawienia domyślne Ha doboru grzejników Typ grzejnika Udział Doda twi Qobł Przegroda H [m] L [m] Venti Compact/CV … 100 1,00 … 1696 € 1,00	ób doboru: optymalny Ustawienia domyślne Na doboru grzejników Typ grzejnika Udział [%] Dodatki Qob [%] Przegroda H [m] [m] S [m] Venti Compact/CV 100 1,00 1696 C 1,00 C	ób doboru: optymalny Ha doboru grzejników Typ grzejnika Udział Oodatki Qobł Przegroda H (m) L (m) S (m) Symbol Venti Compact/CV 100 1,00 1696 ⓒ 1,00 ⓒ CV 21s/900/1000	Obb doboru: optymalny Udział Kryteria doboru grzejników Kryteria doboru grzejników Dobrany grzejniko Typ grzejnika Udział Dodatki Qobl Przegroda H [m] L [m] S [m] Symbol Venti Compact/CV 100 1,00 1696 C 1,00 CV 21s/900/1000 T	ób doboru: optymalny Ha doboru grzejników Typ grzejnika Udział Dodatki Qobł Przegroda H (m) k (m) S (m) Symbol A' (%) 1.00 1.00 1696 I 1.00 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	Obtaboru: optymalny Ustawienia domyślne Kryteria doboru Kryteria doboru Dobrany grzejnik Typ grzejnika Udział [%] Ood Qobi [W] Przegroda H L S Symbol A' L/H Venti Compact/CV 100 1,00 1696 C 1,00 CV 21s/900/1000 T 108 1,11	

Zakładka Ogrzewanie grzejnikowe

<u>SPOSÓB DOBORU GRZEJNIKÓW</u> – pole do wyboru przez użytkownika jednego z trzech sposobów doboru grzejnika:

pierwszy – program, rozpoczynając od podanego grzejnika, sprawdza kolejne grzejniki w rodzinie pod względem wymaganej wydajności oraz spełnienia warunków odnośnie wymiarów. Jeżeli grzejnik spełnia ograniczenia, to zostaje zapamiętany i wyświetlony, a dobór zakończony. W przeciwnym przypadku program proponuje użytkownikowi zmianę typu grzejnika na jego następcę wskazanego w katalogu, czyli np. na grzejnik o większej wysokości, a dla płytowych,

- optymalny– program przeszukuje całą rodzinę grzejników i znajduje taki, który spełnia ograniczenia odnośnie wymiarów, a jednocześnie jego wydajność jest wystarczająca i najbardziej zbliżona do wymaganej, chodzi o wartość A' najbliższą 100%,

- proporcjonalny – program przeszukuje całą rodzinę grzejników i znajduje taki, który spełnia wymagania odnośnie wymiarów, jego wydajność jest wystarczająca, a jednocześnie proporcje wymiarów (L/H) są najbardziej zbliżone do zadeklarowanych w "Ustawieniach domyślnych". Ta metoda dopuszcza, że program może wybrać grzejnik mniej dopasowany pod względem wydajności, a za to bardziej proporcjonalny pod względem wymiarów. Jednocześnie program wybiera grzejnik bardziej proporcjonalny tylko wtedy, gdy jego A' jest maksymalnie o 15% większa od deklarowanej. W pozostałych przypadkach obowiązuje kryterium doboru grzejnika optymalnego pod względem wydajności.

- ręczny – użytkownik wszystko wpełnia sam.

W wielu wypadkach metoda "optymalny" da takie same wyniki jak "pierwszy". Należy jednak pamiętać, że w metodzie "pierwszy" program nie cofa się wstecz, tzn. wskazanie grzejnika typu "22" spowoduje pominięcie grzejników "10" "11" i "21", nawet, gdyby wśród nich znajdował się najlepiej dopasowany.

<u>USTAWIENIA DOMYŚLNE</u> – użytkownikowi po wciśnięciu przycisku pojawia się okno (dla każdego pomieszczenia ma takie same ustawienia jak użyte ostatnio, chyba że wchodzi drugi raz w to okno i wykonywał modyfikacje wówczas program pamięta ustawienia). Widok okna jest taki sam jak dla punktu 14.3.1.1. Jedyny dodatek to przycisk "Pobierz dane domyślne", który przypisuje do tego pomieszczenia dane wstawione w opcjach programu.

TABELA DOBÓR GRZEJNIKÓW

Tabela pojawia się zawsze gdy w tabeli "Wybór rodzaju ogrzewania" zaznaczone jest ogrzewanie grzejnikowe, użytkownik definiuje w niej podstawowe dane do obliczeń grzejnika. Do edycji przez użytkownika, funkcjonalność, dodawania, usuwania, kalkulator, dobierz. Użytkownik plusikiem dodaje nowy grzejnik (wówczas program oblicza udział procentowy jako symetryczny tzn 100%/liczba

grzejników). Na tej podstawie z poprzedniej zakładki "Systemy ogrzewania" z tabeli dla grzejników pobiera moc .

KOLUMNA TYP GRZEJNIKA – użytkownik przyciskiem "…" otwiera listę typów grzejnika wstawionych do projektu. Program pokazuje domyślny typ\typy grzejników (może być kilka), wg zasady nazwa katalogu->wysokość ->typ->podmodel->Długość. W przypadku kiedy w ustawieniach domyślnych podane są jakieś zakresy odnośnie wysokości, długości lub szerokości to na liście wstawiamy te grzejniki które spełniają te warunki.

KOLUMNA UDZIAŁ % - pole do wpisywania udziału procentowego przez użytkownika, domyślnie dla pierwszego grzejnika wstawiane jest 100% gdy wstawiane są kolejne dzielimy wartość z wzoru 100%/ilość grzejników (zmieniamy dla wszystkich nie edytowanych przez użytkownika).

KOLUMNA DODATKI – pole do edycji przez użytkownika, dodatkowo podpięte okno z obliczeniami uruchamiane "…" działające i wyglądające tak samo jak w punkcie 14.3.1.1

KOLUMNA MOC OBLICZENIOWA Q_{obl} (ϕ_{obl}) [W] – pole do odczytu wyliczane z wzoru Q_{obl} (ϕ_{obl}) = Moc (ϕ) • β • Udział procentowy, gdzie Moc (ϕ) pobierana jest z tabelki rys 6 lub 7 z wiersza Ogrzewanie grzejnikowe kolumna Moc lub ϕ ,

KOLUMNA DOPASUJ DO PRZEGRODY – pole do wyboru przez użytkownika z listy przegrody od której pobieramy wymiary. Lista przegród zawsze składa się z okien zew i wew należących do tego pomieszczenia, na liście pokazujemy Orientacje, Symbol. Jeśli użytkownik wybierze jakąś przegrodę wówczas do doboru grzejnika uwzględniane są wymiary W (pobrane z pomieszczenia), Hp (pobrane z definicji przegrody) dla wybranej przegrody.

KOLUMNY ZBLOKOWANIE WYMIARÓW H i L i S [m]- pola domyślnie nie włączone, użytkownik wciskając przycisk "…" dla każdej z kolumn dostaje to samo okno "Domyślne ustawienia zblokowanych wymiarów". Na podstawie zakresów wymiarów zostaną wybrane odpowiednie grzejniki. W przypadku kiedy ma wybraną kolumnę "Dopasuj do przegrody" wówczas w kolumnę H wstawiamy wartość wyliczona ze wzoru H= Hp – 0,2, natomiast w kolumnę L wstawiamy wartość z wzoru L= W – 0,2. Wartość S jest pusta do edycji przez użytkownika.

Dobierz - przycisk ten włącza dobór program na podstawie wstawionych mocy, typów grzejników, zblokowanych wymiarów i wybranego sposobu doboru szuka najbardziej pasującego grzejnika pod względem wymiarów i mocy grzewczej. Najbardziej oprtymalny grzejnik pod względem mocy grzewczej to ten którego wartość $Q_k (\phi_k)$ *100%/ $Q_{obl} (\phi_{obl})$ jest najbliższa 100%.

KOLUMNA SYMBOL – pole do odczytu, wartość pobierana z bazy grzejników z kolumny "Model", dla dobranego grzejnika,

Kolumna A' [%] - pole do odczytu, wartość obliczana z wzoru: A'= $Q_k (\phi_k)$ *100%/ $Q_{obl} (\phi_{obl})$

KOLUMNA PARAMETRY SZCZEGÓŁOWE P – pole wyposażone jest w przycisk "…" który otwiera okno z parametrami dodatkowymi dla dobranego grzejnika.

Parametry s	zczegółowe										
Typ grzejnika Grzejniki płytowe/Purmo/Venti Compact/CV /21s											
Model	Producent										
CV 21s/900/1000	Purmo										
Moc katalogowa	Moc obliczona										
Q _k = 0 W	Q ₀₀ ⊨ 1695,54 W										
Wysokość	Długość										
H = 0,90 m	L = 1,00 m										
Szerokość	Pojemność wodna										
S = 0,07 m	Pojemność wodna= 8,90 dm ³										
Masa	Dopasowanie grzejnika										
Masa = 43,90 kg	A [°] = 108,31 %										
	Zamknij										

Okno parametrów szczegółowych

15.3.2.3 ZAKŁADKA OGRZEWANIE PODŁOGOWE

Zakładka widoczna jest tylko wówczas gdy w tabelce wybór rodzaju ogrzewania zaznaczony jest wiersz "Ogrzewanie podłogowe".

Ro	zdzia	ł pomiędzy pomieszczeniar	mi Ogrz	ewanie	grzejni	kowe Ogrzev	wani	e podło	ogow	e								
5	Sposób doboru: najmniejsza średnica 🕑 Uwzględnij straty ciepła od gruntu Ustawienia domyślne Tabela doboru ogrzewania podłogowego																	
			Kr	yteria	dobor	u						Dobrane og	rzewa	nie poo	lłogov	ve		+
	Lp.	Typ ogrzewania płaszczowego	Udział [%]	Aop [m²]	Фор [W]	Typ stref	y	Rozst rur [m	taw T]	Średn rur ([m]	ica D	Typoszereg rurociągów	T [m]	q [W/m²]	L [m]	θm,F [℃]	θmax, F [℃]	× Љ
	1	Kisan Comfort/Rura grzejna PE-Xb/AL/PE	100	8,25	636	łazienkowa						nn 🗐 Dobier	z					Ē
ľ																		
																		+
																		Ŧ
L																		

Okno ogrzewania podłogowego

SPOSÓB DOBORU – użytkownik ma do wyboru dwa sposoby doboru :

- kryterium najmniejszej średnicy \emptyset - program szuka najmniejszej wartości typoszeregu rurociągu (D) z wybranego zakresu, który spełnia warunki po obliczeniach $\Phi_{obl.} > \Phi_{op}$, a także $\theta_{m,F} \le \theta_{max,F}$

- kryterium najmniejszego rozstawu T –program szuka najmniejszej wartości rozstawu rurociągów (T) z wybranego zakresu, który spełnia warunki po obliczeniach $\Phi_{obl.} > \Phi_{op}$, a także $\theta_{m,F} \le \theta_{max,F}$

Uwzględnij straty ciepła od gruntu w doborze – gdy checkbox jest odznaczony to w Tabeli "Wybór systemu ogrzewania" wiersz "Projektowane obciążenie cieplne Φ_{HL}" (norma 12831) lub

"Obliczeniowe zapotrzebowanie na moc pomieszczeń Q_{pom}" (norma 03406) jest obliczana z wzoru (i uwzględnia tylko przegrody typu podłoga na gruncie)

 Φ_{HL} '= $\Phi_{HL} - [A_k \times U_{eqive} \times fg_1 \times fg_2 \times G_w \times (\theta_{i,H} - \theta_e)]$ (gdy wybrana jest norma gruntowa 12831) lub Φ_{HL} '= $\Phi_{HL} - [L_s \times (\theta_{i,H} - \theta_e)]$ (gdy wybrana jest norma gruntowa 13370),

 $Q_{pom} = Q_i - [L_s x (t - t_z)]$ (gdy wybrana jest norma gruntowa 13370),

 $Q_{pom} = Q_i - [A \times U \times (t - TEMP.)]$ (gdy wybrana jest norma gruntowa 6946) jeśli jest odznaczone to przenosimy wartości z pomieszczeń.

USTAWIENIA DOMYŚLNE- użytkownikowi po wciśnięciu przycisku pojawia się okno (dla każdego pomieszczenia ma takie same ustawienia jak użyte ostatnio, chyba że wchodzi drugi raz w to okno i wykonywał modyfikacje wówczas program pamięta ustawienia). Widok okna jest taki sam jak dla punktu 14.3.1.2. Jedyny dodatek to przycisk "Pobierz dane domyślne", który przypisuje do tego pomieszczenia dane wstawione w opcjach programu.

TYP OGRZEWANIA PODŁOGOWEGO – pole do wyboru typoszeregu z bazy ogrzewania podłogowego, lista wstawiana na podstawie domyślnego typoszeregu,

UDZIAŁ % - pole do wpisywania udziału procentowego, zasada działania taka jak w tabeli doboru grzejników,

POWIERZCHNIA WYZNACZONA DO OGRZEWANIA PODŁOGOWEGO A_{op} [m²] – pole do edycji przez użytkownika, program domyślnie wstawia wartość A_f z pomieszczenia,

OBCIĄŻENIE CIEPLNE PRZYJĘTE DO DOBORU OGRZEWANIA PODŁOGOWEGO Φ_{OP} [W]- wartość wyliczana z wzoru Φ_{OP} = Udział % x Φ_{OP} (z rodzaju ogrzewania wiersz ogrzewanie podłogowe)/ 100.

TYP STREFY – pole do wyboru z listy jednego z trzech wariantów, na tej podstawie wstawiana będzie temperatura $\theta_{max,F}$:

- brzegowa, wartość temperatury $\theta_{max,F}=35$

- łazienkowa, wartość temperatury $\theta_{max,F}=33$

- standardowa, wartość temperatury $\theta_{max,F}=29$

GRUPA ZBLOKOWANE WYMIARY

ROZSTAW RUR T [m] – pole do edycji przez użytkownika, albo wyboru z rozwijanej listy która jest tworzona na podstawie domyślnego typoszeregu (użytkownik powinien mieć możliwość wyboru od jednego to kilku wartości, zakres),

ŚREDNICA RURY Ø [mm] - pole do edycji przez użytkownika, albo wyboru z rozwijanej listy która jest tworzona na podstawie domyślnego typoszeregu (użytkownik powinien mieć możliwość wyboru od jednego to kilku wartości, zakres),

TYPOSZEREG RUROCIĄGÓW – pole w którym pokazuje dobrany typoszereg (text z bazy ogrzewania podłogowego, Nazwa typoszeregu),

T [**m**] – pole w którym pokazujemy dobrany rozstaw rur T,

OBLICZONY STRUMIEŃ CIEPŁA q [W/m²] – pole w którym pokazujemy obliczone (patrz poniżej dobór ogrzewania) strumień ciepła q_{obl} **DŁUGOŚĆ WĘŻOWNICY L [m]** - pole w którym pokazujemy obliczoną (patrz poniżej dobór ogrzewania) długość wężownicy L

TEMPERATURA WARSTWY PODŁOGOWEJ $\theta_{m,F}$ [$^{\circ}$ C]-pole w którym pokazujemy obliczoną (patrz poniżej dobór ogrzewania) temperaturę warstwy podłogowej $\theta_{m,F}$

MAX TEMPERATURA WARSTWY PODŁOGOWEJ $\theta_{max,F}$ [$^{\circ}$ C]-pole uzależnione od wybranego wariantu w kolumnie "Typ strefy"

- brzegowa, wartość temperatury $\theta_{max,F}=35$ °C

- łazienkowa, wartość temperatury $\theta_{max,F}$ =33 °C

- standardowa, wartość temperatury $\theta_{max,F}$ =29 °C

KOLUMNA PARAMETRY SZCZEGÓŁOWE P – pole wyposażone jest w przycisk "…" który otwiera okno z parametrami dodatkowymi dla dobranego ogrzewania podłogowego.

Parametry szczegółowe	×
Typ rurociągów	
Purmo/Rura grzejna PE-X/AL/PE-X	
Typoszereg	Producent
14x2	Purmo
Rozstaw rur	Obliczony strumieć ciepła
⊤ = 0,20 m	$q_{obl} = 95,98 \frac{W}{m^2}$
Długość wężownicy	Temperatura warstwy podłogowej
L = 33,11 m	θ _{m,F} = 32,67 °C
Max temperatura warstwy podłogow	vej
θ _{max,F} = 33,00 °C	
	Zamknij

Okno parametry szczegółowe ogrzewania podłogowego

Algorytm doboru dla Wariantu A w warstwie jastrychowej

Do doboru potrzebne będą nam dane wpisane w ustawieniach domyślnych, tabeli doboru ogrzewania podłogowego i bazy ogrzewania podłogowego.

Z "tabeli doboru ogrzewania podłogowego" pobieramy dla danego rekordu z kolumny Φ_{OP} moc do obliczeń i powierzchnia do wyznaczenia ogrzewania podłogowego A_{OP} następnie wyliczamy min strumień ciepła:

$q_{min} = \Phi_{OP} / A_{OP} [W/m^2]$

Następnie dla wybranego typoszeregu (kolumna typ ogrzewania podłogowego), patrzymy jakie dostępne są w bazie wartości o średnicy (w bazie kolumna D) i rozstawie rur (w bazie kolumna T). Dodatkowo uwzględniamy zblokowane wymiary Ø (co odpowiada D) i T (np. jeśli w bazie dla danego typoszeregu jest rozstaw 0,1; 0,15;0,2; 0,25; a użytkownik wybrał zakres od 0,15 do 0,2 wówczas do obliczeń bierzemy tylko 0,15 i 0,2 podobnie jest z średnicą rurek).

Następnie dla każdego pasującego typoszeregu Ø i pasującego rozstawu T obliczamy strumień ciepła q_{obl} z wzoru:

$$q_{obl} = 6,7 \cdot a_B \cdot a_T^{m_T} \cdot a_u^{m_u} \cdot a_D^{m_D} \cdot \Delta \theta_H$$

w przypadku kiedy T > 0,375 wówczas musimy obliczone q_{obl} podstawić jeszcze do wzoru:

$$q_{obl}' = q_{obl} \cdot \frac{0.375}{T}$$

Gdzie:

 a_{F} - wyliczana jest z wzoru poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" R_{B} , s_u, λ_{E} i bazy ogrzewania podłogowego wartości s_r i λ_{r}

$$a_B = \frac{\frac{s_r}{\lambda_r} + \frac{s_u}{1.0}}{\frac{s_r}{\lambda_r} + \frac{s_u}{\lambda_E} + R_B}$$

 a_T - wyliczana jest z tabeli poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" R_B i rozstawu rur T

R _B m ² K/W	0,00	0,05	0,10	0,15
a _T	1,23	1,188	1,156	1,134

$$n_T = 1 - \frac{T}{0.075}$$

 m_T - wyliczana jest z wzoru: $m_T - 1 - 0.075$ a_T - wyliczana jest z tabeli poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" R_B i rozstawu rur T

R _B [m ² K/W]	0,00	0,05	0,10	0,15
T [m]		a	U	
0,05	1,069	1,056	1,043	1,037
0,075	1,066	1,053	1,041	1,035
0,1	1,063	1,05	1,039	1,0335
0,15	1,057	1,046	1,035	1,0305
0,2	1,051	1,041	1,0315	1,0275
0,225	1,048	1,038	1,0295	1,026
0,3	1,0395	1,031	1,024	1,021
0,375	1,03	1,024	1,018	1,016

 m_{ii} - wyliczana jest z wzoru: $m_{ij} = 100 - (0,045 - s_u)$

 a_D - wyliczana jest z tabeli poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" R_B i rozstawu rur T

5				
R _B [m ² K/W]	0,00	0,05	0,10	0,15
T [m]		a	D	
0,05	1,013	1,013	1,012	1,011
0,075	1,021	1,019	1,016	1,014
0,1	1,029	1,025	1,022	1,018
0,15	1,04	1,034	1,029	1,024
0,2	1,046	1,04	1,035	1,03
0,225	1,049	1,043	1,038	1,033
0,3	1,053	1,049	1,044	1,039
0,375	1,056	1,051	1,046	1,042

 m_D - wyliczana jest z wzoru: $m_U = 250 - (D - 0, 02)$

 $\Delta \theta_{H}$ - wyliczana jest z wzoru poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" θ_{z} , θ_{p} a także pobranej z pomieszczenia temperatury pomieszczenia $\theta_{H,i}$

$$\Delta \theta_{H} = \frac{\theta_{z} - \theta_{p}}{\ln \frac{\theta_{z} - \theta_{H,i}}{\theta_{p} - \theta_{H,i}}}$$

Następnie obliczamy długość wężownicy L z wzoru:

$$L = \frac{\Phi_{OP}}{T \cdot q_{obl}} [\mathbf{m}]$$

Następnie wyliczamy temperaturę warstwy podłogowej $\theta_{m,F}$ z wzoru:

$$\theta_{m,F} = \theta_{H,i} + \sqrt[1,1]{\frac{8,92}{q_{obl}}}$$

Sprawdzenia

- czy temperatura podłogi $\theta_{m,F}$ nie przekracza wartości max $\theta_{max,F}$:

 $\theta_{m,F} \leq \theta_{max,F}$ wówczas dana wartości T, Ø i typoszereg uwzględniamy w dalszym doborze,

- czy wartość strumienia ciepła jest wystarczająca do ogrzania pomieszczenia:

 $q_{obl} \ge q_{min}$ wówczas dana wartości T, Ø i typoszereg uwzględniamy w dalszym doborze,

Następnie na podstawie wybranego typu doboru szukamy typoszeregu o najmniejszym wartości T lub Ø i go wstawiamy do tabeli "Wyniki doboru"

Algorytm doboru dla Wariantu B w warstwie izolacji

Do doboru potrzebne będą nam dane wpisane w ustawieniach domyślnych, tabeli doboru ogrzewania podłogowego i bazy ogrzewania podłogowego.

Z "tabeli doboru ogrzewania podłogowego" pobieramy dla danego rekordu z kolumny Φ_{OP} moc do obliczeń i powierzchnia do wyznaczenia ogrzewania podłogowego A_{OP} następnie wyliczamy min strumień ciepła:

$q_{min} = \Phi_{OP} / A_{OP} [W/m^2]$

Następnie dla wybranego typoszeregu (kolumna typ ogrzewania podłogowego), patrzymy jakie dostępne są w bazie wartości o średnicy (w bazie kolumna D) i rozstawie rur (w bazie kolumna T). Dodatkowo uwzględniamy zblokowane wymiary Ø (co odpowiada D) i T (np. jeśli w bazie dla danego typoszeregu jest rozstaw 0,1; 0,15;0,2; 0,25; a użytkownik wybrał zakres od 0,15 do 0,2 wówczas do obliczeń bierzemy tylko 0,15 i 0,2 podobnie jest z średnicą rurek).

Następnie dla każdego pasującego typoszeregu Ø i pasującego rozstawu T obliczamy strumień ciepła q_{obl} z wzoru:

$$q_{obl} = 6, 5 \cdot a_B \cdot a_T^{m_T} \cdot a_U \cdot a_{WL} \cdot a_K \cdot \Delta \theta_H$$

w przypadku kiedy T > 0,375 wówczas musimy obliczone q_{obl} podstawić jeszcze do wzoru:

$$q_{obl}' = q_{obl} \cdot \frac{0.37}{T}$$

Gdzie:

a₅ - wyliczana jest z wzoru poniżej na podstawie wartości wyliczonych z wzorów poniżej

$$= \frac{1}{1+6,5\cdot a_U \cdot a_{WL} \cdot a_K \cdot a_T^{m_T} \cdot R_B \cdot (1+0,44\cdot\sqrt{T})}$$

 a_T - wyliczana jest z tabeli poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" s_E i λ_E

$\frac{s_E}{m^2 K/W}$	0,02	0,03	0,04	0,05	0,06	0,08	0,1	0,15
a _T	1,1	1,097	1,093	1,091	1,088	1,082	1,075	1,064

 m_T -wyliczana jest z wzoru:

 a_B

$$m_T = 1 - \frac{T}{0.075}$$

 a_{U} - wyliczana jest z wzoru poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" s_E, λ_{E} i bazy ogrzewania podłogowego wartości s_r i λ_{r}

$$a_{U} = \frac{\frac{s_{r}}{\lambda_{r}} + \frac{s_{E}}{1.0}}{\frac{s_{r}}{\lambda_{r}} + \frac{s_{E}}{\lambda_{E}}}$$

 a_{K} - wyliczana jest z tabeli poniżej na podstawie T

T [m]	0,05	0,075	0,1	0,15	0,2	0,225	0,3	0,375	0,45
a _K	1	0,99	0,98	0,95	0,92	0,9	0,82	0,72	0,6

 K_{WL} - wyliczana jest z wzoru poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" s_E, λ_E , s_W, λ_W i b_u

$$K_{WL} = \frac{s_W \cdot \lambda_W + b_u \cdot s_E \cdot \lambda_E}{0.125}$$

 b_{u} - wyliczana jest z tabeli poniżej na podstawie T

T [m]	0,05	0,075	0,1	0,15	0,2	0,225	0,3	0,375	0,45
b _U	1	1	1	0,7	0,5	0,43	0,25	0,1	0

 a_{WL} - wyliczana jest z tabeli poniżej na podstawie T i K_{WL} i D (z bazy materiałów)

	$K_{WL}=0$											
D [m]	0,022	0,020	0,018	0,016	0,014							
T [m]		awL										
0,05	0,96	0,93	0,9	0,86	0,82							
0,075	0,8	0,754	0,7	0,644	0,59							
0,1	0,658	0,617	0,576	0,533	0,488							

0,15	0,505	0,47	0,444	0,415	0,387
0,2	0,422	0,4	0,379	0,357	0,337
0,225	0,396	0,376	0,357	0,34	0,32
0,3	0,344	0,33	0,315	0,3	0,288
0,375	0,312	0,3	0,29	0,278	0,266
0,45	0,3	0,29	0,28	0,264	0,25

		K _{WL}	=0,1		
D [m]	0,022	0,020	0,018	0,016	0,014
T [m]			a_{WL}		
0,05	0,975	0,955	0,93	0,905	0,88
0,075	0,859	0,836	0,812	0,776	0,74
0,1	0,77	0,76	0,726	0,693	0,66
0,15	0,642	0,621	0,6	0,58	0,561
0,2	0,57	0,55	0,53	0,51	0,49
0,225	0,54	0,522	0,504	0,485	0,467
0,3	0,472	0,462	0,453	0,444	0,435
0,375	0,46	0,446	0,434	0,421	0,411
0,45	0,45	0,44	0,43	0,42	0,41

		K _{WL}	=0,2		
D [m]	0,022	0,020	0,018	0,016	0,014
T [m]			awL		
0,05	0,985	0,97	0,955	0,937	0,92
0,075	0,902	0,893	0,885	0,865	0,845
0,1	0,855	0,843	0,832	0,821	0,81
0,15	0,775	0,765	0,755	0,745	0,735
0,2	0,71	0,703	0,695	0,688	0,68
0,225	0,685	0,678	0,67	0,663	0,655
0,3	0,615	0,608	0,6	0,592	0,585
0,375	0,58	0,573	0,565	0,558	0,55
0,45	0,57	0,565	0,56	0,555	0,55

		Kwi	=0,3		
D [m]	0,022	0,020	0,018	0,016	0,014
T [m]			a _{WL}		
0,05	0,99	0,98	0,97	0,96	0,95
0,075	0,94	0,935	0,93	0,925	0,92
0,1	0,92	0,915	0,91	0,905	0,9
0,15	0,855	0,855	0,855	0,855	0,855
0,2	0,8	0,8	0,8	0,8	0,8
0,225	0,79	0,79	0,79	0,79	0,79
0,3	0,72	0,72	0,72	0,72	0,72
0,375	0,69	0,69	0,69	0,69	0,69
0,45	0,68	0,68	0,68	0,68	0,68

		K _{WL}	=0,4		
D [m]	0,022	0,020	0,018	0,016	0,014
T [m]			awL		
0,05	0,995	0,99	0,985	0,978	0,97
0,075	0,96	0,962	0,963	0,964	0,965
0,1	0,94	0,94	0,94	0,94	0,94
0,15	0,895	0,895	0,895	0,895	0,895
0,2	0,86	0,86	0,86	0,86	0,86
0,225	0,84	0,84	0,84	0,84	0,84
0,3	0,78	0,78	0,78	0,78	0,78
0,375	0,76	0,76	0,76	0,76	0,76

0,45	0,75	0,75	0,75	0,75	0,75		
						_	
				$K_{WL} \ge 0,5$	5		
K _{WL}	0,5	0,6	0,7	0,8	0,9	1,0	00
T [m]				a_{WL}			
0,05	0,995	0,998	1	1	1	1	1
0,075	0,979	0,984	0,99	0,995	0,998	1	1,01
0,1	0,963	0,972	0,98	0,988	0,995	1	1,02
0,15	0,924	0,945	0,96	0,974	0,99	1	1,04
0,2	0,894	0,921	0,943	0,961	0,98	1	1,06
0,225	0,88	0,908	0,934	0,955	0,975	1	1,07
0,3	0,83	0,87	0,91	0,94	0,97	1	1,09
0,375	0,815	0,86	0,90	0,93	0,97	1	1,1
0,45	0,81	0,86	0,90	0,93	0,97	1	1,1

 $\Delta \theta_{H}$ - wyliczana jest z wzoru poniżej na podstawie wartości wpisanych w "Ustawieniach domyślnych" θ_{z} , θ_{p} a także pobranej z pomieszczenia temperatury pomieszczenia $\theta_{H,i}$

$$\Delta \theta_{H} = \frac{\theta_{z} - \theta_{p}}{\ln \frac{\theta_{z} - \theta_{H,l}}{\theta_{p} - \theta_{H,l}}}$$

$$I_{z} = \frac{\Phi}{\Phi}$$

Następnie obliczamy długość wężownicy L z wzoru: $T \cdot q_{obl}$ [m] Następnie wyliczamy temperaturę warstwy podłogowej $\theta_{m,F}$ z wzoru:

$$\boldsymbol{\theta}_{m,F} = \boldsymbol{\theta}_{H,i} + \sqrt[1,1]{\frac{8,92}{q_{obl}}}$$

Sprawdzenia

- czy temperatura podłogi $\theta_{m,F}$ nie przekracza wartości max $\theta_{max,F}$:

 $\theta_{m,F} \le \theta_{max,F}$ wówczas dana wartości T, Ø i typoszereg uwzględniamy w dalszym doborze,

- czy wartość strumienia ciepła jest wystarczająca do ogrzania pomieszczenia:

 $q_{obl} \ge q_{min}$ wówczas dana wartości T, Ø i typoszereg uwzględniamy w dalszym doborze,

Następnie na podstawie wybranego typu doboru szukamy typoszeregu o najmniejszym wartości T lub Ø i go wstawiamy do tabeli "Wyniki doboru"

15.3.2.4 ZAKŁADKA OGRZEWANIE POWIETRZNE

Visual Science Visual	Vission Vission Rodzaj podgrzewu Model V Marce and a strain a strain and a strain a strain and strain and strain and strain and a strain and strain and a strai	Rozdzia	ał pomiędzy pomieszczenia	mi (Ogrzewa	anie grz	ejnikowe ()grzewanie podłogowe)grze	wanie powietrzne							
Tabela doboru ogrzewania powietrznego Dobrany aparat grzewczo-wentylacyjne Lp. Typ urządzenia Udzia ł [%] OHL [m³/h] Rodzaj podgrzewu Model V [m³/h] Bieg [%] On [%] Ourz [%] A' [%] Modzaj podgrzewu 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 500,0 00 z komorą mieszania Vulcano VR1 2000, 000,0 21,64 19,80 222,419 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze wentyrane trans Vulcano VR1 280,00 00,0 24,10 11,60 526,767	Tabela doboru ogrzewania powietrznego Kryteria doboru Dobrany aparat grzewczo-wentylacyjny Lp. Typ urządzenia Udzia (%) PHIL (%) Vsu (m³/h) Rodzaj podgrzewu Model V (m³/h) Bieg (%) 0nurz (%) A' (%) 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 500,0 06 0,00 z komorą mieszania Vulcano VR1 2000, 000 II 21,64 19,80 222,419 II 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze wewnętrzne Vulcano VR1 2000, 00 II 24,10 11,60 526,767	Parar	Parametry wody grzewczej: 90/70														
Kryteria doburt Dobrany aparat grzewczo-wentylacyjne Lp. Typ urządzenia Udzia ł (%) OHL (%) Vsu (m³/h) Rodzaj podgrzewu Model V (m³/h) Bieg θn (°c) θurz (kw) A' (%) 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 500,0 00 z komorą mieszania Vulcano VR1 2000, 000,0 II 21,64 19,80 222,419 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze Vulcano VR1 2000,0 00,0 II 24,10 11,60 526,767	Kryteria doboru Dobrany aparat grzewczo-weutylacyjny Lp. Typ urządzenia Udzia [%] PHL [%] Vsu [m³/h] Rodzaj podgrzewu Model V [m³/h] Bieg 000 Purz [%] A' [%] 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 500,0 06 z komorą mieszania Vulcano VR1 2000,0 000,0 III 21,64 19,80,0 3,00 222,419 III 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101,0 0,00 tylko powietrze wewnętrzne Vulcano VR1 2000,0 III 11,00 526,767	Tabe	Tabela doboru ogrzewania powietrznego														
Lp. Typ urządzenia Udzia ł [%] Operation (W) Vsu [w] Rodzaj podgrzewu Model V [m³/ b] Bieg Operation (V) Operation (V) A' [%] 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 500, 0 z komorą mieszania Vulcano VR1 2000, 000 II 21,64 19,80 0 222,419 2 VTS /Aparaty 000 50 1101, 06 0,00 tylko powietrze vulcano VR1 2000, 00 1 24,10 11,60 526,767	Lp. Typ urządzenia Udzia ł (%) Operation (%) Usu (%) Vsu (%) Rodzaj podgrzewu Model V (m³/ h] Bieg (%) Operation (%) Operation (%) A' (%) 1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 500,0 06 z komorą mieszania Vulcano VR1 2000,0 000 II 21,64 19,80 3 222,419 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze wewnętrzne Vulcano VR1 2000, 00 24,10 11,60 8 526,767	Kryteria doboru Dobrany aparat grzewczo-wentylacyjny															
1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 500,0 06 50 1001, 500,0 0.0 50 1001, 500,0 0.0 100,0 0.0 100,0 0.0	1 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 500,0 0 z komorą mieszania Vulcano VR1 2000, 0000 1121,64 19,80 3 222,419 2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze wewnętrzne Vulcano VR1 2000, 00 121,64 19,80 3 222,419	Lp.	Typ urządzenia		Udzia ł [%]	ФНL, Р [W]	Vsu [m³/h]	Rodzaj podgrzew	u	Model		V [m³/ h]	Bieg	өn [°С]	Фurz [kW]	A' [%]	
2 VTS /Aparaty 50 1101, 0,00 tylko powietrze Vulcano VR1 800,0 I 24,10 11,60 526,767	2 VTS /Aparaty grzewczo-wentylacyjne 50 1101, 06 0,00 tylko powietrze wewnętrzne Vulcano VR1 20 800,0 00 24,10 11,60 8 526,767	1	VTS /Aparaty grzewczo-wentylacyjne		50	1101, 06	^{500,0}	z komorą mieszania		Vulcano VR1	Ð	2000, 000	п	21,64 3	19,80 0	222,419	
gizenezo wentylacyjne oo wentylacyjne oo o		2	VTS /Aparaty grzewczo-wentylacyjne		50	1101, 06	0,00	tylko powietrze wewnętrzne		Vulcano VR1	Ð	800,0 00	I	24,10 8	11,60 0	526,767	

Zakładka ogrzewanie powietrzne

Parametry wody grzewczej °C- pole do wyboru jednego z poniższych parametrów: 90/70, 80/60, 70/50.

TYP URZĄDZENIA – użytkownik ma do dyspozycji bazę "ogrzewanie powietrzne" po wciśnięciu przycisku "…"

UDZIAŁ % - pole do wpisywania udziału procentowego, zasada działania taka jak w tabeli doboru grzejników,

OBCIĄŻENIE CIEPLNE PRZYJĘTE DO DOBORU OGRZEWANIA POWIETRZNEGO\Phi_{HL,P} [W]- wartość wyliczana z wzoru $\Phi_{HL,P}$ = Udział % x $\Phi_{HL,P}$ (z rodzaju ogrzewania wiersz ogrzewanie podłogowe)/ 100,

STRUMIEŃ POWIETRZA ŚWIEŻEGO V_{SU,e} [**m**³/**h**] – pole do edycji użytkownik może skorzystać z obliczeń poprzez przycisk "…",

Strumień objętości p	owietrza nawiewanego
Rodzaj obliczeń: • Krotność wymian n = 0,50 <u>1</u> h	Krotność wymian Tablice
Strumień objętośc $V = \frac{11,72 \frac{m^3}{h}}{h}$	i powietrza nawiewanego
	Anuluj OK

Okno wentylacji "Krotność wymian"

Strumień objętości powietrza nawiewanego							x	
Rod	zaj obliczeń: zgodnie z PN-B/B-03430/AZ3:20	000						
Lp.	Urządzenia/aktywności		Ilość [szt.]	Vsup m³/h		Vcsup m³/h		+
1	Garaże zamknięte na miejsce postojowe		2	120,00	240,00			X
								P
								2
Stru	mień objętości powietrza nawiewanego							
V s	= 240,00 ^{m³} / _h					Anuluj	ок	

Okno wentylacji "zgodnie z PN-B/B-03430/AZ3:2000"

Okna działają tak jak w strefach cieplnych zakładka starty przez wentylację, dla wentylacji nawiewnej mechanicznej. V_{SU} z tych okien wstawiana jest do tabelki w kolumnę V_{SU} .

Rodzaj podgrzewu - pole do wybory z listy jednego z dwóch przypadków:

Z Komorą mieszania – wówczas w obliczeniach uwzględniamy $V_{su,e}$ (kolumna jest aktywna) i dobór wykonujemy wg pierwszego wariantu, kolumnie parametry dodatkowe pokazujemy ϕ_{VE} ,

Tylko powietrze wewnętrzne – wówczas jako θ_r wstawiamy wartość $\theta_{H,i}$ (temp. pomieszczenia), kolumna $V_{su,e}$ jest wyszarzana, dobór wykonujemy wg drugiego wariantu

MODEL – z bazy "Ogrzewania powietrznego" wstawiamy nazwę wg szablonu nazwa katalogu, typ, **STRUMIEŃ POWIETRZA WYPŁYWAJĄCY Z URZĄDZENIA V [m3/h]** – pole do odczytu, program wstawia dla dobranego wariantu wartość z bazy "Ogrzewania powietrznego" z kolumny V, **BIEG** - pole do odczytu, program wstawia dla dobranego wariantu wartość z bazy "Ogrzewania powietrznego" z kolumny "Bieg",

TEMPERATURA NAWIEWU θ_n [°C] - pole do odczytu, program wylicza wartość z wzoru $\Phi_{HL,P} \cdot 3,6$ 2000 · 3,6 + 16 – 22 5

 $\frac{1}{V \cdot 1, 2 \cdot 1,005} + \theta_{H,i} = \frac{2000 \cdot 3,0}{800 \cdot 1, 2 \cdot 1,005} + 16 = 23,5$

MOC URZĄDZENIA ϕ_{URZ} [kW] - pole do odczytu, program wstawia dla dobranego wariantu wartość z bazy "Ogrzewania powietrznego" z kolumny " ϕ_{URZ} " • 10⁻³,

Dopasowanie A' [%] - pole do odczytu, program wylicza wartość z wzoru A'= φ_{URZ}*100%/ (φ_{HL,P} + φ_{VE})

KOLUMNA PARAMETRY SZCZEGÓŁOWE P – pole wyposażone jest w przycisk "…" który otwiera okno z parametrami dodatkowymi dla dobranego ogrzewania powietrznego.

Parametry szczegółowe	X
Nazwa urządzenia	Producent
VTS /Aparaty grzewczo-wentylacyjne	VTS
Model	Bieg wentylatora
Vulcano VR1	I
Moc urządzenia	Obciążenie cieplne
Φ _{URZ} = 11600,00 W	ф _{НLP} = 1059,46 W
Strumień powietrza zawracanego z pomieszczenia	Obciążenie cieplne na podgrzanie – powietrza zew.
V _{recyl.} = 560,00 m	φ _{VE} = 4597,06 VV
Strumień powietrza zewnętrznego	Całkowity strumień powietrza wypływający z urządzenia
V _{SU,ē} 240,00 <u>m³</u> h	$V = 800,00 \frac{m^3}{h}$
Temperatura przed nagrzewnicą	Temperatura zewnętrzna
θ _r = 10,80 °C	θ _e = -20,00 °C
Dopasowanie grzejnika	Temperatura nawiewu
A' = 205,07 %	θ _n = 27,95 °C
Wysokość	
H = 0,79 m	L = 0,79 m
Szerokość	Pojemność wodna
S = 0,38 m	Pojemność wodna= 1,70 dm ³
Masa	
Masa = 29,00 kg	
	Zamknij

Okno parametrów szczegółowych ogrzewania powietrznego

Algorytm doboru dla Wariantu pierwszego. Komora mieszania

Do doboru potrzebne będą nam dane wpisane w ustawieniach domyślnych, tabeli doboru ogrzewania powietrznego i bazy ogrzewania powietrznego.

Z "tabeli doboru ogrzewania powietrznego" pobieramy dla danego rekordu z kolumny $\Phi_{HL,P}$ moc do obliczeń i strumień powietrza zewnętrznego $V_{SU,e}$, dodatkowo sprawdzamy jakie są wybrana parametry wody grzewczej :

Zaczynamy od wyliczenia strumienia powietrza zawracanego z pomieszczenia $V_{recyl.}$ biorąc pod uwagę wybrany z bazy typoszereg (nazwę typoszeregu lub typu) i dopisany do niego Bieg wentylatora (dla każdego biegu wentylatora w bazie dopisana jest wartość strumienia V), mając te dane korzystamy z wzoru:

Zaczynamy od sprawdzenia czy V (z bazy urządzenia) > $V_{SU,e}$ jeżeli tak wówczas przechodzimy do obliczeń, jeśli nie kończymy dobór z komunikatem "Dla wstawionego strumienia powietrza zewnętrznego nie można dobrać odpowiedniego urządzenia. Zmień strumień powietrza zewnętrznego lub dodaj dodatkowe aparaty."

Przykład dla Vulcano VR1, θ_e =-20, $\theta_{H,i}$ =16, $\varphi_{HL,P}$ =2000 W Bieg – I –> V_I=800 m3/h -> V_{recyl.I}=V_I-V_{SU,e}= 800 – 300 = 500 m3/h Bieg – II –> V_{II}=2000 m3/h -> V_{recyl.II}=V_{II}-V_{SU,e}= 2000 – 300 = 1700 m3/h Bieg – III –> V_{III}=3000 m3/h -> V_{recyl.III}=V_{III}-V_{SU,e}= 3000 – 300 = 2700 m3/h Bieg – IV –> V_{IV}=4000 m3/h -> V_{recyl.IV}=V_{IV}-V_{SU,e}= 4000 – 300 = 3700 m3/h Bieg – V –> V_V=5500 m3/h -> V_{recyl.V}=V_V-V_{SU,e}= 5500 – 300 = 5200 m3/h Następnie obliczamy temperaturę przed nagrzewnicą θ_r z wzoru dla każdego biegu wentylatora:

$$\begin{split} &\text{Bieg} - \text{I} - \theta_{\text{f},\text{I}} = \frac{v_{SU,e} \cdot \theta_e + v_{recy|I} \cdot \theta_{H,i}}{v_{SU,e} + v_{v_{recy|II}}} = \frac{300 \cdot (-20) + 500 \cdot 16}{300 + 500} = 2,5\\ &\text{Bieg} - \text{II} - \theta_{\text{f},\text{II}} = \frac{v_{SU,e} \cdot \theta_e + v_{recy|II} \cdot \theta_{H,i}}{v_{SU,e} + v_{v_{recy|III}}} = \frac{300 \cdot (-20) + 1700 \cdot 16}{300 + 1700} = 10,6\\ &\text{Bieg} - \text{III} - \theta_{\text{f},\text{III}} = \frac{v_{SU,e} \cdot \theta_e + v_{recy|III} \cdot \theta_{H,i}}{v_{SU,e} + v_{v_{recy|III}}} = \frac{300 \cdot (-20) + 2700 \cdot 16}{300 + 2700} = 12,4\\ &\text{Bieg} - \text{IV} - \theta_{\text{f},\text{IV}} = \frac{v_{SU,e} \cdot \theta_e + v_{recy|III} \cdot \theta_{H,i}}{v_{SU,e} + v_{v_{recy|III}}} = \frac{300 \cdot (-20) + 2700 \cdot 16}{300 + 3700} = 13,3\\ &\text{Bieg} - \text{V} - \theta_{\text{f},\text{V}} = \frac{v_{SU,e} \cdot \theta_e + v_{recy|IV} \cdot \theta_{H,i}}{v_{SU,e} + v_{v_{recy|IV}}} = \frac{300 \cdot (-20) + 5200 \cdot 16}{300 + 3700} = 14,0 \end{split}$$

Następnie sprawdzamy z bazą, które biegi spełniają warunek $\theta_r \ge \theta_{r,min}$ (z bazy) jeżeli tak wówczas przechodzimy do obliczeń, jeśli wszystkie nie kończymy dobór z komunikatem "Dla wstawionego strumienia powietrza zewnętrznego nie można dobrać odpowiedniego urządzenia. Zmień strumień powietrza zewnętrznego lub dodaj dodatkowe aparaty."

```
Sprawdzenia warunku z przykładu
Bieg – I – \theta_{r,I} \ge \theta_{r,min} \Longrightarrow 2,5 \ge 0 spełniony obliczamy dalej
Bieg - II - \theta_{r,II} \ge \theta_{r,min} \Longrightarrow 10, 6 \ge 0 spełniony obliczamy dalej
Bieg - III - \theta_{r,III} \ge \theta_{r,min} \Longrightarrow 12, 4 \ge 0 spełniony obliczamy dalej
Bieg – IV –\theta_{r,IV} \ge \theta_{r,min} \Longrightarrow 13,3 \ge 0 spełniony obliczamy dalej
Bieg – V –\theta_{r,V} \ge \theta_{r,min} \Longrightarrow 14, 0 \ge 0 spełniony obliczamy dalej
Następnie dla wybranego typu urządzenia, biegu, temperatury \theta_r i ustawionych "Parametrów wody
grzewczej" szukamy w bazie wartości \phi_{URZ} (zazwyczaj w bazie będą wartości dla temperatur \theta_r = 0, 5,
10, 15, 20 jeśli otrzymamy z obliczeń inna wartość to musimy ją aproksymować miedzy danymi dla
danego typu, biegu, parametrów wody grzewczej)
W naszym przypadku mamy parametry wody grzewczej 80/60
Bieg – I – \phi_{URZ,I} = 9600 W (po aproksymacji miedzy 0 a 5)
Bieg – II – \phi_{URZ,II} = 14000 W (po aproksymacji miedzy 10 a 15)
Bieg – III – \phi_{URZ,III} = 18300 W (po aproksymacji miedzy 10 a 15)
Bieg – IV –\phi_{\text{URZ,IV}} = 18800 W ( po aproksymacji miedzy 10 a 15)
Bieg – V –\phi_{URZ,V} = 24000 W (po aproksymacji miedzy 10 a 15)
Następnie obliczamy temperaturę nawiewu dla każdego biegu:
Następnie obliczamy temperaturę nawiewu dla każdego biegu:

Bieg – I – \theta_{n,I} = \frac{\Phi_{HL,P} \cdot 3.6}{V \cdot 1.2 \cdot 1.005} + \theta_{H,i} = \frac{2000 \cdot 3.6}{900 \cdot 1.2 \cdot 1.005} + 16 = 23,5

Bieg – II – \theta_{n,II} = \frac{\Phi_{HL,P} \cdot 3.6}{V \cdot 1.2 \cdot 1.005} + \theta_{H,i} = \frac{2000 \cdot 3.6}{2000 \cdot 1.2 \cdot 1.005} + 16 = 19,0

Bieg – III – \theta_{n,III} = \frac{\Phi_{HL,P} \cdot 3.6}{V \cdot 1.2 \cdot 1.005} + \theta_{H,i} = \frac{2000 \cdot 3.6}{3000 \cdot 1.2 \cdot 1.005} + 16 = 18,0

Bieg – IV – \theta_{n,IV} = \frac{\Phi_{HL,P} \cdot 3.6}{V \cdot 1.2 \cdot 1.005} + \theta_{H,i} = \frac{2000 \cdot 3.6}{4000 \cdot 1.2 \cdot 1.005} + 16 = 17,5

Bieg – V – \theta_{n,V} = \frac{\Phi_{HL,P} \cdot 3.6}{V \cdot 1.2 \cdot 1.005} + \theta_{H,i} = \frac{2000 \cdot 3.6}{5500 \cdot 1.2 \cdot 1.005} + 16 = 17,1
Następnie liczymy obciążenie cieplne na wentylację dla każdego biegu z wzoru:
Bieg – I \Phi_{VE,I} = (V_I/3, 6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{n,I} - \theta_{r,I}) = (800/3, 6) \cdot 1,005 \cdot 1,2 \cdot (23, 5 - 2, 5) = 5628
Bieg - II \phi_{VE,II} = (V_{II}/3, 6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{n,II} - \theta_{r,II}) = (2000/3, 6) \cdot 1,005 \cdot 1,2 \cdot (19,0-10,6) = 5628
Bieg - III φ<sub>VE,III</sub>= (V<sub>III</sub> /3,6)•1,005•1,2•(θ<sub>n,III</sub> - θ<sub>r,III</sub>)=(3000/3,6)•1,005•1,2•(18,0-12,4)=5628
Bieg - IV $\phi_{VE,IV}$= (V_{IV} / 3,6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{n,IV} - \theta_{r,IV})$=(4000/3,6) \cdot 1,005 \cdot 1,2 \cdot (17,5 - 13,3) = 5628
Bieg - V Φ<sub>VE,V</sub>= (V<sub>V</sub> /3,6)•1,005•1,2•(θ<sub>n.V</sub> - θ<sub>r.V</sub>)=(5500/3,6)•1,005•1,2•(17,1-14,0)=5628
Następnie obliczamy całkowite obciążenie cieplne \phi_{obl}
Bieg – I \phi_{obl,I} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 5628 = 7628
Bieg – II \phi_{obl,II} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 5628 = 7628
Bieg – III \phi_{obl,III} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 5628 = 7628
Bieg – IV \phi_{obl,IV} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 5628 = 7628
Bieg – V \phi_{obl,V} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 5628 = 7628
Następnie sprawdzamy dopasowanie A':
Bieg – I A'= \phi_{URZ}•100%/ (\phi_{obl}) = (9600 • 100%)/7628 = 125,8 %
Bieg – II A'= \phi_{\text{URZ}} \cdot 100\%/(\phi_{\text{obl}}) = (14000 \cdot 100\%)/7628 = 183,5\%
Bieg – III A'= \phi_{URZ}•100%/ (\phi_{obl}) = (18300 • 100%)/7628 = 239,9 %
Bieg – IV A'= \phi_{URZ}•100%/ (\phi_{obl}) = (18800 • 100%)/7628 = 246,5 %
Bieg – V A'= \phi_{URZ}•100%/ (\phi_{obl}) = (24000 • 100%)/7628 = 314,6 %
Dobieramy to urządzenie i bieg które jest większe bądź równe 100% lub jest najbliższe 100%, w
opisywanym przykładzie pasuje bieg I.
```

Algorytm doboru dla Wariantu drugiego. Tylko powietrze wewnętrzne

Do doboru potrzebne będą nam dane wpisane w ustawieniach domyślnych, tabeli doboru ogrzewania powietrznego i bazy ogrzewania powietrznego.

Z "tabeli doboru ogrzewania powietrznego" pobieramy dla danego rekordu z kolumny $\Phi_{HL,P}$ moc do obliczeń, dodatkowo sprawdzamy jakie są wybrana parametry wody grzewczej :

Przykład dla Vulcano VR1, θ_e =-20, $\theta_{H,i}$ =16, $\varphi_{HL,P}$ =2000 W

Zaczynamy od przypisania, że $\theta_r = \theta_{H,i}$ dla naszego przykładu $\theta_r = \theta_{H,i} = 16$

Następnie sprawdzamy z bazą, które biegi spełniają warunek $\theta_r \ge \theta_{r,\min}$ (z bazy) jeżeli tak wówczas przechodzimy do obliczeń, jeśli wszystkie nie kończymy dobór z komunikatem "Dla wstawionej temperatury pomieszczenia nie można dobrać odpowiedniego urządzenia. Zmień temperature pomieszczenia lub dodaj dodatkowe aparaty.'

Sprawdzenia warunku z przykładu

Bieg – I – $\theta_{r,I} \ge \theta_{r,min} \Longrightarrow 16 \ge 0$ spełniony obliczamy dalej

Bieg – II – $\theta_{r,II} \ge \theta_{r,min} \Longrightarrow 16 \ge 0$ spełniony obliczamy dalej

Bieg – III – $\theta_{r,III} \ge \theta_{r,min} \Longrightarrow 16 \ge 0$ spełniony obliczamy dalej

Bieg – IV – $\theta_{r,IV} \ge \theta_{r,min} \Longrightarrow 16 \ge 0$ spełniony obliczamy dalej

Bieg – V – $\theta_{r,V} \ge \theta_{r,min} \Longrightarrow 16 \ge 0$ spełniony obliczamy dalej

Następnie dla wybranego typu urządzenia, biegu, temperatury θ_r i ustawionych "Parametrów wody grzewczej" szukamy w bazie wartości ϕ_{URZ} (zazwyczaj w bazie będą wartości dla temperatur $\theta_r = 0, 5, 5$ 10, 15, 20 jeśli otrzymamy z obliczeń inna wartość to musimy ją aproksymować miedzy danymi dla danego typu, biegu, parametrów wody grzewczej)

W naszym przypadku mamy parametry wody grzewczej 80/60

Bieg – I – $\phi_{URZ,I} = 7540$ W (po aproksymacji miedzy 15 a 20)

Bieg – II – $\phi_{URZ,II}$ = 12620 W (po aproksymacji miedzy 15 a 20)

Bieg – III – $\phi_{\text{URZ,III}} = 15460 \text{ W}$ (po aproksymacji miedzy 15 a 20)

Bieg – IV – $\phi_{\text{URZ,IV}}$ = 17820 W (po aproksymacji miedzy 15 a 20)

Bieg – V – $\phi_{\text{URZ,V}}$ = 20840 W (po aproksymacji miedzy 15 a 20)

Następnie obliczamy temperaturę nawiewu dla każdego biegu:

 $\frac{\Phi_{\text{HL},P}\cdot 3,6}{U_1\cdot 2,1.005} + \theta_{\text{H},i} = \frac{2000\cdot 3,6}{000\cdot 1,2.1005} + 16 = 23,5$ $Bieg - I - \theta_{n,I} =$ V-1,2-1,005 800-1,2-1,005 2000-3,6 $- II - \theta_{n,II} = \frac{1}{V \cdot 1, 2 \cdot 1,005} \Phi_{H L,P'3/P}$ $+ \theta_{H,i} = ;$ - + 16 = 19,0 2000-1,2-1,005

$$\begin{split} \text{Bieg} &= \text{III} \\ \text{Bieg} &= \text{III} - \theta_{n,\text{III}} = \frac{\Phi_{\text{H}\,\text{L},\text{P}\,\text{C}}}{\frac{\Psi_{\text{H}\,\text{L},\text{P}\,\text{C},\text{O}\,\text{S}}}{\Psi_{\text{H}\,\text{L},\text{P}\,\text{C},\text{O}\,\text{S}}} + \sigma_{\text{H},\text{i}} \\ & & & = \frac{\Phi_{\text{H}\,\text{L},\text{P}\,\text{C},\text{O}\,\text{S}}}{\Psi_{\text{H}\,\text{L},\text{P}\,\text{C},\text{O}\,\text{S}}} + \theta_{\text{H},\text{i}} = \end{split}$$
 $\frac{2 \cdot 1,005}{H_{L,P} \cdot 3,6} + \theta_{H,i} = \frac{1}{30}$ +16 = 18,03000-1,2-1,005 2000-3,6 $\begin{array}{l} Bieg-IV-\theta_{n,IV}=\frac{\Phi_{H\,L,P}\cdot 3,6}{V\cdot 1,2\cdot 1,005}+\theta_{H,i}=\frac{2000\cdot 3,6}{4000\cdot 1,2\cdot 1,005}+16=\!17,5\\ Bieg-V-\theta_{n,V}=\frac{\Phi_{H\,L,P}\cdot 3,6}{V\cdot 1,2\cdot 1,005}+\theta_{H,i}=\frac{2000\cdot 3,6}{5500\cdot 1,2\cdot 1,005}+16=\!17,1 \end{array}$

Następnie liczymy obciążenie cieplne na wentylację dla każdego biegu z wzoru: Bieg – I $\phi_{VEI} = (V_I/3, 6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{nI} - \theta_{r,I}) = (800/3, 6) \cdot 1,005 \cdot 1,2 \cdot (23, 5 - 16) = 2010$ Bieg - II $\phi_{VE,II} = (V_{II}/3,6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{n,II} - \theta_{r,II}) = (2000/3,6) \cdot 1,005 \cdot 1,2 \cdot (19,0-16) = 2010$ Bieg - III φ_{VE,III}= (V_{III} /3,6)•1,005•1,2•(θ_{n,III} - θ_{r,III})=(3000/3,6)•1,005•1,2•(18,0-16)=2010 Bieg - IV φVEJV= (VIV /3,6)•1,005•1,2•(θnJV - θrJV)=(4000/3,6)•1,005•1,2•(17,5-16)=2010

```
Bieg - V \phi_{VE,V} = (V_V / 3, 6) \cdot 1,005 \cdot 1,2 \cdot (\theta_{n,V} - \theta_{r,V}) = (5500/3,6) \cdot 1,005 \cdot 1,2 \cdot (17,1-16) = 2010
```

Następnie obliczamy całkowite obciążenie cieplne ϕ_{obl}

Bieg – I $\phi_{obl,I} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 2010 = 4010$

Bieg – II $\phi_{obl,II} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 2010 = 4010$

Bieg – III $\phi_{obl,III} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 2010 = 4010$

Bieg – IV $\phi_{obl,IV} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 2010 = 4010$

Bieg – V $\phi_{obl,V} = \phi_{HL,P} + \phi_{VE,I} = 2000 + 2010 = 4010$

Następnie sprawdzamy dopasowanie A':

Bieg – I A'= $\phi_{\text{URZ}} \cdot 100\% / (\phi_{\text{obl}}) = (7540 \cdot 100\%) / 4010 = 188,0\%$

Bieg – II A'= $\phi_{URZ} \cdot 100\%/(\phi_{obl}) = (12620 \cdot 100\%)/4010 = 314.7\%$

```
Bieg – III A'= \phi_{URZ}•100%/ (\phi_{obl}) = (15460 • 100%)/4010 = 385,5 %
```

Bieg – IV A'= ϕ_{URZ} •100%/ ($\dot{\phi}_{obl}$) = (17820 • 100%)/4010 = 444,4 %

```
Bieg – V A'= \phi_{\text{URZ}}•100%/ (\phi_{\text{obl}}) = (20840 • 100%)/4010 = 519,7 %
```

Dobieramy to urządzenie i bieg które jest większe bądź równe 100% lub jest najbliższe 100%, w opisywanym przykładzie pasuje bieg I.

15.3.2.5 ZAKŁADKA - OGRZEWANIE INNE

Rozd	łozdział pomiędzy pomieszczeniami Ogrzewanie grzejnikowe Ogrzewanie podłogowe Ogrzewanie powietrzne Inne					
	Kryteria doboru		Dobrany inny	-		
Lp	. Nazwa	Udział [%]	Qobl [W]	Nazwa u	rządzenia	A' [%]
1	Tecenor/Emisor ONE	50	1101	EH1-A9		106
2	Tecenor/Emisor ONE	50	1101	EH1-A9		106

Zakładka Inne

NAZWA – pole do wpisywania tekstu, przez użytkownika

TYP - pole do wpisywania tekstu, przez użytkownika

PRODUCENT - pole do wpisywania tekstu, przez użytkownika

UDZIAŁ % - pole do wpisywania udziału procentowego, zasada działania taka jak w tabeli doboru grzejników,

OBCIĄŻENIE CIEPLNE PRZYJĘTE DO DOBORU OGRZEWANIE INNEGO Φ_{IN} [W]- wartość wyliczana z wzoru Φ_{IN} = Udział % x Φ_{IN} (z rodzaju ogrzewania wiersz inne)/ 100,

15.3.3 RAPORTY RTF Z DOBORU GRZEJNIKÓW

ArCADia-TERMO PRO 4.3 Licen	cja dla: WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA DLA INTERSOFT 203	10_B [L03] - dobór grzejników
Plik Wersja Raporty Usta	wienia Pomoc P V A M Efekt ekologiczny	Efekt ekonomiczny Dobor grzejników Rimatyzacja
APURIT	Obliczenia ciepine	
	DANE OGÓLNE	
Dane ogólne Wyniki ogólne Przegrody	Miejscowość: Nowy Adamów	
Pomieszczenia Strefy cieplne	Stacja meteorologiczna: Łódź - Lublinek	Stacja aktynometryczna: Łódź - Lublinek
	Temperatura zewnętrzna: -20.0 °C	Strefa klimatyczna: III
	Przeznaczenie budynku: Mieszkalny	Typ budynku: Dom jednorodzinny
	Charakter budynku: Istniejący	Rok budowy: 2010
	Norma do obliczeń strat ciepła w pomieszczeniu: PN	-EN 12831
Obliczenia cieplne	Norma do obliczeń sezonowego zanotrzebowania ps	ciepto budyoku: PN-EN 13790-2009
Zużycie paliw	Norma do obliczen sezonowego zapotrzebowania na	s ciepio budynku. PN-EN 13730.2003
Efekt ekologiczny	Norma do obliczeń strat ciepła przez grupt: Wg rozo	MI 06.11.08
Efekt ekonomiczny		
Z DANE WEJŚCIOWE		
OBLICZENIA CIEPLNE		
CERTYFIKAT		
🕺 ZUŻYCIE PALIW	Racott o bledach	
EFEKT EKOLOGICZNY	L.p. Typ	Opis
EFEKT EKONOMICZNY	1 Ostrzeżenie Wartość współczynnika przenikalności energii ca	ikowitej okna "O-8" - "Okno zewnętrzne90x140" nie jest zgodna z WT2008!
DADODIX	2 Ostrzeżenie Wartość współczynnika przenikalności energii ca	ikowitej okna "O-9" - "Okno zewnętrzne90x120" nie jest zgodna z WT2008!
	3 Ostrzeżenie Wartość współczynnika przenikalności energii ca	ikowitej okna "DB1" - "Okno balkonowe 220x150" nie jest zgodna z WT2008!
< [14/18] >		Zamkn

Okno raportów

W celu wygenerowania raportu rtf należy wcisnąć przycisk wówczas program wygeneruje raport, który będzie się zkladać z:

- 1) Zestawienie rodzaju ogrzewania i mocy pomieszczeń
- 2) Zestawienie grzejników w pomieszczeniach
- 3) Zestawienie ogrzewania płaszczowego w pomieszczeniach
- 4) Zestawienie ogrzewania powietrznego w pomieszczeniach
- 5) Zestawienie ogrzewania innego w pomieszczeniach
- 6) Zestawienie grzejników dla całego budynku
- 7) Zestawienie ogrzewania płaszczowego dla całego budynku
- 8) Zestawienie ogrzewania powietrznego dla całego budynku
- 9) Zestawienie inne dla całego budynku

16.1 WSTĘP DO KLIMATYZACJI

ArCADia-KLIMATYZACJA jest programem ściśle współpracującym z systemem *ArCADia-TERMO* służącym do obliczeń zysków ciepła w pomieszczeniach. Program na podstawie danych geometrycznych, sposobie użytkowania, ilości ludzi, rodzaju oświetlenia, zysków od urządzeń i materii obliczy dla każdego godziny w roku zyski ciepla z uwzględnieniem aktualnych danych klimatycznych (51 miast). Program opiera się na obliczeniach szczegółowych wg niemieckich wytycznych VDI 2078. Wyniki można podejrzeć w programie lub w kilkunasto stronnicowym raporcie rtf.

16.2 WYBÓR OBLICZEŃ KLIMATYZACJI

Użytkownik klimatyzację może wybrać w dowolnym momencie obliczeń, w tym celu musi zaznaczyć ikonkę

/z		ArCADia, TERMO DRO 6.0 Licencia dia: Tert - Ar	CADia-TERMO BRO 6 (L011 - help kopia	- 6 ×
Plik Ustawienia Pomoc	800	▼ /> ▼ ?	CADIa-TERNIO FRO 0 (E01) - Help — Kopia	
DANE WEJŚCIOWE	Wybór obliczeń -	WT 2014		
Contaction shywnee Contaction shywnee Contaction shywnee Contaction shywnee Contaction shymne Contaction shymney Contaction shymney		Wykonaj obliczenia projektowanego obciążenia ciepłe pomies zczeń Wykonaj obliczenia zapotrzebowania na energię użyti	KOVA 1	*
The Stationy The Stationy The Station State of State State State State St		Wykonaj obliczenia charakterystyki energetycznej Sudadcetwo charakterystyki energetycznej wyragare m. na do pozwielm na ukrakterystyka energetyczna projektowana charakterystyka energetyczna (wymagane w projekce kudwiletym do pozwielme na budow	0	
 Sciana zew z betonu komórkowego gr. 24cm z dociepi ściana zew z betonu komórkowego gr. 24cm z dociepi ściana zew z betonu komórkowego gr. 24cm z dociepi 		Wykonaj obliczenia audytorskie Audyt energetyczny	0	Opis obliczeń
Sciana zew z befonu komórkowego gr. 24cm z dociepi Gig Dane adresowe Gig Normy		Audyt remontowy		til@bliczeniowe zapotrzebowanie na ciepło pomieszczeń Q
•				
K Vyodrobliczeń			_	
Dane o budynku DANE WEJŚCIOWE	Am v			,
	Raport o bledach			
	Lp. Typ 1 Blad	Parametr "Opér calicowity Rc" w przegrodzie "SW oc", nie zost	al popravnie wypełniony!	0
Z 1101				
V [20] 2	6		PE PE PE	

Okno wyboru obliczeń

16.3 WYGLĄD OKNO OBLICZEŃ ZYSKÓW CIEPŁA POMIESZCZEŃ (ZYSKI CIEPŁA)

Okno to służy do obliczeń mocy chłodniczej pomieszczeń. Dane te potrzebne są do doboru odbiorników systemu chłodzenia. Program pozwala na obliczenia niemieckimi wytycznymi VDI 2078.). Okno zysków ciepła składa się z czterech części:

- Drzewka struktury,
- Okna właściwości pomieszczenia,
- Zakładek obliczeń zysków ciepła,
- Panelu wyników obliczeń

Okno zysków ciepła

16.3.1 Opis drzewkastruktury budynku

Drzewko pozwala na dowolne grupowanie pomieszczeń zarówno na poziomie kondygnacji jak i budynku. Użytkownik poprzez zaznaczanie, a następnie przesuwanie pomieszczenia może dowolnie zmieniać grupę lub kondygnację wybranego pomieszczenia. Grupy znajdujące się w hierarchii nad kondygnacją można traktować, jako grupowanie pionowe (np. podział budynku na klatki schodowe). Grupy znajdujące się w hierarchii poniżej kondygnacji można traktować, jako grupowanie poziome na kondygnacji (np. mieszkania lub pomieszczenia z danej grupy funkcyjnej). W przypadku pierwszej grupy (np. klatka schodowa A) skasowanie kondygnacji nie powoduje usunięcia jej z projektu, a jedynie z danej grupy. W celu usunięcia kondygnacji z projektu musi być ona skasowana z wszystkich grup (w przedstawionym poniżej przypadku z grup klatka schodowa A, klatka schodowa B). Dodanie nowej kondygnacji do projektu widoczne jest w wszystkich grupach pionowych. W przypadku pobrania danych z ArCADia ARCHITEKTURA. drzewko wypełniane jest automatycznie pomieszczeniami i kondygnacjami. Zaznaczenie pomieszczenia przenosi nas do okna jego parametrów, które wyświetlają się po prawej stronie.

Drzewko struktury

KLIMATY	ZACJA
+	dodawanie nowych kondygnacji do projektu,
D.	dodawanie nowych grup do projektu,
-	dodawanie nowych pomieszczeń do projektu,
ካ	kopiowanie wstawionych pomieszczeń wraz z ich przegrodami i parametrami,
×	usuwania wstawionych w projekcie kondygnacji, grup, pomieszczeń wklejanie skopiowanych pomieszczeń,
↓2 ** ™	sortowanie alfabetyczne pomieszczeń wg przedrostka, numeru i nazwy pomieszczenia praca grupowa, wczytywanie struktury budynku wykonanje w innym pliku projektu .th lub .thb zmiana widoku na podział grupami lub kondygnacjami
×	oznaczenie graficzne pomieszczenia niechłodzonego,
	oznaczenie graficzne pomieszczenia chłodzonego,
]	oznaczenie graficzne kondygnacji,
	oznaczenie graficzne grupy,

16.3.2 Okno grupy kondygnacji

Użytkownik dla stworzonych grup lub kondygnacji może przypisać domyślne ustawienia przedrostka pomieszczeń, wysokości w świetle (na tej podstawie wstawiane sa domyślne wysokości ścian wewnętrznych), wysokość kondygnacji (na tej podstawie wstawiane sa domyślne wysokości ścian zewnętrznych), trybu pracy, temperatury wewnętrznej. Dodatkowo mamy podgląd całkowitych zysków ciepła z wszystkich pomieszczeń w danej grupie i kondygnacji z uwzględnieniem dla nich dnia i godziny z krytycznymi zyskami (informacja potrzebna do oszacowania wielkości agregatu chłodniczego). Zasada działania jest następujące jeśli wypełnimy poniższe parametry i zaznaczymy je wówczas wszystkie nowe pomieszczenia dodawane do tej grupy będą miały wpisane parametry, jeśli w grupie są już pomieszczenia, a my chcemy zmienić w nich jakiś parametr wciskamy przycisk

A	ArCADia-TERM4	O PRO 6.0 Licencja dla: Test -	ArCADia-TERMO PRO) 6 [L01] -	help — kop	pia			- 5 ×
Plik Edycja Ustawienia Pomoc	B \$ B \$ \$ 7 # ? ?								
OBLICZENIA CIEPLNE	Zyski ciepła - WT 2014								
	Zyski cereba - WT 2014 Microsoft couples pairs Microsoft couples pairs Profession This for your pairs This	Comparation on Applied Sector 2015	Produkting pointers of Produkting pointers of Produkting Produkting Produ	eń 172 rrzyska do so 172 170 100 100 100 100 100 100 100	yysokość pom Miestawie w statu w statu v statu v statu statu v statu v statu v statu v statu v statu v statu v statu statu statu statu statu statu statu statu v statu v statu s	00000000000000000000000000000000000000		0.%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C. PODGLĄD PROJEKTU	Proved a blocker								
H wydrukt					Onis				
	1 Blad Parametr 'Opér ca	alkowity Rc" w przegrodzie "SW oc", nie a	tostal poprawnie wypełniony?		Ope				v
< [849] >	B 5	5	12	矅		12	R.		😑 Zamknij

Okno kondygnacji/grupy zysków ciepła

NAZWA GRUPY – pole do edycji przez użytkownika,

PRZEDROSTEK POMIESZCZEŃ – pole do edycji przez użytkownika, jeśli zaznaczymy wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość.

WYSOKOŚĆ W ŚWIETLE – pole do edycji przez użytkownika, jeśli zaznaczymy wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość. Program automatycznie dla nowo wstawianych przegrody typu ściana wewnętrzna pobierze wysokość z tego pola.

WYSOKOŚĆ KONDYGNACJI – pole do edycji przez użytkownika, jeśli zaznaczymy wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość. Program automatycznie dla nowo wstawianych przegrody typu ściana zewnętrzna pobierze wysokość z tego pola.

WYBÓR TRYBU PRACY- pole do wyboru przez użytkownika, jeśli zaznaczymy wówczas do nowo wstawianych pomieszczeń program automatycznie przeniesie wartość. Użytkownik wybiera jedną z możliwości:

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h
- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

TEMPERATURA WEWNĘTRZNA Ø,c [°C]- pole do edycji przez użytkownika.

PRZYPISANIE DO STREFY CHŁODU- pole do przypisywania grupy pomieszczen do stref chłodniczych

16.3.3 Opis okna właściwości pomieszczenia

W oknie tym wpisujemy podstawowe dane o pomieszczeniu odnośnie przeznaczenie pomieszczenia, temperatury, nazwy tryb uzytkowania, numeracji, geometrii, powierzchni i kubatury i przynależności do stref chłodu.

Właściwości pomieszcze Nazwa: Rel	nia sreacja	
Chłodzone: Tak	Wybór trybu pracy	8-16
Przeznaczenie: Wy	pierz typ pomieszczenia	
Przedrostek	Numer	Strefa chłodu
0	Nr= 2	Rekreacja
Długość	Szerokość	Temperatura latem
L = 16,00 m	W = 3,30 m	θ _{i,C} =25,0 °C Tablice
Powierzchnia	Wysokość	Kubatura
A _f = 52,80 m ² Podzia	H = 3,16 m	V = 166,85 m ³

Okno właściwości pomieszczenia chłodzonego

NAZWA – pole służące do ręcznego wpisywania nazwy pomieszczenia, program na podstawie wybranego przeznaczenia pomieszczenia wstawia domyślną wartość. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przenosi nazwę wpisaną w architekturze.

CHŁODZONE – użytkownik w polu wybiera jeden z dwóch wariantów: 1. TAK, 2. NIE. W przypadku wyboru pierwszego w oknie włącza się zakładki służące do definiowania zysków ciepła w pomieszczeniu. Wybór drugiego wariantu wyłącza zakładki zysków ciepła, a użytkownik może jedynie zdefiniować temperaturę pomieszczenia niechłodzonego.

WYBÓR TRYBU PRACY - pole do wyboru jednego z trybów

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h

Podręcznik użytkownika dla programu ArCADia–TERMO

KLIMATYZACJA

- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

PRZEZNACZENIE – pole służące do wyboru przeznaczenia pomieszczenia na tej podstawie do programu zostanie dodana nazwa pomieszczenia.

PRZEDROSTEK – pole służące do wpisywania przedrostku przed numerem pomieszczenia, wartość ta wyświetlana będzie w *drzewku struktury projektu* i *raportach*. W przypadku pobrania danych z ArCADia ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze przedrostek do projektu. W pole to można wpisać dowolną liczbę, znak lub literę.

NUMER - pole służące do wpisywania numeru pomieszczenia, wartość ta wyświetlana będzie w *drzewku struktury projektu* i *raportach*. Wstawione nowe pomieszczenie otrzymuje automatycznie o jeden większy numer. Użytkownik może dowolnie zmieniać numerację. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisany w architekturze numer do projektu. W pole to można wpisać dowolną liczbę całkowitą.

TEMPERATURA $\theta_{i,c}$ [°C] – pole służące do wpisywania temperatury wewnętrznej pomieszczenia, program wstawia domyślne wartości na podstawie wartości wybranych w *przeznaczenia*, użytkownik może dodatkowo skorzystać z podpowiedzi otwieranej przyciskiem Tablice.

Temperatura pomieszczeń nie klimatyzo	wanych ×
Rodzaj pomieszczenia	0 °C
Nie obudowane poddasze w zależności od konstrukcji i sposobu wentylowania	40 - 50
Obudowane poddasze	35
Inne pomieszczenia sąsiadujące	30
Grunt	20
Przestrzeń miedzy oknem wystawowym i oknem wewnętrznym w zależności od ochrony przeciwsłonecznej	35 - 45
Anuluj	ОК

Podpowiedź temperatur pomieszczeń

DŁUGOŚĆ L [m] –pole służące do definiowania długości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

SZEROKOŚĆW [m] –pole służące do definiowania szerokości pomieszczenia na tej podstawie zostanie obliczona powierzchnia pomieszczenia. Wartość ta nie jest wymagana do uzupełnienia.

POWIERZCHNIA POMIESZCZENIA $A_f [m^2]$ – pole służące do wpisywani pola powierzchni pomieszczenia, w przypadku wpisania wartości w polach *L* i *W* program automatycznie wyliczy wartość. W przypadku pobrania danych z ArCADia ARCH. program automatycznie przeniesie wpisaną w architekturze powierzchnię pomieszczenia. Wartość ta wykorzystywana jest do sumowania powierzchni stref chłodu, a także całkowitej powierzchni pomieszczeń chłodzonych.

WYSOKOŚĆ POMIESZCZENIA H [m] – pole służące do wpisywania wysokości pomieszczenia, program dla nowo utworzonego pomieszczenia przenosi wartość wstawioną w oknie kondygnacji w polu *wysokość kondygnacji*. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze wysokość pomieszczenia. Wartość ta wykorzystywana jest do obliczeń *kubatury pomieszczenia V*, a także domyślnie wstawiana do wysokości przegrody w tym pomieszczeniu.

KUBATURA POMIESZCZENIA V [m³] – pole służące do wpisywania kubatury pomieszczenia. Program automatycznie wylicza tą wartość na podstawie *powierzchni pomieszczenia A* i jego *wysokości H*. W przypadku pobrania danych z ArCADia - ARCHITEKTURA program automatycznie przeniesie wpisaną w architekturze kubaturę pomieszczenia. Wartość ta wykorzystywana jest do obliczeń wentylacji pomieszczenia, a także do sumowania kubatury stref i budynku.

STREFA CHŁODU – pole służące do ręcznego wyboru do jakiej strefy chłodu ma należeć pomieszczenie. Użytkownik na etapie wstawiania pomieszczeń może przypisać je do danej strefy, może też zrobić to później w oknie strefy chłodu.

Właściwości pomieszczen	ia	
Nazwa: WC		
Chłodzone: Nie		
Przeznaczenie: WC		
Przedrostek	Numer	Strefa chłodu
0	Nr= 3	Rekreacja
Długość	Szerokość	Temperatura latem
L = 2,00 m	w = 4,00 m	θ _{i,C} =20,0 °C Tablice
Powierzchnia	Wysokość	Kubatura
A _f = 8,00 m ² Podział	H = 3,16 m	V = 25,28 m ³

Okno właściwości pomieszczenia niechłodzonego.

16.3.4 Opis zakładek obliczeń zysków ciepła

Metoda obliczeń wg VDi 2078 przewiduje wymiarowanie przegród zewnętrznych po obrysie zewnętrznym, natomiast wewnętrznych w osi. W metodzie tej mamy pięć zakładek:

- Zakładka Zyski od przegród,
- Zakładka Zyski od ludzi,
- Zakładka Zyski od oświetlenia,
- Zakladka Zyski od urządzeń,
- Zakladka Zyski od materii

16.3.4.1 Zakładka Zyski od przegród

Zakładka ta służy do definiowania przegród wchodzących w skład pomieszczenia. W tabelce użytkownik wybiera rodzaj przegrody, orientacje, wymiary, współczynnik Δz , kolor, sąsiada po drugiej stronie, współczynnik U, zacienienie, program na tej podstawie wylicza zyski ciepła przez przegród sąsiadujących z obszarem zewnętrznym, z innymi wewnętrznymi pomieszczeniami chłodzonymi, z pomieszczeniami niechłodzonymi, z poniższych wzorów:

- Zyski ciepła przez przegrody sąsiadujące $Q_R(klimatyzowanych i nieklimatyzowanych)$ $Q_{R} = U \cdot A_{obl} \cdot (\theta_{i,C} - \theta_{N})$

U- współczynnik przenikania przegrody W/m²K Aobl- rzeczywista powierzchnia przegrody m2 $\Theta_{i,C}$ – temperatura pomieszczenia Θ_N – temperatura w pomieszczeniu sąsiadującym

- Zyski ciepła przez nieprzezroczyste przegrody zewnętrzne Q_W

$$Q_{W} = U \bullet A_{obl} \bullet \Delta \upsilon_{eq}$$

U- współczynnik przenikania przegrody W/m²K Aobl- rzeczywista powierzchnia przegrody m2 $\Delta \upsilon_{eq}$ - równoważna różnica temperatur Poniższy wzór dotyczy wszystkich wypadków

 $\Delta \upsilon_{eq} = \upsilon_{eq} + (\upsilon_{La,m} - 24,5 \ ^{0}\text{C}) + (22,0 \ ^{0}\text{C} - \upsilon_{LR})$

Oprócz ścian południowych dla miesiąca września

 $\Delta v_{eq} = v_{eq} + (v_{La,m} - 18.5 \ ^{0}\text{C}) + (22.0 \ ^{0}\text{C} - v_{LR})$

υ_{La,m} – aktualna temperatura zewnętrzna dla każdej godziny w danym dniu z bazy klimatycznej kolumna 5 DBT ULR - temperatura pomieszczenia

veq- wartość wyliczana na podstawie koloru ściany, dachu

 υ_{eqTAB} - wyliczane jest z tabelki na podstawie klasy przegrody, godziny i przesunięcia czasowego – definiowane w tabeli $\Delta z + z$ (do danej godziny dodajemy Δz i dla nowej godziny odczytujemy wartość z tabelki), orientacji $\upsilon_{eq,aS}$ -wyliczane jest z tabelki na podstawie klasy przegrody, godziny i przesunięcia czasowego $\Delta z + z$ (do danej godziny dodajemy Δz i dla nowej godziny odczytujemy wartość z tabelki), orientacji

Sciany ze	wnętrzne																		
0	Godzina	doby									-			r		r		-	
	2	4	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24
Klasa prze	egrody I		1.0	0.0	10.1	10.0	0.2	0.0	0.0	0.0	10.0	0.0	0.1		6.4		1.0		0.7
NO/NE	-6,4	-5,6	4,9	9,9	12,1	12,3	9,3	8,0	8,2	9,2	10,0	9,9	9,1	7,9	6,4	4,4	1,9	-2,3	-3,7
0/E	-6,3	-5,7	6,6	14,9	20,9	22,9	21,0	17,0	13,3	11,1	10,3	10,1	9,5	8,3	6,4	4,2	1,8	-2,1	-3,9
SO/SE	-6,2	-6,7	1,3	8,4	15,8	21,7	24,7	24,5	21,7	17,9	14,2	11,5	9,8	8,4	6,7	4,4	1,9	-2,1	-3,9
S	-5,9	-7,3	-6,0	-2,9	2,1	8,6	15,4	21,1	24,7	25,7	24,2	20,7	16,3	11,8	/,8	4,5	2,0	-1,6	-4,2
SW	-6,0	-/,4	-5,9	-4,4	-2,2	0,8	5,2	11,0	1/,/	24,2	29,1	31,1	29,5	24,6	17,8	10,6	4,/	-1,6	-3,6
W	-5,9	-/,3	-6,1	-4,4	-2,0	0,6	3,2	5,9	9,8	15,5	22,5	28,9	32,0	30,1	23,6	14,9	6,9	-1,4	-3,5
NW	-6,1	-1,2	-5,9	-4,5	-2,2	0,7	3,0	5,8	7,5	9,0	12,5	17,0	21,2	22,0	19,7	15,4	0,5	-1,8	-5,4
N	-6,1	-6,4	-3,4	1,9	-0,5	1,2	3,4	5,8	7,8	8,9	9,3	9,6	9,9	9,9	8,9	6,5	3,2	-1,9	-3,9
SIX	-10,6	-12,5	-11,9	-8,3	-2,1	5,8	13,8	20,4	24,7	26,1	24,5	20,1	13,9	/,1	1,2	-3,0	-3,5	-8,1	-9,9
Klasa prze	egrody 2	60	0.7	1.5	5.6	0.2	0.0	0.5	0.0	0.1	0.0	0.5	0.7	0.4	0.7	75	5.0	17	1.2
NU/NE	-3,0	-0,0	-2,7	1,5	5,6	8,5	9,0	8,5	8,0	8,1	8,8	9,5	9,7	9,4	8,0	7,5	5,9	1,/	-1,5
U/E	-3,8	-0,0	-2,7	2,0	8,9	14,6	17,8	18,5	10,7	14,0	12,9	12,0	11,4	10,8	9,7	8,1	0,2	1,9	-1,5
50/SE	-3,7	-0,1	-4,8	-1,5	4,0	10,0	15,5	19,5	21,0	20,4	18,5	16,2	14,0	12,3	10,8	9,1	7,0	2,3	-1,1
S	-3,4	-5,7	-7,0	-0,4	-4,4	-0,8	4,1	9,8	15,2	19,4	21,8	22,1	20,7	18,1	14,8	20.7	8,4	5,4	-0,5
SW	-2,4	-5,4	-0,0	-0,3	-3,4	-5,8	-1,5	1,9	0,0	12,2	10,1	23,2	20,4	27,0	24,9	20,7	10,4	0,1	1,0
W NIW/	-2,0	-3,1	-0,5	-0,5	-3,3	-5,7	-1,0	0,0	3,1	0,5	6.9	17,0	12.5	20,8	27,4	19.7	16,0	7,0	1,0
IN W	-2,4	-5,4	-0,5	-0,0	-3,2	-3,7	-1,5	0,9	2.5	4,9	0,8	9,7	15,5	0.2	19,5	16,7	7.6	3,8	0,7
S IV	-3,3	-5,0	-5,5	-4,5	-3,1	-1,9	-0,4	7.2	12.5	18.4	21.4	22.0	20.2	9,2 16.4	9,5	9,0	2.4	2,0	-0,9
S IA	-9,0	-10,7	-12,4	-12,0	-9,8	-3,5	0,5	7,2	15,5	16,4	21,4	22,0	20,2	10,4	11,5	0,0	2,4	-5,1	-0,0
NO/NE		4.4	26	1.0	2.2	5.2	6.0	75	7.4	7.5	8.0	07	0.1	0.1	00	8.0	7.0	27	0.5
NU/NE	-1,9	-4,4	-5,0	-1,0	2,5	3,2	12.2	1,5	1,4	1,5	0,0	0,/	9,1	9,1	0,0	0.4	7,0	3,7	0,5
U/E SO/SE	-1,9	-4,5	-5,0	-0,5	4,1	9,2	10.0	13,5	13,0	14,7	15,5	12,0	11,9	11,5	10,5	9,4	7,9	4,2	0,7
SU/SE	-1,7	-4,5	-4,/	-2,9	-4.0	-2.9	0.6	5.0	1/,1	10,5	17.4	10,7	10.5	19.0	12,2	10,7	9,0 11 1	4,0	2.0
SW	-1,2	-3,0	-5.0	-5,0	-4,7	-2,0	-2.9	-0.4	2,0	7 2	17,4	17.5	21.2	22.5	23.7	21.7	18.2	10.2	4.0
SW W	0,5	-5,1	-3,2	-3,4	-5,1	-4,5	-2,8	-0,4	2,9	7,5	7.1	11,2	21,2	25,5	23,7	21,7	16,5	10,5	4,5
NW	0,8	-2,1	-4,9	-3,5	-5,0	-4,2	-2,8	-1,0	1,0	3,0	/,1	6.8	10,8	12.2	25,8	25,5	20,8	0.2	3,2
N	1.6	-3,2	-5,1	-5,5	-5,0	-4,2	-2,0	-0,9	1,0	2,0	4,0	6.2	7.0	7.0	8.5	8.6	13,6	9,2	3,5
S IV	-1,0	-4,0	-4,0	-4,4	-3,0	-2,7	-1,0	-0,2	7.1	12.2	16.2	18.4	19.7	1,9	0,5	10.2	6.4	4,7	2.0
S IA	-0,9	-9,0	-10,9	-11,2	-10,4	-7,9	-3,7	1,3	7,1	12,2	10,2	16,4	16,7	17,1	14,0	10,2	0,4	0,5	-3,9
NO/NE		2.4	2.2	0.8	1.4	2.6	5.2	6.1	6.5	6.8	7.2	77	80	82	8.0	7.5	67	4.2	17
O/E	-0,4	-2,4	-2,3	-0,8	2.1	5,0	0.0	12.1	12.1	12.0	12.5	11.0	0,0	10.0	10.2	0.2	0,7	4,5	2.2
SO/SE	0,0	-1,9	-1,0	0,0	5,1	2.0	7,5	12,1	12.5	15,0	12,5	11,9	14.2	10,9	10,2	7,5	0,1	5,2	2,2
SU/SE	0,2	-1,9	-2,3	-1,4	2.1	3,9	7,5	2.7	13,5	10.7	13,5	15,1	14,2	15,1	12,0	10,7	9,5	0,0	2,7
SW	0,0	-1,0	-3,4	-3,0	-3,1	-1,7	1.6	0.2	2.6	5.8	0.5	12.2	16.7	10,1	10.8	10.1	17.2	11.4	5,0
W	2,4	-0,8	-2,9	-3,3	-3,2	-2,0	-1,0	0,2	2,0	3,0	5.0	0.2	12.0	16.5	19,0	19,1	17,2	11,4	7.0
NW/	2,9	-0,4	-2,1	-3,2	-3,2	-2,7	-1,7	-0,4	1,2	2.2	2.9	5.6	7.9	10,5	10,9	12.7	12.5	0.5	1,0
N	-0.4	-1,5	-3,2	-3.0	-3,0	-3,1	-2,2	-0,8	1.0	2,3	3,0	1.8	5.8	6.5	7.0	7.2	6.9	9,3	2.0
SIX	-0,4	-2,5	-3,5	-3,4	-2,7	-2,5	-3.0	-0,4	1,0	8.1	11.5	13.0	14.8	14.3	12.6	10.1	7.2	2.1	-2.0
Klasa prz	egrody 5	-7,0	-0,5	-0,7	-0,2	-0,0	-3,7	-0,2	4,0	0,1	11,5	15,7	14,0	14,5	12,0	10,1	7,2	2,1	-2,0
NO/NE	2.4	0.7	-0.5	-0.5	0.2	1.2	2.5	3.5	13	18	5.2	57	61	6.5	6.8	6.8	67	57	4.0
O/E	3.5	1.6	0.3	0.4	1.2	2.8	4.8	6.9	85	9.5	10.0	10.1	10.1	10.0	9.9	9.6	9.1	7.5	5.5
SO/SE	4.0	2.0	0.4	0.1	0.5	1.5	3.3	5.4	7.6	9.5	10.9	11.6	11.9	11.8	11.5	11.0	10.4	8.6	6.3
S	4,6	2,0	0.4	-0.3	-0.8	-0.8	-0.2	1.0	27	49	7.1	9.2	10.9	11.0	12.3	12.2	11.6	9.6	7.1
SW	6.8	4.0	1.6	0,5	0,0	-0.3	-0.3	0.1	0.9	23	4.2	6.5	91	11,5	13.4	14.5	14.8	13.0	9.9
W	7.2	43	1,8	0.8	0.1	-0.3	-0.3	0.0	0.5	14	2.6	43	64	8.9	11.4	13.3	14.3	13.4	10.3
NW	4.8	2.5	0.4	-0.4	-1.0	-1.3	-1.3	-0.9	-0.3	0.5	1.5	2.5	3.8	53	7.0	8.6	9.7	9.6	7.3
N	2.0	0.3	-1.1	-1.5	-1.7	-1.7	-1.4	-1.0	-0.4	0.3	1.2	2.1	3.0	3.8	4.5	5.0	5.3	5.1	3.7
S IX	-0.4	-2.7	-4.5	-5.3	-5.8	-5.8	-5.1	-3.6	-1.5	1.0	3.7	6.2	8.2	9.4	9.8	9.4	8.4	5.4	2.4
Klasa prze	egrody 6	,		- /-	- /-	- / -	- /	- / -			- / -	- 7	- /	/	. , .	/	- ,	- /	,
NO/NE	4.0	3.3	2.6	2.3	2.1	2.2	2.4	2.7	3.0	3.4	3.6	3.8	4.1	4.3	4.5	4.7	4.8	4.9	4.5
O/E	6,0	5,2	4,3	4,0	3,8	3,9	4,2	4,8	5,4	6,0	6,5	6,9	7,2	7,3	7,5	7,6	7,6	7,4	6,8
SO/SE	6,7	5,7	4,8	4,4	4,1	4,0	4,2	4,5	5,1	5,9	6,6	7,2	7,7	8,1	8,3	8,4	8,4	8,2	7,5
S	6,5	5,6	4,6	4,1	3,7	3,3	3,1	3,1	3,3	3,7	4,4	5,1	5,9	6,6	7,3	7,7	7,9	7,9	7,4
SW	8,1	7,0	5,9	5,3	4,8	4,4	4,0	3,8	3,7	3.8	4,1	4,6	5,4	6,2	7,2	8,0	8,7	9,3	9,0
W	7,9	6,9	5,8	5,2	4,7	4,2	3,9	3,6	3,5	3,5	3,7	4,0	4,4	5,1	6,0	6,9	7,8	8,8	8,7
NW	5,2	4,4	3,5	3,1	2,6	2,3	2,0	1,8	1,8	1.8	2,0	2,2	2,6	3,0	3,5	4,2	4,8	5,7	5,8
Ν	2,6	2,0	1,3	1,0	0,8	0,6	0,4	0,4	0,4	0,6	0,8	1,0	1,4	1,7	2,0	2,3	2,6	3,0	3,0
S IX	2,3	1,2	0,1	-0,3	-0,8	-1.2	-1.4	-1.4	-1.1	-0.6	0,2	1,1	2,0	2,9	3,6	4,1	4,3	4,1	3,3
Dach i st	rop zewnetr	zny				. /	. /	. /								• ·		• •	
0	Godzina	doby																	-
0	2	4	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24
Klasa prze	egrody 1	•	•	•	•	•	•	•	•			•		•	•	•	•	•	
Н	-7,9	-8,8	-2,1	5,3	14,5	24.0	32.3	38.4	42.1	43.3	41.9	37.8	31.4	23.4	15.1	7,8	2,4	-3.3	-5.6
Klasa prze	egrody 2		. ,-	/-	. ,-	. ,-		, .	-,-	,.			, .	,.					
Н	-4,5	-7,6	-7,4	-4,4	0,8	7,9	15.9	23.7	30.3	35.4	38.4	39.2	37.7	34.0	28.4	21.8	15.3	5,2	-0.6
Klasa prze	egrody 3							,.	,	, .	, .	,=	,	,	,.	.,		=	.,.
Н	-1.1	-4.8	-6.3	-5.0	-2.0	3.0	9.2	16.0	22.6	28.2	32.5	35.0	35.7	34.2	30.9	26.2	20.9	108	3.7
Klasa prze	egrody 4	,	,.	,.				- 3,0	,0	_0,2	,.		,,	,2		,			
Н	2.3	-1.2	-2.7	-2.1	-0.1	3.3	7.8	12.9	18.1	22.8	26.7	29.4	30.6	30.3	28.5	25.5	21.6	13.5	6,9
Klasa prze	egrody 5	-,-	-, '	_,.		-,-		, /	, -	-2,0			2 3,0			-0,0	,0	- 0,0	
H	9.4	5.7	2.9	2.1	1.9	2.7	4.3	6.8	9.9	13.3	16.6	19.6	22.0	23.6	24.3	24.0	22.8	18.6	13.7
Klasa prze	egrody 6		-,~	_,-	-,-	_,,		-,0	- , -	-0,0	- 3,0	,0	,0	0,0	,	,.	,0		,-
H	13.7	12.0	10.4	9.6	9.0	8.6	8.5	8.7	9.3	10.1	11.2	12.4	13.7	14.8	15.7	164	16.8	16.6	15.4
	,'	,~	, -	~ ,~	1	~,~	-,-	,-	-,-		,		,-	,0	,.		, -	, -	,-

Tabela. Temperatura $\upsilon_{eq,TAB}~~dla$ ścian zewnętrznych i stropów

Wartości z tabeli muszą być przeliczone z poniższych wzorów w przypadku kiedy w kolumnie kolor będzie wybrana odpowiednia wartość: - Ściany JŚ- jasna ściana : $\upsilon_{eq} = \upsilon_{eq,TAB}$ CŚ- ciemna ściana : $\upsilon_{eq} = \upsilon_{eq,TAB} + \upsilon_{eq,aS}$ BŚ- biała ściana : $\upsilon_{eq} = \upsilon_{eq,TAB} - \upsilon_{eq,aS}$ $M\dot{S}-metaliczna~\acute{sciana}$: υ_{eq} = $\upsilon_{eq,TAB}$ - $\upsilon_{eq,aS}$ + 2- Dachy i stropy zewnętrzne CD- ciemny dach : υ_{eq} = $\!\upsilon_{eq,TAB}$ JD – jasny dach : $\upsilon_{eq} = \upsilon_{eq,TAB} - \upsilon_{eq,aS}$ $BD - jasny dach : \upsilon_{eq} = \upsilon_{eq,TAB} - 2 \cdot \upsilon_{eq,aS}$ Określenie klasy przegrody: Klasę przegrody obliczamy na podstawie wzoru: Dla każdej przegrody oddzielnie, na podstawie warstw: Masa = $\sum \rho \cdot d [kg/m^2]$ Jeżeli przegroda ma zdefiniowany współczynnik U to w definicji przegród ma znaleźć się kombo definiujące klase przegrody. Dla przegrody niejednorodnej masę liczymy na podstawie średnia ważonej gdzie waga jest długość wycinka L Masa= $(\rho 1 \cdot d1*L1 + \rho 2 \cdot d2*L2)/(L1+L2)$ ρ - gęstość warstwy przegrody [kg/m³] d – szerokość danej warstwy [m] Następnie z poniższych danych określamy klasę przegrody: 1 - 0 do 752 – 75 do 150 3 – 150 do 300 4 - 300 do 550 5 - 550 do 800 6 – powyżej 800 Ściany zewnętrzne Godzina doby 0 10 22 24 6 9 11 12 13 14 15 16 17 18 19 20 4 Klasa pr grody 5.0 NO/NE -0.1 0.5 3.6 4.8 4. 3.0 0.9 0.7 0.5 0.3 -0.10.1 1.5 O/E -0,1 4,1 7,5 7,5 7,2 3,4 4,7 1,7 2,8 0,5 6,2 6,4 3,2 2,2 1,5 1,0 0,7 0,5 0,2 0,0 0,1 1,3 SO/SE -0,1 0,2 2,6 4,4 6,0 7,4 6,8 5,6 4,1 1,9 1,4 2,0 1,1 0,6 0,3 0,1 0,0 0,0 0,0 0,5 4,8 2,0 5,7 S 1,1 2,1 5.9 6,5 6,4 5.7 4,5 3. 1,1 0,6 0,3 0.,1 0,0 SW W 0,7 0,9 1,9 3,0 7,1 7,5 4,0 0,0 0,0 0,5 1,2 4,4 6,0 7,0 1,1 0,1 0,1 0.0 0.1 0.5 0.7 1.0 1.2 1.3 1.5 22 3.5 5.2 6.9 77 7.3 5.7 3.5 1.1 0.2 0.2 NW 0,2 -0,1 0,10,5 0,7 0,9 1,2 1,4 1,5 1,5 1,6 2,3 3,5 4,6 5,1 4,5 3,1 1,5 0,1 Ν -0,1 1,4 1,5 0,3 1,2 1,4 1,4 1,3 1,4 1,5 1,6 1,6 1,4 1,4 1,5 1,1 0,1 0,0 0,1 S IX 0,0 -0.1 0,2 1.1 2.7 4,5 6.3 7.7 8.3 8.3 7.5 6,6 2.4 1.1 0.4 0.2 0.1 -0,1 42 Klasa pr grody 2 NO/NE 0.0 -0.1 1.3 25 3.6 4.1 39 3.3 19 1.0 0.8 03 0.1 17 1.5 1.2 O/E 0,0 -0,1 1,3 2,8 4,5 5,9 6,4 6,1 5.2 4,1 3,2 2,6 2,2 1,9 1,6 1,2 0,9 0,3 0,1 SO/SE 0,0 -0,1 0,7 1,7 3,1 4,6 5,8 6,4 6,4 5,8 4,8 3,8 3,0 2,3 1,9 1,5 1,1 0,4 0,1 0.1 -0.0 0.1 03 0.7 15 2.5 5 5 58 5 5 49 40 3.0 15 0.7 0.3 S 37 47 SW 0,9 2,3 3,4 5,8 5,9 4,8 3,5 0,4 0,10,1 0,3 0,5 0,6 1,4 4,7 6,5 6,5 1,5 0,7 W 0,5 0,2 0,2 0,3 0,5 0,7 0,9 1,0 1,3 1,8 2,7 4,1 5,5 6,5 6,6 5,8 4,5 1,9 0,9 NW N 0.4 0.1 0,2 0,5 04 0.5 0.7 0.9 1,1 1,3 1,3 1,5 1,5 1,5 2,0 1,5 2,8 1,4 3,8 1,4 43 4,2 1,5 3.5 1.4 0.7 1.3 1,4 1,5 1,3 0,6 0,9 1,2 0,1 0,0 1,1 0,2 S IX 0,1 -0,1 -0,1 0,1 0,7 1,8 3,2 4,8 6,1 7,1 7,5 7,2 6,4 5,2 3,8 2,6 1,7 0,8 0,4 Klasa p grody 3 NO/NE 0,0 1,6 2,5 3,3 3,3 0,6 0,2 0,7 3,5 2,9 2,5 2,3 2,1 2,0 1,7 1,5 1,3 1,1 0,3 O/E 0.2 0,0 0,7 1,7 3.1 4,4 5.3 5,6 5,2 4,6 3.9 3,2 2,8 2,4 2,0 1,7 1,3 0,7 0.4 SO/SE 0.2 0.0 0.4 1.1 2.0 3.2 4.4 5.3 5.7 5.6 5.1 4.4 3.7 3.0 2,0 1.6 0.9 0.5 2,5 2,9 2,9 5,2 5,7 4,4 2,5 1,4 4,4 5,9 5,2 1,3 2,5 3,0 0,1 0,5 1,0 1,7 2,6 3,6 5,0 5,2 4,9 0,7 S SW W 0,4 0,2 0,2 3,7 2,3 0,4 0,5 0,3 0,3 0,3 0,4 3,5 2,0 4,6 3,0 5,8 5,8 4,3 5,0 0,8 0,4 0,6 0,7 1,1 1,6 5,4 1,4 0,7 1,0 0,5 0,6 0,9 1,1 4,1 1.8 NW 0,7 0,6 0,7 0,9 1,3 1,6 2,9 3,6 3,9 2,2 0,3 0,3 0,4 0,4 1,1 1,2 2,2 3,6 1,2 N S IX 0.3 0,1 0.4 0.6 0.9 1.0 1,1 1,2 1.2 1,4 1.4 1.4 1.4 1,4 1.4 1,4 1,4 0,9 0.4 0,2 0,4 0,0 0,4 0,9 0,1 1,1 2.1 3.4 4.6 5.7 6.4 6.7 6.4 5.7 4.7 3.7 1.5 Klasa pr NO/NE 0.4 0.3 0.7 1.3 2.0 2.6 2.9 2.9 2.5 2.1 2.0 1,8 1.6 1.4 1.2 0.8 0.5 27 23 O/E SO/SE 4,3 4,9 3,8 4,7 3,3 0,5 0,5 2,5 4,6 2,9 3,7 2,6 0,7 0,5 0,9 1,6 3,4 4,2 4,6 2,3 1,9 1,6 1,1 1,3 0,6 0,7 1,1 4,3 4,7 4,3 0,8 2,2 1,1 2,9 3,6 2,2 3,6 5,0 3,1 2,6 4,2 1,7 2,9 S SW 0,7 0,5 0,5 0,5 0,7 1,6 4,1 4,4 4,4 4,1 1,1 1,2 0,8 0,6 1,0 3,7 4,9 0,6 0,7 0,8 3,0 4,4 4,7 1,8 1,6 2.6 3.2 W 1.4 0.9 0.6 0.6 0.7 0.8 0.9 1.1 1.2 1.5 1.9 3.4 4.2 4.7 4.9 4.6 2.1 NW 1,0 0,8 0,9 1,5 1,5 0,6 0,5 0,5 0,6 0,7 1,1 1,2 1,3 1,9 2,4 2,9 3,2 3,2 2,3 Ν 0,4 0,3 0,4 0,6 0,8 0,9 1,0 1,1 1,1 1,2 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,0 0,6 S IX Klasa prz 0.8 0.6 0.5 0.5 0.7 1.2 1.9 2.8 38 47 53 57 53 47 39 3.2 2.0 1.3 egrody : NO/NE 0,8 0,7 0,7 0,8 1,2 1,5 2,2 3,1 2,3 2,3 3,6 2,2 3,6 2,1 2,1 3,2 2,0 3,0 1,9 1,9 1,7 1,6 1,3 1,0 2,6 2,1 2,3 2,7 O/F 1.1 0.9 0.9 1,1 1.5 2.0 2,8 2.5 1,7 1.4 SO/S 1,3 1,1 0,9 1,0 1,2 1,6 2,7 3,2 3,8 3,8 3,7 3,5 3,2 3,9 2,1 1,7 3,6 1,5 0,9 0,9 0,9 1,0 1,1 1,4 1,8 2,8 3,9 1,9 1,1 2,3 3,1 3,4 3,5 3,3 2,4 ŚW 1.6 2.1 1.6 1.3 1.2 1.1 1.1 1.1 1.2 1.3 1.9 2.4 29 3.4 3.8 4.0 3.9 3.4 2.7

W	2,2	1,7	1,5	1,2	1,1	1,1	1,1	1,1	1,2	1,3	1,5	1,7	2,1	2,7	3,2	3,6	3,8	3,5	2,8
NW	1,5	1,2	0,9	0,9	0,8	0,8	0,8	0,9	1,0	1,1	1,1	1,2	1,4	1,6	1,9	2,3	2,5	2,4	1,9
Ν	0,7	0,6	0,5	0,5	0,6	0,7	0,8	0,9	0,9	1,0	1,1	1,1	1,2	1,2	1,2	1,2	1,2	1,1	0,9
S IX	1,8	1,4	1,1	1,1	1,1	1,1	1,3	1,7	2,3	2,9	3,5	4,0	4,4	4,5	4,5	4,2	3,8	3,0	2,4
Klasa prz	egrody 6																		
NO/NE	1,3	1,2	1,1	1,1	1,2	1,2	1,4	1,5	1,6	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,6	1,4
O/E	1,9	1,8	1,6	1,6	1,6	1,6	1,9	2,1	2,3	2,4	2,5	2,6	2,6	2,6	2,6	2,5	2,4	2,3	2,1
SO/SE	2,1	1,9	1,8	1,7	1,7	1,7	1,9	2,0	2,2	2,4	2,6	2,7	2,8	2,8	2,8	2,7	2,7	2,5	2,3
S	2,1	1,9	1,7	1,7	1,7	1,6	1,6	1,6	1,7	1,8	1,9	2,1	2,3	2,4	2,5	2,5	2,5	2,4	2,3
SW	2,5	2,3	2,1	2,0	1,9	1,9	1,8	1,8	1,8	1,8	1,9	2,0	2,1	2,3	2,5	2,6	2,8	2,8	2,7
W	2,4	2,2	2,1	2,0	1,9	1,8	1,8	1,7	1,7	1,7	1,7	1,8	1,8	2,0	2,1	2,3	2,5	2,7	2,6
NW	1,7	1,5	1,4	1,4	1,3	1,3	1,2	1,2	1,2	1,2	1,2	1,3	1,3	1,3	1,4	1,5	1,6	1,8	1,8
Ν	0,9	0,9	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,9	0,9	1,0	1,0	1,0	1,0	1,0	1,0	1,0
S IX	2,6	2,4	2,2	2,1	2,0	1,9	1,9	2,0	2,1	2,2	2,4	2,6	2,8	3,0	3,2	3,2	3,2	3,1	2,8
Dach i st	rop zewnęti	zny																	
0	Godzina	doby																	
0	2	4	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24
Klasa prz	egrody 1																		
Н	0,0	0,1	1,6	3,1	4,8	6,5	7,9	8,8	9,3	9,3	8,8	7,8	6,3	4,6	3,0	1,6	0,7	0,1	0,1
Klasa prz	egrody 2					-	-												-
Н	0,2	0,0	0,3	1,0	2,1	3,5	5,0	6,3	7,5	8,2	8,6	8,5	8,0	7,1	5,8	4,4	3,2	1,4	0,6
Klasa prz	egrody 3					-	-												-
Н	0,7	0,3	0,3	0,7	1,4	2,4	3,6	4,9	6,0	7,0	7,6	7,9	7,9	7,4	6,5	5,5	4,4	2,5	1,4
Klasa prz	egrody 4																		
Н	1,3	0,9	0,9	1,1	1,6	2,3	3,2	4,2	5,1	5,9	6,5	6,9	7,0	6,8	6,3	5,5	4,7	3,1	2,0
Klasa prz	egrody 5																		
Н	2,6	2,1	1,7	1,6	1,7	1,9	2,3	2,8	3,4	4,1	4,7	5,2	5,5	5,8	5,8	5,6	5,3	4,3	3,4
Klasa prz	egrody 6																		
Н	3,6	3,3	3,0	2,9	2,8	2,8	2,8	2,9	3,0	3,2	3,4	3,7	3,9	4,1	4,2	4,3	4,4	4,2	3,9

Tabela Temperatura Ueq.aS dla ścian zewnętrznych i stropów

- Zyski ciepła przez przenikanie przegród zewnętrzne przezroczystych Q_{FT}

 $Q_{FT} = U_F \bullet A_{obl} \bullet (\upsilon_{LA,m} - \upsilon_{LR})$

 $\upsilon_{La,m}$ – aktualna temperatura zewnętrzna dla każdej godziny w danym dniu z danych klimatycznych

υ_{LR} – temperatura pomieszczenia

U_F- współczynnik przenikania przegrody W/m²·K

Aobl- rzeczywista powierzchnia przegrody m²

- Zyski ciepła przez promieniowanie przegród zewnętrzne przezroczystych Q_{FS}

 $Q_{FS} = [A_1 \bullet I_{ges,max} + (A - A_1) \bullet I_{diff,max}] \bullet b \bullet s_a$ -dla okien na okien zewnętrznych

 $Q_{FS} = A \cdot \{ I_{diff,max} + [(I_{ges,max} - I_{diff,max}) \cdot [(tanh \cdot sin\alpha/cos\beta) + cos\beta]] \} \cdot b \cdot s_a \cdot dla okien połaciowych i na stropach - obliczenia te robimy tylko dla wersji niemieckiej,$

 Q_{FS} = A • I_{ges,max} •b • s_a -dla okien połaciowych i na stropach – obliczenia te robimy tylko dla wersji polskiej, I_{ges,max} – maksymalne promieniowanie całkowite, pobierane z bazy klimatycznej dla wybranego miesiąca, godziny, orientacji (okna w ścianach mają kąt 90, w dachu wg kąta wybranego w definicji przegrody, stropy zewnętrzne mają kont 0 orientacje N),baza klimatyczna kolumna od 14 do 47 (N 0 – NW_90

I_{diff,max} – maksymalne promieniowanie rozproszone, pobierane z bazy klimatycznej dla wybranego miesiąca, godziny, baza klimatyczna kolumna 12 ISH

α– kąt nachylenia przegrody względem pionu, wszystkie poza połaciowymi mają 0

sa- współczynnik obciążenia chłodniczego z tabeli 22 i 23

b- współczynnik przepuszczalności okna, wartość z definicji przegrody b=b1•b2•b3

A – oszklona powierzchnia okna wyliczana z wzoru $A = C \cdot A_{obl}$

C – wartość pobierana z definicji przegrody pole "Udział pola powierzchni przeszklonej do całkowitej" A_{obl}- rzeczywista powierzchnia przegrody m²

h –wysokość słońca

 A_1 – słoneczna część oszklonej powierzchni. Domyślnie przyjmujemy $A_1=A_{obl}$, jeśli użytkownik wybierze obliczenia tej wartości (włączy okienko z obliczeniami) wówczas wartość wyliczamy z wzoru: $A_1=(H + f - e_2) \cdot (B + b - e_1)$

H – wysokość słonecznej części oszklonej powierzchni

- B szerokość słonecznej części oszklonej powierzchni
- f odstęp oszklonej powierzchni okna od górnego elementu rzucającego cień
- b- odstęp oszklonej powierzchni okna od bocznego elementu rzucającego cień
- d szerokość bocznej osłony
- c szerokość górnej osłony
- e₁- cień od bocznej osłony, wyliczany z wzoru e₁=d tan β
- e₂- cień od górnej osłony, wyliczany z wzoru e₂=c (tanh/cos β)
- β- wartość wyliczana z wzoru β= a_0 a_W

a0 – azymut słońca

Zyski od pr	zegród Zyski od ludzi Zyski od oświetlenia	Zyski o	od urządzeń	Zyski od m	aterii												
Lp.	Przegroda		n [szt.]	Orientac	ja	Н [m]	W [m]	A [m²]	Aobl [m²]	U [W/m²K]	Pokój/Temp. [°C]		∆z [h]	Kolor	A1 [m²]	Wynik i	Udział [%]
1	Ściana zewnętrzna		-	E		3,50	26,53	92,86	52,30	0,27	io: i	Т	0	CŚ			$\hat{\Lambda}$
2	🗱 🖵 Okno zewnętrzne		12	E		2,00	1,69	3,38	-	3,22	\$ ○ \$ \$ -	-		-	1.		$\hat{\Lambda}$
3	Ściana zewnętrzna		-	S		3,50	6,43	22,51	22,51	0,27	10字 字 🛁		-2	JŚ	-		\triangle
4	H Strop wewnętrzny		-	-		26,53	6,43	170,59	170,59	0,14	20,00			-	-		\triangle
5	Ściana wewnętrzna		-	W		3,16	26,38	83,36	83,36	0,18	25,00			-	-		Â
6	Ściana wewnętrzna		-	N		3,16	6,13	19,37	19,37	0,16	25,00			-	-		$\hat{\Lambda}$

Zakładka Zyski od przegród

Tabelka ta służy do zdefiniowania przegród wchodzących w skład pomieszczenia (na tej podstawie wyliczona będzie zyski ciepła dla pomieszczenia). Po prawej stronie mamy przyciski, które umożliwiają nam:

dodawanie nowych przegród do pomieszczeń,
przycisk służący do dodawania do przegrody okien i drzwi (dodanie okien i drzwi tym sposobem spowoduje, że do obliczeń
usuwania wstawionych w projekcie kondygnacji, grup, pomieszczeń
przycisk służący do odłączania okien i drzwi od przegrody (wówczas wymiary tych otworów nie będą wpływały na pole powierzchni przegrody do, której były dołaczone),
kopiuj przegrodę
wklej przegrodę
kalkulator

NAZWA PRZEGRODY – użytkownik wybiera typ przegrody, która wcześniej została zdefiniowana (zakładka dane przegród). Przyciskiem kontybuacji … otwiera listę dostępnych w danym projekcie przegród:

Drzewko przegród w projekcie

ILOŚĆ n [szt.]–kolumna ta jest aktywna tylko dla przegród typu okna i drzwi służy do definiowania liczby przegród o podanych wymiarach.

KIERUNEK O– orientacja względem róży wiatrów (na tej podstawie do okien dodawane są odpowiednie mnożniki nasłonecznienia i zacienienia), dla pozostałych przegród wartość orientacyjna w celu zdefiniowania położenia.

Wybór orientacji przegrody

SZEROKOŚĆ W [m]– długość przegrody informacja o całkowitej długości przegrody wzdłuż osi (w zależności od wybranej opcji wymiarowania długość tą podajemy konturem zew., wew. i środkiem ściany). W przypadku ściągnięcia informacji tej z ArCADia ARCH wartość wpisywana jest automatycznie.

WYSOKOŚĆ H [m]– wysokość przegrody informacja o całkowitej wysokości przegrody definiowana na podstawie wysokości pomieszczenia. W przypadku pobrania informacji z ArCADia ARCH wartość wpisywana jest automatycznie.

POLE POWIERZCHNI PRZEGRODY A $[m^2]$ – pole powierzchni przegrody wartość wyliczana z $W \ge H$ w przypadku okien, drzwi, wartość wyświetlana jest dla jednej sztuki.

OBLICZENIOWE POLE POWIERZCHNI PRZEGRODY A_{obl} [m^2]- pole służące do podglądu rzeczywistej powierzchni przegrody przenoszonej do obliczeń. Program automatycznie odejmuje pola dodanych do tej przegrody drzwi i okien.

WSPÓŁCZYNNIK PRZENIKANIA U [W/m²·K]–pole służące do definiowania współczynnika przenikania ciepła dla wybranej przegrody program automatycznie wpisuje wartość obliczoną w oknie *definicje przegrody*.

POKÓJ/TEMP. [°C]–pole służące do wyboru temperatury lub pomieszczenia po drugiej stronie przegródy. Dla przegród zewnętrznych program automatycznie podaje temperaturę strefy klimatycznej, dla przegród mających po drugiej stronie pomieszczenie chłodzone wybieramy z przycisku odpowiednie pomieszczenie ••••, gdy na liście wybierzemy *brak* wówczas ręcznie możemy wstawić odpowiednią temperaturę. W przypadku wybrania pomieszczenia z listy program automatycznie wstawia jego temperaturę (jaka kol wiek pomniejsza zmian temperatury w tym pomieszczeniu automatycznie jest przenoszona i obliczana).

Drzewko wyboru sąsiadującego pomieszczenia

WARTOŚĆ OPÓŹNIENIA CZASOWEGO ΔZ – pole służące do wstawiania współczynnika opóźnienia czasowego podpowiedź wybieramy z przycisku …, wówczas pojawi się okienko:

Wartość opóźnienia	czasowego Δz i klasy budynku dla ści	an VDI 2078		×
Wartość opóźnienia czasowego Δz i klasy bu	dynku dla ścian VDI 2078			
Typ ściany	Grubość ściany	Klasa konstrukcyjna	Δz	^
1. Ściany murov	vane (z pustaków, cegły, kamienia lekkiego, it	td.)		
ściana dwuwarstwowa + izolacia	do 17,5 cm (ściany murowanej)	5	0	
zewnętrzna (tynk zewnętrzny	17,6 do 29,9 cm (ściany murowanej)	6	0	
>izolacja>ściana murowana)	od 30 cm (ściany murowanej)	6	-2	
sciana trojwarstwowa + izolacja w srodku	do 17,5 cm (ściany murowanej)	6	-2	
murowana)	od 17,6 cm (ściany murowanej)	6	-4	
	do 17,5 cm (ściany murowanej)	6	2	
ściana murowana + izolacja zewnętrzna +	17,6 do 29,9 cm (ściany murowanej)	6	0	
lasada (lasada/1201acja/sciaria murowana)	od 30 cm (ściany murowanej)	6	-2	
2.0	iężkie ściany betonowe (żelbetowe)			
ściana, żelbetowa + izolacia zewnetrzna	do 10 cm (żelbetu)	5	1	
(tynk zewnętrzny>izolacja>ściana	10,1 do 29,9 cm (żelbetu)	6	2	-
żelbetowa)	od 30 cm (żelbetu)	6	0	
ściana, żelbetowa + izolacja zewnetrzna +	do 10 cm (żelbetu)	5	1	
fasada [fasada pokryta blachą]	10,1 do 29,9 cm (żelbetu)	6	2	
(fasada>izolacja>ściana żelbetowa)	od 30 cm (żelbetu)	6	0	-
ściana żelbetowa + izolacja zewnętrzna +	do 10 cm (żelbetu)	5	0	
fasada [fasada pokryta betonem albo	10,1 do 29,9 cm (żelbetu)	6	0	-
(fasada>izolacja>ściana żelbetowa)	od 30 cm (żelbetu)	6	-2	
3. L	ekkie ściany betonowe (gazobeton)			
ściana z gazobetonu (tynk	do 20 cm (gazobetonu)	4	-1	
zewnętrzny>ściana z gazobetonu>tynk	20,1 do 29,9 cm (gazobetonu)	5	-1	-
wewnętrzny)	od 30 cm (gazobetonu)	6	0	
ściana z gazobetonu (cieżki gazobeton) +	do 10 cm (gazobetonu)	4	0	
izolacja zewnętrzna (tynk	10,1 do 29,9 cm (gazobetonu)	6	0	-
zewnętrzny>izolacja>ściana z gazobetonu)	od 30 cm (gazobetonu)	6	-3	
	4. Inne			
ściana z drzewa (płyta ze sklejki>izolacja>płyta ze sklejki)		2	-1	
ściana z drzewa (ściana z drzewa>izolacja>płyta gipsowo-kartonowa)		2	0	
ściana z blachv (ściana z				4
		Anuluj	ОК	

Wartość opóźnienia czasowego Δz dla ścian

Wartość opóźnienia	a czasowego Δz i klasy budynku dla ści	an VDI 2078		×
Wartość opóźnienia czasowego ∆z i klasy bu	dynku dla ścian VDI 2078			
Typ ściany	Grubość ściany	Klasa konstrukcyjna	Δz	^
1. Ściany murov	vane (z pustaków, cegły, kamienia lekkiego, i	td.)		
ściana dwuwarstwowa + izolacja	do 17,5 cm (ściany murowanej)	5	0	
zewnętrzna (tynk zewnętrzny	17,6 do 29,9 cm (ściany murowanej)	6	0	
>izolacja>ściana murowana)	od 30 cm (ściany murowanej)	6	-2	
sciana trojwarstwowa + izolacja w srodku	do 17,5 cm (ściany murowanej)	6	-2	
murowana)	od 17,6 cm (ściany murowanej)	6	-4	
	do 17,5 cm (ściany murowanej)	6	2	
ściana murowana + izolacja zewnętrzna + fasada (fasada>izolacia>ściana murowana)	17,6 do 29,9 cm (ściany murowanej)	6	0	
laoudu (laoudu-izolaoja-oolalia inaromalia)	od 30 cm (ściany murowanej)	6	-2	
2.0	iężkie ściany betonowe (żelbetowe)			
ściana żelbetowa + izolacja zewnetrzna	do 10 cm (żelbetu)	5	1	
(tynk zewnętrzny>izolacja>ściana	10,1 do 29,9 cm (żelbetu)	6	2	
żelbetowa)	od 30 cm (żelbetu)	6	0	
ściana żelbetowa + izolacia zewnetrzna +	do 10 cm (żelbetu)	5	1	
fasada [fasada pokryta blachą]	10,1 do 29,9 cm (żelbetu)	6	2	
(fasada>izolacja>ściana żelbetowa)	od 30 cm (żelbetu)	6	0	
ściana żelbetowa + izolacja zewnętrzna +	do 10 cm (żelbetu)	5	0	
fasada [fasada pokryta betonem albo	10,1 do 29,9 cm (żelbetu)	6	0	
(fasada>izolacja>ściana żelbetowa)	od 30 cm (żelbetu)	6	-2	
3. L	ekkie ściany betonowe (gazobeton)			
ściana z gazobetonu (tynk	do 20 cm (gazobetonu)	4	-1	
zewnętrzny>ściana z gazobetonu>tynk	20,1 do 29,9 cm (gazobetonu)	5	-1	
wewnętrzny)	od 30 cm (gazobetonu)	6	0	
ściana z gazobetonu (cieżki gazobeton) +	do 10 cm (gazobetonu)	4	0	
izolacja zewnętrzna (tynk	10,1 do 29,9 cm (gazobetonu)	6	0	
zewnętrzny>izolacja>ściana z gazobetonu)	od 30 cm (gazobetonu)	6	-3	
	4. Inne			
ściana z drzewa (płyta ze sklejki>izolacja>płyta ze sklejki)		2	-1	
ściana z drzewa (ściana z drzewa>izolacja>płyta gipsowo-kartonowa)		2	0	
ściana z blachv (ściana z				×
		Anuluj	OK	

Wartość opóźnienia czasowego Δz dla ścian

KOLOR – pole służące do wyboru koloru przegrody tyczy się tylko przegrod typu ściana zewnętrzna i dach. Użytkownik ma do wyboru: Dla ścian zewnętrznych

- Jasna ściana
- Ciemna ściana
- Metaliczna ściana
- Biała ściana

Dla dachu

- Jasna dach
- Ciemna dach
- Biały dach

SŁONECZNA CZĘŚĆ PRZESZKLONEJ POWIERZCHNI A_1 [m^2] – pole do wpisywania wartości lub skorzystania z obliczeń automatycznych poprzez wciśnięcie przycisku … i wypełnienie okienka:

Parametry do obliczeń A1

WYNIKI- pole do podglądu obliczeń poprzez wciśnięcie przycisku ...:

Wyniki obliczeń											
Miesiąc:	Lipiec			Dzień: 6	Najgors	Najgorszy dzień w roku!					
Godzina [h]	A [m²]	A1 [m²]	Iges,max [W/m²]	Idiff,max [W/m²]	Sa	b	QFS [kW]	QFT [kW]	max		
1	40,560	40,560	0,000	0,000	0,170	0,140	0,000	-0,052			
2	40,560	40,560	0,000	0,000	0,160	0,140	0,000	-0,052			
3	40,560	40,560	0,000	0,000	0,150	0,140	0,000	-0,039			
4	40,560	40,560	11,600	11,600	0,140	0,140	0,006	-0,039			
5	40,560	40,560	98,900	98,900	0,580	0,140	0,228	0,130			
6	40,560	40,560	192,000	155,400	0,700	0,140	0,578	0,313			
7	40,560	40,560	207,200	205,900	0,610	0,140	0,504	0,483			
8	40,560	40,560	272,500	272,500	0,670	0,140	0,726	0,705			
9	40,560	40,560	327,800	327,800	0,730	0,140	0,951	0,913			
10	40,560	40,560	369,900	369,900	0,790	0,140	1,162	1,135			
11	40,560	40,560	390,800	390,800	0,830	0,140	1,289	1,266			
12	40,560	40,560	370,800	370,800	0,840	0,140	1,238	1,396			
13	40,560	40,560	354,100	354,100	0,840	0,140	1,182	1,526			
14	40,560	40,560	350,100	350,100	0,820	0,140	1,141	1,553			
15	40,560	40,560	303,200	303,200	0,780	0,140	0,940	1,566			
16	40,560	40,560	243,200	243,200	0,720	0,140	0,696	1,592			
17	40,560	40,560	202,000	186,400	0,670	0,140	0,556	1,148			
18	40,560	40,560	134,600	115,400	0,770	0,140	0,437	0,705			
19	40,560	40,560	39,500	39,500	0,670	0,140	0,105	0,261			
20	40,560	40,560	0,000	0,000	0,220	0,140	0,000	0,222			
21	40,560	40,560	0,000	0,000	0,210	0,140	0,000	0,183			
22	40,560	40,560	0,000	0,000	0,190	0,140	0,000	0,144			
23	40,560	40,560	0,000	0,000	0,180	0,140	0,000	-0,039			
24	40,560	40,560	0,000	0,000	0,170	0,140	0,000	-0,235			
									ок		

Wyniki obliczeń dla przegród przeszklonych

		Wyniki oblicze	ń	×
Miesiąc: Sierpień		Dzień: 16	Najgorszy dzień w r	oku!
Godzina [h]	ΔVeg	A [m²]	QW [kW]	max
1	-3,950	52,2	-0,055	
2	-5,700	52,2	-0,079	
3	-7,300	52,2	-0,101	
4	-9,000	52,2	-0,125	
5	-7,600	52,2	-0,106	
6	-6,100	52,2	-0,085	
7	-3,700	52,2	-0,051	
8	0,300	52,2	95 0,004	
9	4,100	52,2	95 0,057	
10	8,200	52,2	95 0,114	
11	11,600	52,2	95 0,161	
12	15,200	52,2	95 0,211	
13	18,800	52,2	95 0,261	
14	19,800	52,2	95 0,275	
15	20,100	52,2	95 0,279	
16	20,200	52,2	95 0,280	
17	19,500	52,2	95 0,271	
18	18,500	52,2	95 0,257	
19	16,700	52,2	95 0,232	
20	13,600	52,2	95 0,189	
21	9,350	52,2	95 0,130	
22	5,100	52,2	95 0,071	
23	1,850	52,2	95 0,026	
24	-1,300	52,2	-0,018	
				ок

Wyniki obliczeń dla pozostałych przegród

UDZIAŁ PROCENTOWY [%]– pole do podglądu udziału procentowego danej przegrody w całkowitych zyskach pomieszczenia dla krytycznej godziny

16.3.4.2 Zakładka Zyski od ludzi

Obliczenia zysków od ludzi wykonuje się na podstawie wzoru:

$$Q_P = Q_{P,tr} + Q_{P,f}$$

Q_{P,tr} – zyski ciepła jawnego

Q_{P,tr} – zyski ciepła utajonego

Zyski ciepła jawnego wyliczane są z wzoru Q_{P,tr}:

 $Q_{P,tr} = q_{P,tr} \bullet n_P \bullet S_i \bullet I$

 $q_{P,tr}$ - jednostkowy strumień ciepła jawnego od ludzi

n_P – liczba osób

S_i – współczynnik akumulacji

I – współczynnik jednoczesności

Wartość zysków ciepła utajonych wyliczana jest z wzoru Q_{P,f}:

 $Q_{P,f} = q_{P,f} \bullet n_P \bullet I$

 $q_{P,f}$ - jednostkowy strumień ciepła utajonego od ludzi n_P – liczba osób

Czynność	Temperatura powietrza	° C	18	20	22	23	24	25	26
Bez aktywności do lekkiej przew	q _{Ptot}	W	125	120	120	120	115	115	115
figueznej valkonstvenej na stojego	$q_{\rm Ptr}$	W	100	95	90	85	75	75	70
nzycznej wykonywanej na stojąco,	$q_{ m Pf}$	W	25	25	30	35	40	40	45
wspołczynnik aktywności i i n	mD	g/h	35	35	40	50	60	60	65
Umierkowenia giożka progo	q _{Ptot}	W	190	190	190	190	190	190	190
figuezne	$q_{\rm Ptr}$	W	125	115	105	100	95	85	85
IIZyczna,	$q_{\rm Pf}$	W	65	75	85	90	95	100	105
wspoiczynnik aktywnosci m	mD	g/h	95	110	125	135	140	145	150
Ciężka praca fizyczna,	q _{Ptot}	W	270	270	270	270	270	270	270
współczynnik aktywności IV	q _{Ptr}	W	155	140	120	115	110	105	95

240 q_{Pf} W m_D g/h

XL bardzo lekki												
I. Tryb pracy od 8 do 16 (czas pracy 8h)												
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,91	0,93	0,93	0,94
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,94	0,94	0,95	0,95	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
II. Tryb pracy od 8 do 20 (czas pracy 12h)												
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,93	0,94	0,94	0,95
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,95	0,95	0,95	0,96	0,96	0,96	0,96	0,97	0,07	0,06	0,05	0,05
III. Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h)												
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
S_i	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,92	0,93	0,93	0,94	0,94
Godzina	13	14	15	10	1/	18	19	20	21	22	23	24
3i	0,03	0,04	0,95	0,94	0,95	12 : -	0,04	0,04	0,05	0,03	0,05	0,05
Calin	1	1 .		pracy of) 1210	a 14 a	0 18 (C	zas pra	$(cy \delta n)$	11	10
Godzina	1	2	3	4	5	0.02	/	8	9	10	11	12
S _i Codzina	12	0,05	0,05	0,05	0,05	1.0	10	0,95	0,94	0,94	0,95	0,95
Gouzina S.	0.05	0.04	13	0.95	0.95	10	19	20	0.04	0.04	23	0.04
\mathcal{S}_1	0,05	0,04	0,94 V	Tryb	0,95	0,95	24 (cz	0,05	$\frac{0,04}{2}$	0,04	0,04	0,04
Godzina	1	2	v .		5	6	7		2y 2411)	10	11	12
Gouzina S.	1 00	1.00	1.00	4	1.00	1.00	1.00	0	9 1.00	1.00	1 00	1.00
Godzina	13	1,00	1,00	1,00	1,00	1,00	1,00	20	21	22	23	24
Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
51	1,00	1,00	1,00	1,00	1,00 L	lekki	1,00	1,00	1,00	1,00	1,00	1,00
			I.	Tryb	pracy	od 8 do	o 16 (c	zas pra	cy 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,06	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,75	0,78	0,81	0,83
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,85	0,87	0,88	0,90	0,19	0,16	0,14	0,12	0,10	0,09	0,08	0,07
			II.	Tryb	pracy of	od 8 do	20 (cz	as prac	cy 12h))		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,12	0,11	0,10	0,09	0,08	0,07	0,06	0,06	0,77	0,81	0,83	0,85
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,87	0,89	0,90	0,91	0,92	0,93	0,94	0,94	0,23	0,19	0,17	0,15
		III.	Tryb	pracy	od 7 do	o 12 i o	d 14 d	o 17 (c	zas pra	icy 8h)		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,06	0,05	0,05	0,04	0,04	0,03	0,03	0,75	0,78	0,81	0,83	0,85
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,15	0,13	0,83	0,85	0,87	0,16	0,14	0,12	0,10	0,09	0,08	0,07
		IV.	Tryb	pracy	od 6 do	o 12 i o	d 14 d	o 18 (c	zas pra	icy 8h)		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,08	0,07	0,06	0,05	0,05	0,04	0,76	0,79	0,82	0,84	0,86	0,88
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,17	0,14	0,84	0,87	0,88	0,90	0,19	0,16	0,14	0,12	0,10	0,09
			V.	Tryb	pracy of	od I do	24 (cz	as prac	cy 24h))		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24

Tabela Wskaźnik obciążenia chłodniczego od ludzi

Si	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M średni												
I. Tryb pracy od 8 do 16 (czas pracy 8h)												
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,06	0,07	0,07	0,06	0,06	0,05	0,05	0,05	0,75	0,77	0,79	0,81
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,83	0,84	0,85	0,86	0,17	0,15	0,14	0,12	0,11	0,10	0,10	0,09
II. Tryb pracy of 8 do 20 (czas pracy 12h)												
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,15	0,14	0,12	0,11	0,11	0,10	0,09	0,08	0,78	0,80	0,82	0,84
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,22	0,19	0,18	0,16
		III.	Tryb	pracy	od 7 do	o 12 i o	d 14 d	o 17 (c	zas pra	cy 8h)		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0.08	0.07	0.07	0.06	0.06	0.05	0.05	0.75	0.78	0.80	0.81	0.83
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0.14	0.12	0.82	0.83	0.85	0.15	0.14	0.13	0.11	0.10	0.10	0.09
	- 7	IV.	Trvb	pracy	od 6 do	12i0	d 14 d	o 18 (c	zas pra	(cv 8h)	- 7 -	- ,
Godzina	1	2	3	4	5	6	7	8	9	10^{10}	11	12
Si	0.10	0.09	0.09	0.08	0.07	0.07	0.77	0.79	0.81	0.83	0.84	0.85
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0.16	0.14	0.84	0.85	0.86	0.88	0.18	0.16	0.15	0.13	0.12	0.11
	0,10	0,11	V	Trvh	pracy (d 1 do	$24(c_7)$	as nrac	v 24h)	0,12	0,11
Godzina	1	2	3	<u> </u>	5	6	7	8	<u>92m</u>	, 10	11	12
S.	1 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Godzina	13	1,00	1,00	1,00	1,00	1,00	1,00	20	21	22	23	24
S	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
51	1,00	1,00	1,00	1,00	1,00 S	cieżki	1,00	1,00	1,00	1,00	1,00	1,00
			I.	Trvb	pracy	$\frac{1}{00}$ 8 do	0 16 (c	zas pra	cv 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,10	0,09	0,09	0,08	0,08	0,08	0.07	0,07	0,73	0,75	0,76	0,77
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,79	0,80	0,81	0,81	0,16	0,15	0,14	0,13	0,12	0,12	0,11	0,10
			II.	Trvb	pracy of	od 8 do	20 (cz	as prac	cv 12h)		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0.17	0.16	0.15	0.14	0.14	0.13	0.13	0.12	0.78	0.79	0.81	0.82
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,83	0,83	0,84	0,85	0,86	0,86	0.87	0,87	0,22	0,20	0,19	0,18
	,	III.	Trvb	pracy	od 7 do	$\frac{12}{12}$ i o	d 14 d	o 17 (c	zas pra	(v 8h)	,	,
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,10	0,09	0,09	0,08	0,08	0,08	0,07	0,73	0,75	0,76	0,78	0,79
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,14	0,12	0,78	0,79	0,80	0,15	0,14	0,13	0,12	0,12	0,11	0,10
		IV.	Tryb	pracy	od 6 do	o 12 i o	d 14 d	o 18 (c	zas pra	cy 8h)		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
Si	0,13	0,12	0,11	0,11	0,10	0,10	0,76	0,78	0,79	0,80	0,81	0,82
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
Si	0,16	0,15	0,80	0,82	0,83	0,84	0,18	0,17	0,16	0,15	0,14	0,13
			V.	Tryb	pracy of	od 1 do	24 (cz	as prac	cy 24h))		
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Tabela Współczynnik obciążenia cieplnego S_i
Zysk	od przegród	Zyski od ludzi	Zyski od oświetlenia	Zyski od urządzeń	Zyski od materii									
Lp.	Try	yby pracy		Aktywność		Współczynnik jednoczesności I	n [os.]	qptot [W]	qptr [W]	qpf [W]	md [g/h]	Wyniki	Udział [%]	+
1	8-16		. I. Bez aktywności			 0,85	4,0	480	38	0 10	0 140		295,5	×
														D.
														1
														T
														*
1														

Zyski od ludzi

KOLUMNA TRYB PRACY – pole do wyboru jednego z trybów

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h
- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

KOLUMNA AKTYWNOŚĆ – użytkownik wybiera jeden z 4 wariantów na podstawie klasy ciężaru budynku, aktywności, dobierana jest z tabelki 1 wartość, Q_{Ptot} , q_{Pf} , q_{Ptr} , m_D . Lista aktywności:

- I. Bez aktywności
- II. Lekka prace fizyczne wykonywane na stojąco
- III. Umiarkowanie ciężka praca fizyczna
- IV. Ciężka praca fizyczna

KOLUMNA WSPÓŁCZYNNIK JEDNOCZESNOŚCI I – pole do wpisywania wartości liczbowej, przycisk "…" przenosi nas do okienka podpowiedzi, która odpowiada Tabeli 5

KOLUMNA LICZBA OSÓB n [osób] – pole do wpisywania liczby osób (zakres od 0-1000, dokładność 0), użytkownik dodatkowo ma przycisk "…" w którym może obliczyć ilość osób (tak jak jest to w audycie, certyfikacie i zyskach szczegółowych w strefach cieplnych i chłodu)

	Liczba o	sób	o/jednostek odi	niesienia			
Lp.	Rodzaj lokalu Przeznaczenie		Normowa liczba osób na lokal / powierzchnię	Liczba lokali	Af [m²]	Całkowita ilość osób	+
1	Mieszkanie 1 pokojowe		1,000	0,000		0,000	×
L ;=() os.				Anuluj	ок	

Okno obliczeń ilości osób

KOLUMNA CAŁKOWITE ZYSKI CIEPŁA qPtot [W] – pole do odczytu wartość pokazywana w tym oknie jest wyliczana z danych qPtot z tabelki 1 x ilość osób.

KOLUMNA ZYSKI UTAJONE q_{Pf}[W] – pole do odczytu wartość pokazywana w tym oknie jest wyliczana z danych q_{Pf} z tabelki 1 x ilość osób.

KOLUMNA ZYSKI JAWNE q_{Ptr} [W] – pole do odczytu wartość pokazywana w tym oknie jest wyliczana z danych q_{Ptr} z tabelki 1 x ilość osób.

KOLUMNA STRUMIEŃ WILGOCI m_D [W] – pole do odczytu wartość pokazywana w tym oknie jest wyliczana z danych m_D z tabelki 1 x ilość osób.

KOLUMNA WYNIKI – pole do włączania okna z szczegółowymi wynikami przyciskiem …

			Wyniki	obliczeń				×
Godzina [h]	qptr [kW]	Si	qpf [kW]	Qptr [kW]	Qpf [kW]	Qp [kW]	max	
1	0,095	0,100	0,025	0,032	0,085	0,117		
2	0,095	0,090	0,025	0,029	0,085	0,114		
3	0,095	0,090	0,025	0,029	0,085	0,114		
4	0,095	0,080	0,025	0,026	0,085	0,111		
5	0,095	0,080	0,025	0,026	0,085	0,111		
6	0,095	0,080	0,025	0,026	0,085	0,111		
7	0,095	0,070	0,025	0,023	0,085	0,108		
8	0,095	0,070	0,025	0,023	0,085	0,108		
9	0,095	0,730	0,025	0,236	0,085	0,321		
10	0,095	0,750	0,025	0,242	0,085	0,327		
11	0,095	0,760	0,025	0,245	0,085	0,330		
12	0,095	0,770	0,025	0,249	0,085	0,334		
13	0,095	0,790	0,025	0,255	0,085	0,340		
14	0,095	0,800	0,025	0,258	0,085	0,343		
15	0,095	0,810	0,025	0,262	0,085	0,347		
16	0,095	0,810	0,025	0,262	0,085	0,347		
17	0,095	0,160	0,025	0,052	0,085	0,137		
18	0,095	0,150	0,025	0,048	0,085	0,133		
19	0,095	0,140	0,025	0,045	0,085	0,130		
20	0,095	0,130	0,025	0,042	0,085	0,127		
21	0,095	0,120	0,025	0,039	0,085	0,124		
22	0,095	0,120	0,025	0,039	0,085	0,124		
23	0,095	0,110	0,025	0,036	0,085	0,121		
24	0,095	0,100	0,025	0,032	0,085	0,117		
						I	ок	

Wyniki obliczeń zysków od ludzi

KOLUMNA UDZIAL PROCENTOWY [%] – pole do podglądu udziału procentowego danego wiersza w całkowitych zyskach pomieszczenia dla krytycznej godziny

16.3.4.3 Zakładka Zyski od oświetlenia

Wartość zysków od oświetlenia oblicza się z wzoru:

 $Q_B = P \bullet I \bullet \mu_b \bullet S_i$

P- pobór mocy lampy

I – współczynnik jednoczesności

 $\mu_b\text{-}$ współczynnik obciążenia pomieszczenia

 $S_i - współczynnik akumulacji$

Strumień objętości powietrza w stosunku do mocy	0,2	0,3	0,5	1,0
zainstalowanego oświetlenia m ³ /hW	m³/hW	m³/hW	m³/hW	m³/hW
Oprawy wentylowane				
Wentylowane oprawy wywiew przez przestrzeń między stropową *)	0,80	0,70	0,55	0,45

Wentylowane oprawy wywiew przez przewody izolowane	0,45	0,40	0,35	0,30			
Wentylowane oprawy wywiew przez przewody nie izolowane	0,40	0,35	0,30	0,25			
Oprawy pozostałe							
Nie wentylowane oprawy		-	1				
Oprawy chłodzone powietrzem nawiewanym		-	1				
 *) wartość obowiązuje dla antresoli i kondygnacji powyżej par 	teru. Jeżeli n	a piętrze na	d rozpatrywa	anym			
pomieszczeniem nie występuje tego samego rodzaju system wentylacji, to wartość współczynnika należy							
pomnożyć 0,9.							

XL bardzo lekki Tryb pracy od 8 do 16 (czas pracy 8h) I. Godzina 4 8 9 10 11 12 2 3 5 6 7 0,06 00% S_i 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,83 0,87 0,86 0,87 30% S_i 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,88 0,90 0,91 0,91 0,03 50% S_i 0,03 0,02 0,02 0,02 0,02 0,02 0,02 0,91 0,93 0,93 0,94 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 Godzina 13 14 15 16 17 18 19 20 21 22 23 24 00% S_i 0,88 0,89 0,89 0,90 0,11 0,09 0,08 0,08 0,07 0,07 0,06 0,06 30% S_i 0,92 0,92 0,92 0,93 0,08 0,06 0,06 0,05 0,05 0,05 0,04 0,04 50% S_i 0,94 0,94 0,95 0,95 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 II. Tryb pracy od 8 do 20 (czas pracy 12h) Godzina 9 2 3 4 5 8 10 11 12 1 6 7 00% S_i 0,09 0,09 0,08 0,08 0,08 0,07 0,07 0,07 0,86 0,88 0,89 0,90 30% S_i 0,07 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,90 0,92 0,92 0,93 0,04 50% S_i 0,04 0,04 0,04 0,04 0,03 0,03 0,03 0,93 0,94 0,94 0,95 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 Godzina 13 14 15 16 17 18 19 20 21 22 23 24 0,91 0,92 0,92 00% S_i 0,90 0,91 0,93 0,93 0,93 0,14 0,12 0,11 0,10 0,94 30% S_i 0,93 0,94 0.94 0.94 0,95 0,95 0,95 0,10 0,08 0,08 0,07 50% S_i 0,95 0,95 0,95 0.96 0,96 0,96 0,96 0,97 0,07 0,06 0,05 0,05 100% S_i 1 1 1 1 1 1 1 1 1 1 1 III. Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h) Godzina 4 9 10 11 12 1 2 3 5 6 7 8 00% S_i 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,83 0,86 0,87 0,88 0,88 30% S_i 0,04 0,03 0,03 0,90 0,91 0,91 0,92 0,03 0,03 0,03 0,03 0,88 50% S_i 0,03 0,02 0,02 0,02 0,02 0,92 0,93 0,93 0,94 0,94 0,02 0,02 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 Godzina 13 14 15 16 17 18 19 20 21 22 23 24 00% S_i 0,09 0,07 0,86 0,88 0,89 0,10 0,08 0,08 0,07 0,07 0,06 0,06 30% S_i 0,92 0,92 0,06 0,05 0,90 0,07 0,06 0,05 0,05 0,05 0,04 0,04 50% S_i 0,05 0,04 0,93 0,94 0,95 0,05 0,04 0,04 0,03 0,03 0,03 0,03 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 IV. Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h) Godzina 9 10 11 12 1 3 4 5 6 7 2 8 0,07 0,06 0,88 0,07 0,06 0,06 0,05 0,85 0,87 0,89 0,89 0,90 00% S_i 30% S_i 0,05 0.05 0.04 0,04 0.04 0.04 0.89 0.91 0.93 0.92 0.93 0.93 0,93 0,94 0,94 50% S_i 0,03 0,03 0,03 0,03 0,03 0,03 0,92 0,95 0,95 100% S_i 1 1 1 1 1 1 1 1 1 1 1 1 14 19 20 21 22 23 24 Godzina 13 15 16 17 18 0,90 00% S_i 0,11 0,09 0,88 0,90 0,91 0,12 0,10 0,09 0,08 0,08 0,08 0,06 0,91 0,93 0,93 0,94 30% S_i 0,08 0,08 0,07 0,06 0,06 0,06 0,06 0,94 50% S_i 0,05 0,04 0,95 0,95 0,95 0,06 0,05 0,04 0,04 0,04 0,04 100% S_i 1 1 1 1 1 1 1 1 1 1 1 V. Tryb pracy od 1 do 24 (czas pracy 24h)

Tabela Wartości współczynników obciążenia pomieszczenia µb

Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30% Si	1.00	1.00	1.00	1,00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1,00
50% Si	1.00	1,00	1.00	1,00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1,00
$100\% S_{i}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
50% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
100% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	7	7	7	,	L	lekki	7	7	7	,	,	,
I.	Tryl	pracy	od 8 d	lo 16 (d	czas pr	acy 8h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,12	0,11	0,10	0,09	0,08	0,07	0,07	0,06	0,50	0,57	0,62	0,67
30% S _i	0,08	0,08	0,07	0,06	0,06	0,05	0,05	0,04	0,65	0,70	0,74	0,77
50% S _i	0,06	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,75	0,78	0,81	0,83
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,71	0,74	0,77	0,80	0,38	0,32	0,28	0,24	0,21	0,18	0,16	0,14
30% S _i	0,80	0,82	0,84	0,86	0,26	0,22	0,19	0,17	0,15	0,13	0,11	0,10
50% S _i	0,85	0,87	0,88	0,90	0,19	0,16	0,14	0,12	0,10	0,09	0,08	0,07
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
II.	Tryl	o pracy	od 8 d	lo 20 (d	czas pr	acy 12	h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,26	0,23	0,20	0,18	0,16	0,14	0,13	0,12	0,55	0,62	0,67	0,71
30% S _i	0,17	0,15	0,14	0,12	0,11	0,10	0,09	0,08	0,68	0,73	0,76	0,79
50% S _i	0,12	0,11	0,10	0,09	0,08	0,07	0,06	0,06	0,77	0,81	0,83	0,85
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,75	0,78	0,81	0,83	0,85	0,86	0,88	0,89	0,46	0,39	0,34	0,30
30% S	0.00	0.04	0.00	0.00	0.00	0.00	0.01	0.02	0.32	0.27	0.24	0.21
5070 S1	0,82	0,84	0,86	0,88	0,89	0,90	0,91	0,92	0,52	0,27	0,24	0,21
50% S _i	0,82 0,87	0,84 0,89	0,86	0,88 0,91	0,89	0,90	0,91 0,94	0,92	0,32	0,27	0,24 0,17	0,21
$\frac{50\% S_{i}}{50\% S_{i}}$	0,82 0,87 1	0,84 0,89 1	0,86 0,90 1	0,88 0,91 1	0,89 0,92 1	0,90 0,93 1	0,91 0,94 1	0,92 0,94 1	0,32 0,23 1	0,27 0,19 1	0,24 0,17 1	0,15
	0,82 0,87 1 Trył	0,84 0,89 1 0 pracy	0,86 0,90 1 r od 7 c	0,88 0,91 1 lo 12 i	0,89 0,92 1 od 14	0,90 0,93 1 do 17 (0,91 0,94 1 czas pi	0,92 0,94 1 acy 8h	0,32 0,23 1)	0,27	0,24 0,17 1	0,15
50% S _i 50% S _i 100% S _i III. Godzina	0,82 0,87 1 Tryt	0,84 0,89 1 0 pracy 2	0,86 0,90 1 r od 7 c 3	0,88 0,91 1 lo 12 i 4	0,89 0,92 1 od 14 5	0,90 0,93 1 do 17 (6	0,91 0,94 1 czas pi 7	0,92 0,94 1 acy 8h	0,32 0,23 1) 9	0,27 0,19 1 10	0,24 0,17 1	0,21 0,15 1 12
50% S ₁ 50% S _i 100% S _i III. Godzina 00% S _i	0,82 0,87 1 Tryt 1 0,12	0,84 0,89 1 0 pracy 2 0,11	0,86 0,90 1 od 7 c 3 0,10	0,88 0,91 1 10 12 i 4 0,09	0,89 0,92 1 od 14 5 0,08	0,90 0,93 1 do 17 (6 0,07	0,91 0,94 1 czas pi 7 0,07	0,92 0,94 1 cacy 8h 8 0,50	0,32 0,23 1) 9 0,57	0,27 0,19 1 10 0,63	0,24 0,17 1 11 0,67	0,21 0,15 1 12 0,71
50% S _i 50% S _i 100% S _i III. Godzina 00% S _i 30% S _i	0,82 0,87 1 Tryt 1 0,12 0,09	0,84 0,89 1 0 pracy 2 0,11 0,08	0,86 0,90 1 0 od 7 o 3 0,10 0,07	0,88 0,91 1 lo 12 i 4 0,09 0,06	0,89 0,92 1 od 14 0 5 0,08 0,06	0,90 0,93 1 do 17 (6 0,07 0,05	0,91 0,94 1 czas pi 7 0,07 0,05	0,92 0,94 1 cacy 8h 8 0,50 0,65	0,32 0,23 1) 9 0,57 0,70	0,27 0,19 1 10 0,63 0,74	0,24 0,17 1 11 0,67 0,77	0,21 0,15 1 12 0,71 0,80
50% S _i 50% S _i 100% S _i III. Godzina 00% S _i 30% S _i 50% S _i	0,82 0,87 1 Tryt 1 0,12 0,09 0,06	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05	0,86 0,90 1 7 od 7 c 3 0,10 0,07 0,05	0,88 0,91 1 10 12 i 4 0,09 0,06 0,04	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04	0,90 0,93 1 do 17 (6 0,07 0,05 0,03	0,91 0,94 1 czas pr 7 0,07 0,05 0,03	0,92 0,94 1 cacy 8h 8 0,50 0,65 0,75	0,32 0,23 1) 9 0,57 0,70 0,78	0,27 0,19 1 0,63 0,74 0,81	0,24 0,17 1 1 0,67 0,77 0,83	0,21 0,15 1 12 0,71 0,80 0,85
$\begin{array}{c} 50\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \\ \hline III. \\ \hline Godzina \\ 00\% S_i \\ \hline 30\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \end{array}$	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1	0,86 0,90 1 c od 7 c 3 0,10 0,07 0,05 1	0,88 0,91 1 10 12 i 4 0,09 0,06 0,04 1	0,89 0,92 1 0d 14 0 5 0,08 0,06 0,04 1	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1	0,92 0,94 1 cacy 8h 8 0,50 0,65 0,75 1	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$	0,27 0,19 1 0,63 0,74 0,81 1	0,24 0,17 1 1 0,67 0,77 0,83 1	0,21 0,15 1 0,71 0,80 0,85 1
$\begin{array}{c} 50\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \\ \hline III. \\ \hline Godzina \\ 00\% S_i \\ \hline 30\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \\ \hline Godzina \\ \end{array}$	0,82 0,87 1 Tryt 0,12 0,09 0,06 1 13	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15	0,88 0,91 1 10 12 i 4 0,09 0,06 0,04 1 16	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04 1 17	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1 18	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20	0,32 0,23 1) 9 0,57 0,70 0,78 1 21	$ \begin{array}{c} 0,27\\ 0,19\\ 1\\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ \end{array} $	0,24 0,17 1 0,67 0,77 0,83 1 23	0,15 1 12 0,71 0,80 0,85 1 24
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 50% Si 100% Si Godzina 00% Si 00% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 13 0,31	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26	0,86 0,90 1 0 od 7 c 3 0,10 0,07 0,05 1 15 0,66	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 16 0,71	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04 1 17 0,74	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1 18 0,33	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ \end{array}$
$\begin{array}{c} 50\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \\ \hline III. \\ \hline Godzina \\ 00\% S_i \\ \hline 30\% S_i \\ \hline 50\% S_i \\ \hline 100\% S_i \\ \hline Godzina \\ \hline 00\% S_i \\ \hline 30\% S_i \\ \hline 30\% S_i \\ \hline \end{array}$	0,82 0,87 1 Tryk 0,12 0,09 0,06 1 13 0,31 0,21	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 16 0,71 0,80	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0d \ 14 \\ 0\\ 5\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ \end{array}$	$\begin{array}{c} 0.90\\ 0.93\\ 1\\ 0.07\\ 0.05\\ 0.03\\ 1\\ 18\\ 0.33\\ 0.23\\ \end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$ $\begin{array}{c} 9\\ 0,57\\ 0,70\\ 0,78\\ 1\\ 21\\ 0,21\\ 0,15\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si 50% Si 30% Si 50% Si 30% Si 50% Si	0,82 0,87 1 Tryt 0,12 0,09 0,06 1 13 0,31 0,21 0,15	$\begin{array}{c} 0,84\\ 0,89\\ 1\\ 0 \ pracy\\ 2\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 14\\ 0,26\\ 0,18\\ 0,13\\ \end{array}$	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,12 i\\ 4\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ \end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0d \ 14 \ 0\\ 5\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ \end{array}$	$\begin{array}{c} 0,90\\ 0,93\\ 1\\ 0,07\\ 0,07\\ 0,05\\ 0,03\\ 1\\ 18\\ 0,33\\ 0,23\\ 0,16\\ \end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ \end{array}$
$\begin{array}{c} 50\% {\rm S_i} \\ \hline 50\% {\rm S_i} \\ \hline 100\% {\rm S_i} \\ \hline III. \\ \hline Godzina \\ 00\% {\rm S_i} \\ \hline 30\% {\rm S_i} \\ \hline 50\% {\rm S_i} \\ \hline 100\% {\rm S_i} \\ \hline 30\% {\rm S_i} \\ \hline 30\% {\rm S_i} \\ \hline 50\% {\rm S_i} \\ \hline 100\% {\rm S_i} \\ \hline 100\% {\rm S_i} \\ \hline 100\% {\rm S_i} \end{array}$	0,82 0,87 1 Tryb 0,09 0,06 1 13 0,31 0,21 0,15 1	$\begin{array}{c} 0,84\\ 0,89\\ 1\\ 0 \text{ pracy}\\ 2\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 14\\ 0,26\\ 0,18\\ 0,13\\ 1\\ \end{array}$	0,86 0,90 1 c od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ \end{array}$	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04 1 17 0,74 0,82 0,87 1	$\begin{array}{c} 0,90\\ 0,93\\ 1\\ 1\\ 0,07\\ 0,05\\ 0,03\\ 1\\ 18\\ 0,33\\ 0,23\\ 0,16\\ 1\\ 1\end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si 100% Si 100% Si 100% Si 100% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 1 3 0,31 0,21 0,15 1 Tryk	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 c od 6 c	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 1 6 0,71 0,80 0,85 1 1 0 12 i	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04 1 17 0,74 0,82 0,87 1 od 14 0	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1 18 0,33 0,23 0,16 1 do 18 (0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h	0,32 0,23 1) 9 0,57 0,70 0,78 1 21 0,21 0,15 0,10 1)	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ \hline \\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ \hline \\ 1\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \hline \\ 1\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si S0% Si 50% Si 100% Si IV. Godzina	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 1 3 0,31 0,21 0,15 1 Tryk 1	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 c od 6 c 3	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 16 0,71 0,80 0,85 1 10 12 i 4	0,89 0,92 1 od 14 0 5 0,08 0,06 0,04 1 17 0,74 0,82 0,87 1 od 14 0 5	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1 18 0,33 0,23 0,16 1 do 18 (6	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8	0,32 0,23 1 9 0,57 0,70 0,78 1 21 0,21 0,15 0,10 1 9	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 10\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 1\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \hline \\ 11\\ \end{array}$	0,15 1 12 0,71 0,80 0,85 1 24 0,14 0,10 0,07 1 12 12
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si IV. Godzina 00% Si IV.	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 Tryk 1 0,16	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 od 6 c 3 0,13	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 1 6 0,71 0,80 0,85 1 1 0 12 i 4 0,11	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0d \ 14 \ 0\\ 5\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0d \ 14 \ 0\\ 5\\ 0,10\\ 0 \end{array}$	0,90 0,93 1 do 17 (6 0,07 0,05 0,03 1 18 0,33 0,23 0,16 1 do 18 (6 0,09	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}$ $\begin{array}{c} 9\\ 0,57\\ 0,70\\ 0,78\\ 1\\ 21\\ 0,21\\ 0,15\\ 0,10\\ 1\\ \end{array}$ $\begin{array}{c} 9\\ 0,65\\ 0,65\\ \end{array}$	0,27 0,19 1 0,63 0,74 0,81 1 22 0,19 0,13 0,09 1 10 0,69	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,73\\ 25\\ \end{array}$	0,21 0,15 1 0,71 0,80 0,85 1 24 0,14 0,10 0,07 1 12 0,76
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 100% Si 100% Si 100% Si 100% Si 100% Si 30% Si 30% Si 30% Si	0,82 0,87 1 Tryt 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 Tryt 1 0,16 0,11	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10	0,86 0,90 1 0d 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 c od 6 c 3 0,13 0,09	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 16 0,71 0,80 0,85 1 0,85 1 0,12 i 4 0,11 0,08	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07$	$\begin{array}{c} 0.90\\ 0.93\\ 1\\ 1\\ 0.93\\ 1\\ 0.93\\ 1\\ 0.05\\ 0.03\\ 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ 1\\ 1\\ 0.33\\ 0.23\\ 0.16\\ 1\\ 0.09\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.05\\ 0.07\\ 0.07\\ 0.05\\ 0.07\\ 0.07\\ 0.05\\ 0.05\\ 0$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53 0,67	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72	0,32 0,23 1) 9 0,57 0,70 0,77 0,70 0,78 1 21 0,15 0,10 1) 9 0,65 0,75 0,75	0,27 0,19 1 0,63 0,74 0,81 1 22 0,19 0,13 0,09 1 10 0,69 0,78	0,24 0,17 1 0,67 0,77 0,83 1 23 0,16 0,11 0,08 1 1 11 0,73 0,81	0,21 0,15 1 0,71 0,80 0,85 1 0,85 1 24 0,14 0,10 0,07 1 1 12 0,76 0,83 0,62
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 Tryk 1 0,16 0,11 0,08	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10 0,07	0,86 0,90 1 a od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 a od 6 c 3 0,13 0,09 0,06	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 1\\ 0,11\\ 0,08\\ 0,05\\ 0,05\\ \end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07\\ 0,07\\ 0,05\\ 0,0\\$	$\begin{array}{c} 0.90\\ 0.93\\ 1\\ 0.93\\ 1\\ 0.05\\ 0.07\\ 0.05\\ 0.03\\ 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ 1\\ 0.03\\ 0.16\\ 1\\ 0.09\\ 0.07\\ 0.04\\ 0.04\\ \end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53 0,67 0,76	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79	0,32 0,23 1) 9 0,57 0,70 0,78 1 0,70 0,78 1 0,15 0,10 1) 9 0,65 0,75 0,75 0,82	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 10\\ 0,69\\ 0,78\\ 0,84$	0,24 0,17 1 0,67 0,77 0,83 1 23 0,16 0,11 0,08 1 1 11 0,73 0,81 0,86	0,21 0,15 1 12 0,71 0,80 0,85 1 24 0,14 0,10 0,07 1 12 0,76 0,83 0,83 0,88 0,88
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 1 3 0,31 0,21 0,15 1 Tryk 1 0,16 0,11 0,08 1	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10 0,07 1	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 1 5 0,66 0,76 0,83 1 0,06 0,13 0,09 0,06 1	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 1\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 1\\ 0,05\\ 1\\ 1\\ 0,05\\ 1\\ 1\\ 0\\ 0,05\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,07\\ 0,05\\ 1\\ 1\\ 0,05\\ 1\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0,05\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.90\\ 0.93\\ \hline 1\\ 0.93\\ \hline 1\\ 0.93\\ \hline 1\\ 0.05\\ 0.07\\ 0.05\\ 0.03\\ \hline 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ \hline 1\\ 0.23\\ 0.16\\ \hline 1\\ 0.09\\ 0.07\\ 0.04\\ \hline 1\\ 1\\ 0.04\\ \hline 1$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53 0,67 0,76 1	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1	0,32 0,23 1) 9 0,57 0,70 0,78 1 21 0,21 0,15 0,10 1) 9 0,65 0,75 0,82 1 2	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 10\\ 0,69\\ 0,78\\ 0,84\\ 1\\ 22\\ \hline \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 1\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \hline \\ 1\\ 0,73\\ 0,81\\ 0,86\\ 1\\ 22\\ \end{array}$	0,12 0,15 1 12 0,71 0,80 0,85 1 24 0,14 0,10 0,07 1 12 0,76 0,83 0,88 1 24
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si IV. Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 00% Si 30% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 Tryk 1 0,16 0,11 0,08 1 13 0,25	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10 0,07 1 14 0,20	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 c od 6 c 3 0,13 0,09 0,06 1 15 0,06 1 15 0,07	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 0,85\\ 1\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 16\\ 0,05\\ 1\\ 16\\ 0,74\\ \end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07\\ 0,05\\ 1\\ 17\\ 0,77\\ 0,05\\ 1\\ 17\\ 0,77\\$	$\begin{array}{c} 0.90\\ 0.93\\ \hline 1\\ 0.93\\ \hline 1\\ 0.93\\ \hline 1\\ 0.93\\ \hline 1\\ 0.05\\ 0.03\\ \hline 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ \hline 1\\ 0.23\\ 0.16\\ \hline 1\\ 0.09\\ 0.07\\ 0.04\\ \hline 1\\ 18\\ 0.22\\ \end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53 0,67 0,76 1 19 0,28	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1 20 0,22	0,32 0,23 1 9 0,57 0,70 0,78 1 21 0,23 0,70 0,78 1 21 0,15 0,10 1 9 0,65 0,75 0,82 1 21 0,25	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 10\\ 0,69\\ 0,78\\ 0,84\\ 1\\ 22\\ 0.24\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,73\\ 0,81\\ 0,86\\ 1\\ 23\\ 0,21\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 1\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \hline \\ 12\\ 0,76\\ 0,83\\ 0,88\\ 1\\ 24\\ 24\\ 0,12\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si 100% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si 50% Si 100% Si 50% Si 100% Si 50% Si 100% Si 6odzina 00% Si 30% Si 50% Si 100% Si 6odzina 00% Si 30% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 0,15 1 0,16 0,11 0,08 1 13 0,35	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10 0,07 1 14 0,30	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 od 6 c 3 0,13 0,09 0,06 1 15 0,00 0,07	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0 12 i\\ 4\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 1\\ 0,80\\ 0,85\\ 1\\ 1\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 16\\ 0,74\\ 0.82\\ \end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,82\\ 0,87\\ 1\\ 0,87\\ 1\\ 0,77\\ 0,05\\ 1\\ 17\\ 0,77\\ 0,92\\ 0,95\\ 1\\ 0,77\\ 0,95\\ 0,9$	$\begin{array}{c} 0.90\\ 0.93\\ 1\\ 0.93\\ 1\\ 0.05\\ 0.07\\ 0.05\\ 0.03\\ 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ 1\\ 0.33\\ 0.23\\ 0.16\\ 1\\ 0.09\\ 0.07\\ 0.04\\ 1\\ 18\\ 0.80\\ 0.86\\ 0.86\\ \end{array}$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 19 0,28 0,20 0,14 1 czas pi 7 0,53 0,67 0,76 1 19 0,38	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1 20 0,32	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ 0,23\\ 1\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 10\\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 10\\ 0,69\\ 0,78\\ 0,84\\ 1\\ 22\\ 0,24\\ 0,17\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,67\\ 0,77\\ 0,83\\ 1\\ \end{array}$ $\begin{array}{c} 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \end{array}$ $\begin{array}{c} 11\\ 0,73\\ 0,81\\ 0,86\\ 1\\ \end{array}$ $\begin{array}{c} 23\\ 0,21\\ 0,21\\ 0,15\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 1\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \hline \\ 12\\ 0,76\\ 0,83\\ 0,88\\ 1\\ 24\\ 0,19\\ 0,12\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si	0,82 0,87 1 Tryt 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 0,15 1 0,16 0,11 0,08 1 13 0,35 0,24	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0,13 1 0 pracy 2 0,14 0,10 0,07 1 14 0,30 0,21	0,86 0,90 1 0,90 1 0,07 0,05 1 15 0,66 0,76 0,83 1 0,06 0,76 0,83 1 0,03 0,09 0,06 1 15 0,00 1 15 0,00 0,07 0,09 0,00 0,07 0,05 0,00 0,07 0,07 0,05 0,00 0,07 0,07	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 1\\ 0,06\\ 0,04\\ 1\\ 1\\ 0,08\\ 0,85\\ 1\\ 1\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 1\\ 0,08\\ 0,05\\ 1\\ 16\\ 0,74\\ 0,82\\ 0,87\\ \end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,77\\ 0,05\\ 1\\ 17\\ 0,77\\ 0,84\\ 0,89\\ 0,92\\ 0$	$\begin{array}{c} 0,90\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,05\\ 0,07\\ 0,05\\ 0,03\\ 1\\ 18\\ 0,33\\ 0,23\\ 0,16\\ 1\\ 1\\ 0,33\\ 0,23\\ 0,16\\ 1\\ 1\\ 0,09\\ 0,07\\ 0,04\\ 1\\ 1\\ 18\\ 0,80\\ 0,86\\ 0,09\\ 0,02\\ 0,00\\ $	$\begin{array}{r} 0.91 \\ 0.94 \\ 1 \\ czas pi \\ 7 \\ 0.07 \\ 0.05 \\ 0.03 \\ 1 \\ 19 \\ 0.28 \\ 0.20 \\ 0.14 \\ 1 \\ czas pi \\ 0.53 \\ 0.67 \\ 0.76 \\ 1 \\ 19 \\ 0.38 \\ 0.27 \\ 0.10 \\ 10 \\ 0.38 \\ 0.27 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.0$	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1 20 0,32 0,23	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ \end{array}\\ \begin{array}{c} 0,23\\ 1\\ \end{array}\\ \begin{array}{c} 0,23\\ \end{array}\\ \begin{array}{c} 0,23\\ \end{array}\\ \begin{array}{c} 0,23\\ \end{array}\\ \begin{array}{c} 0,23\\ \end{array}\\ \begin{array}{c} 0,27\\ 0,70\\ \end{array}\\ \begin{array}{c} 0,77\\ 0,70\\ 0,78\\ \end{array}\\ \begin{array}{c} 1\\ 0,15\\ 0,10\\ \end{array}\\ \begin{array}{c} 0,15\\ 0,10\\ \end{array}\\ \begin{array}{c} 0,15\\ 0,75\\ 0,82\\ \end{array}\\ \begin{array}{c} 1\\ 21\\ 0,28\\ 0,20\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 0,12\\ 0,24\\ 0,17\\ 0,12\\ \hline \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 1\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \hline \\ 1\\ 0,73\\ 0,81\\ 0,86\\ 1\\ 23\\ 0,21\\ 0,15\\ 0,10\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 1\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \hline \\ 12\\ 0,76\\ 0,83\\ 0,88\\ 1\\ 24\\ 0,19\\ 0,13\\ 0,00\\ \end{array}$
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si 30% Si 50% Si	0,82 0,87 1 Tryt 1 0,12 0,09 0,06 1 13 0,31 0,21 0,15 1 0,15 1 0,16 0,11 0,08 1 13 0,35 0,24 0,17	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0,13 1 0,14 0,10 0,07 1 14 0,07 1 14 0,30 0,21 0,14	0,86 0,90 1 0,90 1 0,07 0,05 1 15 0,66 0,76 0,83 1 0,13 0,09 0,06 1 1 5 0,70 0,79 0,79	$\begin{array}{c} 0,88\\ 0,91\\ 1\\ 1\\ 0,09\\ 0,06\\ 0,04\\ 1\\ 16\\ 0,04\\ 1\\ 16\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 10\\ 0,85\\ 1\\ 10\\ 0,85\\ 1\\ 10\\ 0,11\\ 0,08\\ 0,05\\ 1\\ 16\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 1\end{array}$	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07\\ 0,05\\ 1\\ 17\\ 0,77\\ 0,84\\ 0,88\\ 1\\ 0,92\\ 0,9$	$\begin{array}{c} 0,90\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,93\\ 1\\ 0,93\\ 0,93\\ 0,05\\ 0,07\\ 0,05\\ 0,03\\ 1\\ 18\\ 0,33\\ 0,23\\ 0,16\\ 1\\ 1\\ 0,33\\ 0,23\\ 0,16\\ 1\\ 1\\ 18\\ 0,09\\ 0,07\\ 0,04\\ 1\\ 18\\ 0,80\\ 0,86\\ 0,90\\ 1\\ 1\\ 0,86\\ 0,90\\ 1\\ 1\\ 0,86\\ 0,90\\ 1\\ 1\\ 0,86\\ 0,90\\ 1\\ 0\\ 1\\ 0\\ 0,90\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.91\\ 0.94\\ 1\\ 0.94\\ 1\\ 0.07\\ 0.05\\ 0.03\\ 1\\ 19\\ 0.28\\ 0.20\\ 0.14\\ 1\\ 0.28\\ 0.20\\ 0.14\\ 1\\ 0.53\\ 0.67\\ 0.76\\ 1\\ 19\\ 0.38\\ 0.27\\ 0.19\\ 1\\ 1\end{array}$	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1 20 0,32 0,23 0,16	0,32 0,23 1 9 0,57 0,70 0,78 1 21 0,21 0,15 0,10 1 9 0,65 0,75 0,82 1 21 0,28 0,20 0,14	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 0,12\\ 0,24\\ 0,17\\ 0,12\\ 1\\ \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 1\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \hline \\ 1\\ 0,73\\ 0,81\\ 0,86\\ 1\\ 23\\ 0,21\\ 0,15\\ 0,10\\ 1\\ \end{array}$	0,21 0,15 1 0,71 0,80 0,85 1 24 0,14 0,10 0,07 1 12 0,76 0,83 0,88 1 24 0,71 0,07 1 12 0,76 0,83 0,88 1 24 0,13 0,09 1
50% Si 50% Si 100% Si III. Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si Godzina 00% Si 30% Si 50% Si 100% Si 30% Si 50% Si 100% Si 50% Si 100% Si	0,82 0,87 1 Tryk 1 0,12 0,09 0,06 1 1 3 0,31 0,21 0,15 1 Tryk 1 0,16 0,11 0,08 1 1 3 0,35 0,24 0,17 1	0,84 0,89 1 0 pracy 2 0,11 0,08 0,05 1 14 0,26 0,18 0,13 1 0 pracy 2 0,14 0,10 0,07 1 14 0,30 0,21 0,14 1 1	0,86 0,90 1 od 7 c 3 0,10 0,07 0,05 1 15 0,66 0,76 0,83 1 0,06 0,76 0,83 1 0,13 0,09 0,06 1 15 0,00 1 15 0,00 0,07 0,08 3 1 0,07 0,07 0,83 1 0,10 0,07 0,83 1 0,10 0,07 0,05 1 1 1 5 0,66 0,76 0,76 0,76 0,76 0,07 0,07 0,05 1 1 1 5 0,66 0,76 0,76 0,76 0,76 0,76 0,76 0,07 0,07	0,88 0,91 1 0 12 i 4 0,09 0,06 0,04 1 1 6 0,71 0,80 0,85 1 0 12 i 4 0,11 0,08 0,05 1 1 6 0,05 1 1 6 0,74 0,82 0,87 1	$\begin{array}{c} 0,89\\ 0,92\\ 1\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 1\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,08\\ 0,06\\ 0,04\\ 1\\ 17\\ 0,74\\ 0,82\\ 0,87\\ 1\\ 0,07\\ 0,05\\ 1\\ 17\\ 0,77\\ 0,84\\ 0,88\\ 1\\ 0,88\\ 1\\ 0,88\\ 0,8$	$\begin{array}{c} 0.90\\ 0.93\\ \hline 0.93\\ 1\\ \hline 0.93\\ 1\\ \hline 0.93\\ \hline 0.93\\ \hline 0.93\\ \hline 0.05\\ 0.03\\ \hline 0.05\\ 0.03\\ \hline 1\\ 18\\ 0.33\\ 0.23\\ 0.16\\ \hline 1\\ \hline 1\\ \hline 0.09\\ 0.07\\ \hline 0.04\\ \hline 1\\ 18\\ 0.80\\ \hline 0.04\\ \hline 1\\ 18\\ 0.80\\ \hline 0.90\\ \hline 1\\ \hline 0.90\\ \hline 1\\ \hline 0.90\\ \hline 1\\ \hline 0.90\\ \hline 0.90\\ \hline 1\\ \hline 0.90\\ \hline 0.90\\ \hline 1\\ \hline 0.90\\ \hline 0.90\\$	0,91 0,94 1 czas pi 7 0,07 0,05 0,03 1 1 9 0,28 0,20 0,14 1 czas pi 7 0,53 0,67 0,76 1 19 0,38 0,27 0,19 1	0,92 0,94 1 racy 8h 8 0,50 0,65 0,75 1 20 0,24 0,17 0,12 1 racy 8h 8 0,60 0,72 0,79 1 20 0,32 0,23 0,16 1	$\begin{array}{c} 0,32\\ 0,23\\ 1\\ 0,23\\ 1\\ \end{array}$	$\begin{array}{c} 0,27\\ 0,19\\ 1\\ \hline \\ 0,63\\ 0,74\\ 0,81\\ 1\\ 22\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \\ 0,13\\ 0,09\\ 1\\ \hline \\ 1\\ 0,12\\ 1\\ 1\\ \hline \\ 0,12\\ 1\\ 1\\ \hline \end{array}$	$\begin{array}{c} 0,24\\ 0,17\\ 1\\ \hline \\ 1\\ 0,67\\ 0,77\\ 0,83\\ 1\\ 23\\ 0,16\\ 0,11\\ 0,08\\ 1\\ \hline \\ 1\\ 0,73\\ 0,81\\ 0,86\\ 1\\ 23\\ 0,21\\ 0,15\\ 0,10\\ 1\\ \end{array}$	$\begin{array}{c} 0,21\\ 0,15\\ 1\\ \hline \\ 1\\ 0,71\\ 0,80\\ 0,85\\ 1\\ 24\\ 0,14\\ 0,10\\ 0,07\\ 1\\ \hline \\ 12\\ 0,76\\ 0,83\\ 0,88\\ 1\\ 24\\ 0,19\\ 0,13\\ 0,09\\ 1\\ \hline \end{array}$

Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
30% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
50% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
100% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
30% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
50% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
100% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
					М	średni						
I.	Tryl	o pracy	od 8 d	lo 16 (d	czas pr	acy 8h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,16	0,15	0,14	0,13	0,12	0,11	0,10	0,09	0,50	0,55	0,59	0,62
30% S _i	0,11	0,10	0,10	0,09	0,08	0,08	0,07	0,07	0,65	0,68	0,71	0,74
50% S _i	0,08	0,07	0,07	0,06	0,06	0,05	0,05	0,05	0,75	0,77	0,79	0,81
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,65	0,68	0,71	0,73	0,34	0,30	0,27	0,25	0,23	0,21	0,19	0,18
30% S _i	0,76	0,78	0,79	0,81	0,24	0,21	0,19	0,17	0,16	0,15	0,13	0,12
50% S _i	0,83	0,84	0,85	0,86	0,17	0,15	0,14	0,12	0,11	0,10	0,10	0,09
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
II.	Tryl	pracy	od 8 d	lo 20 (d	czas pr	acy 12	h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,29	0,27	0,25	0,23	0,21	0,20	0,18	0,17	0,57	0,61	0,64	0,68
30% S _i	0,21	0,19	0,17	0,16	0,15	0,14	0,13	0,12	0,80	0,73	0,75	0,77
50% S _i	0,15	0,14	0,12	0,11	0,11	0,10	0,09	0,08	0,78	0,80	0,82	0,84
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,70	0,73	0,75	0,77	0,79	0,80	0,82	0,83	0,43	0,39	0,35	0,32
30% S _i	0,79	0,81	0,82	0,84	0,85	0,86	0,87	0,88	0,30	0,27	0,25	0,23
50% S _i	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,22	0,19	0,18	0,16
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
III.	Tryl	o pracy	od 7 d	lo 12 i	od 14	do 17 (czas pi	racy 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,16	0,15	0,14	0,13	0,12	0,11	0,10	0,50	0,55	0,59	0,63	0,66
30% S _i	0,11	0,10	0,10	0,09	0,08	0,08	0,07	0,65	0,69	0,71	0,74	0,76
50% S _i	0,08	0,07	0,07	0,06	0,06	0,05	0,05	0,75	0,78	0,80	0,81	0,83
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,27	0,25	0,63	0,67	0,69	0,31	0,28	0,25	0,23	0,21	0,19	0,18
30% S _i	0,19	0,17	0,74	0,77	0,79	0,22	0,19	0,18	0,16	0,15	0,13	0,12
50% S _i	0,14	0,12	0,82	0,83	0,85	0,15	0,14	0,13	0,11	0,10	0,10	0,09
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
IV.	Tryl	o pracy	od 6 c	lo 12 i	od 14	do 18 (czas pi	racy 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,21	0,19	0,17	0,16	0,15	0,14	0,54	0,58	0,62	0,65	0,68	0,71
30% S _i	0,14	0,13	0,12	0,11	0,10	0,10	0,68	0,71	0,74	0,76	0,78	0,80
50% S _i	0,10	0,09	0,09	0,08	0,07	0,07	0,77	0,79	0,81	0,83	0,84	0,85
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,32	0,29	0,67	0,70	0,73	0,75	0,36	0,32	0,29	0,27	0,24	0,22
30% S _i	0,22	0,20	0,77	0,79	0,81	0,83	0,25	0,23	0,21	0,19	0,17	0,16
50% S _i	0,16	0,14	0,84	0,85	0,86	0,88	0,18	0,16	0,15	0,13	0,12	0,11
$100\% S_i$	1	1	1	1	1	1	1	1	1	1	1	1
V.	Tryl	pracy	od 1 d	lo 24 (0	czas pr	acy 24	h)					

Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
30% S _i	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
50% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
100% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
50% Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
100% S _i	1,00	1.00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	,	,	,		S	cieżki	,	,	,	,	,	
I.	Tryl	o pracy	od 8 d	lo 16 (d	czas pr	acy 8h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,20	0,19	0,18	0,17	0,17	0,16	0,15	0,15	0,47	0,50	0,53	0,55
30% S _i	0,14	0,13	0,13	0,12	0,12	0,11	0,11	0,10	0,63	0,65	0,67	0,69
50% S _i	0,10	0,09	0,09	0,08	0,08	0,08	0,07	0,07	0,73	0,75	0,76	0,77
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,58	0,60	0,61	0,63	0,32	0,30	0,28	0,26	0,25	0,24	0,22	0,21
30% S _i	0,70	0,72	0,73	0,74	0,23	0,21	0,20	0,18	0,17	0,16	0,16	0,15
50% S _i	0,79	0,80	0,81	0,81	0,16	0,15	0,14	0,13	0,12	0,12	0,11	0,10
$100\% S_i$	1	1	1	1	1	1	1	1	1	1	1	1
II.	Trył	o pracy	od 8 d	lo 20 (d	czas pr	acy 12	h)					
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,34	0,32	0,31	0,29	0,28	0,27	0,26	0,24	0,56	0,59	0,62	0,64
30% S _i	0,24	0,22	0,21	0,20	0,19	0,18	0,18	0,17	0,69	0,71	0,73	0,74
50% S _i	0,17	0,16	0,15	0,14	0,14	0,13	0,13	0,12	0,78	0,79	0,81	0,82
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,65	0,67	0,69	0,70	0,72	0,73	0,74	0,75	0,44	0,40	0,38	0,36
30% S _i	0,76	0,77	0,78	0,79	0,80	0,81	0,82	0,82	0,30	0,28	0,27	0,25
50% S _i	0,83	0,83	0,84	0,85	0,86	0,86	0,87	0,87	0,22	0,20	0,19	0,18
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
III.	Trył	o pracy	od 7 d	lo 12 i	od 14 (do 17 (czas pi	racy 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,20	0,19	0,18	0,17	0,17	0,16	0,15	0,47	0,51	0,53	0,56	0,58
30% S _i	0,14	0,13	0,13	0,12	0,12	0,11	0,11	0,63	0,66	0,67	0,69	0,71
50% S _i	0,10	0,09	0,09	0,08	0,08	0,08	0,07	0,73	0,75	0,76	0,78	0,79
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,27	0,25	0,56	0,59	0,61	0,30	0,28	0,26	0,25	0,24	0,22	0,21
30% S _i	0,19	0,18	0,69	0,71	0,73	0,21	0,20	0,18	0,17	0,16	0,16	0,15
50% S _i	0,14	0,12	0,78	0,79	0,80	0,15	0,14	0,13	0,12	0,12	0,11	0,10
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
IV.	Trył	o pracy	od 6 d	lo 12 i	od 14	do 18 (czas pi	racy 8h)			
Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	0,25	0,24	0,23	0,22	0,21	0,20	0,52	0,55	0,58	0,60	0,62	0,64
30% S _i	0,18	0,17	0,16	0,15	0,15	0,14	0,66	0,69	0,70	0,72	0,73	0,75
50% S _i	0,13	0,12	0,11	0,11	0,10	0,10	0,76	0,78	0,79	0,80	0,81	0,82
$100\% S_i$	1	1	1	1	1	1	1	1	1	1	1	1
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	0,33	0,30	0,61	0,64	0,66	0,67	0,36	0,33	0,31	0,30	0,28	0,27
30% S _i	0,23	0,21	0,73	0,75	0,76	0,77	0,25	0,23	0,22	0,21	0,20	0,19
50% S _i	0,16	0,15	0,80	0,82	0,83	0,84	0,18	0,17	0,16	0,15	0,14	0,13
100% S _i	1	1	1	1	1	1	1	1	1	1	1	1
V.	Tryl	pracy	od $1 c$	lo 24 (d	czas pr	acy 24	h)					

Podręcznik użytkownika dla programu ArCADia-TERMO

KLIMATYZACJA

Godzina	1	2	3	4	5	6	7	8	9	10	11	12
00% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
30% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
50% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
100% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Godzina	13	14	15	16	17	18	19	20	21	22	23	24
00% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
30% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
50% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
100% S _i	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Tabela Wartości współczynnika akumulacji S_i

00% S_i – lampy z wywiewem powietrza

30% S_i – lampy wbudowane w ściany, sufity

50% S_i – lampy wiszące

100% S_i – lampy działające cały czas

Rodzaj pomieszczenia	Ι
Biura, duże sale	0,75 - 0,95
Hotele (recepcje), pokoje wieloosobowe	0,40-0,60
Domy towarowe	0,80-0,90
Pomieszczenia technologiczne	0,90 - 1,00
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,00

Tabela Wartości współczynnika jednoczesności I

Obliczenia współczynnika P mocy opraw oświetleniowych

Użytkownik będzie mógł policzyć moc opraw jednym z trzech sposobów:

- I. Na podstawie ilości lx
- II. Uproszczona na podstawie mocy W/m2
- III. Szczegółowa na podstawie zainstalowanych opraw

Obliczenia dla I. Na podstawie ilości lx

$$P = E_N \cdot \frac{1,25}{\eta \cdot \eta_B} \cdot A_f [W]$$

E_N – Nominalne natężenie oświetlenia lx

p – jednostkowa moc zainstalowana W/m² lx, wyliczana z wzoru: $p = \frac{1.25}{\eta \cdot \eta_B}$

A_f – powierzchnia pomieszczenia m²

 η_B – sprawność pomieszczenia,

 η – wydajność świetlna lm/W

Przeznaczenie pomieszczenia lub rodzaj wykonywanych czynności	E _N lx
Pomieszczenia magazynowe, drogi komunikacyjne w budynkach dla ludzi i samochodów, klatki schodowe, korytarze, schody i wejścia do hal w zakładach naukowych, zakłady produkcyjne z manualnymi czynnościami, pokoje mieszkalne, teatry	100
Pomieszczenia magazynowe z czynnościami odczytywania, ekspedycje, kantyny, przyjęcia towarów, jadalnie w hotelach i restauracjach, stałe miejsca pracy w zakładach produkcyjnych, prace zgrubne, proste prace montażowe, pomieszczenia ruchu publicznego	200
Pomieszczenia biurowe z miejscami pracy z dala od okien (pojedyncze biura), pomieszczenia wielozadaniowe, biblioteki, przedszkola, pomieszczenia wykładowe, sale posiedzeń i narad, pomieszczenia sprzedaży, średnio dokładne prace montażowe, okienka i kasy w halach	300
Pomieszczenia biurowe (pomieszczenia grupowe), elektroniczne przetwarzanie danych, sale wykładowe z niewystarczającym światłem dziennym lub wykorzystywane wieczorem, sale audytoria z oknami, dokładne prace montażowe i maszynowe, kuchnie w hotelach i restauracjach, laboratoria naukowe, domy towarowe, hale wystawowe i targowe, obróbka skór i drewna	500

Duże pomieszczenia biurowe, kreślarnie techniczne, miejsca kontroli, farbiarnie, grawerowanie, szycie, supermarkety, audytoria bez okien	750
Badania farb, montaż precyzyjnych urządzeń w przemyśle elektrycznym, precyzyjne prace mechaniczne, wytwarzanie towarów ozdobnych, duże pomieszczenia biurowe (szczególne przypadki)	1000
Montaż części precyzyjnych, obróbka kamieni szlachetnych, warsztaty optyczne i naprawy zegarków, kontrola jakości przy bardzo wysokich wymaganiach	1500*)
	2000*)
*) Nominalne natężenie oświetlenia na tym poziomie osiągalne jest z reguły przez połączenia oś	wietlenia
miejscowego z oświetleniem ogólnym o natężeniu ok. 500 lx	

Tabela Wartości nominalnego natężenia oświetlenia E_N

Źródło światła	Skuteczność świetlna η lm/W
Żarówki 230 V	14
Standardowe świetlówki 26 mm z dławikiem VVG	52
3-taśmowe świetlówki 26 mm z dławikiem VVG	76
3-taśmowe świetlówki 26 mm z dławikiem i elektronicznym zapłonnikiem EVG	95
Wysokociśnieniowe lampy rtęciowe	50-60
Lampy sodowe	60-70
Lampy halogenowe nisko-woltowe	20
Lampy halogenowe	20-30
Lampy fluorescencyjne	45-104
Diody LED	40-90
Lampa rtęciowe halogenowe	75-100
Lampy sodowe wysokoprężne	90-120
Lampy sodowe niskoprężne	80-180
Lampy rtęciowo-żarowe	17-25

Tabela Wartości wydajności świetlnej η

Rodzaj pomieszczenia	Sprawność pomieszczenia η _B
Małe pomieszczenia 0-50 m ²	0,54
Średnie pomieszczenia 50-100 m ²	0,61
Duże pomieszczenia $> 100 \text{ m}^2$	0,70

Tabela Wartości sprawności pomieszczenia η_B

Obliczenia dla II. Uproszczona na podstawie mocy W/m2

$$P = P/A \cdot A_f \, [W]$$

 $\label{eq:product} \begin{array}{l} P/A-jednostkowa \;moc \; zainstalowana \; W/m^2 \\ A_f-powierzchnia \; pomieszczenia \; m^2 \end{array}$

Przeznaczenie pomieszczenia lub rodzaj wykonywanych czynności	Lampy żarowe W/m ²	Świetlówki W/m ²
Pomieszczenia magazynowe, drogi komunikacyjne w budynkach dla ludzi i samochodów, klatki schodowe, korytarze, schody i wejścia do hal w zakładach naukowych, zakłady produkcyjne z manualnymi czynnościami, pokoje mieszkalne, teatry	20-25	3-8
Pomieszczenia magazynowe z czynnościami odczytywania, ekspedycje, kantyny, przyjęcia towarów, jadalnie w hotelach i restauracjach, stałe miejsca pracy w zakładach produkcyjnych, prace zgrubne, proste prace montażowe, pomieszczenia ruchu publicznego	40-50	6-16

Pomieszczenia biurowe z miejscami pracy z dala od okien (pojedyncze biura), pomieszczenia wielozadaniowe, biblioteki, przedszkola, pomieszczenia wykładowe, sale posiedzeń i narad, pomieszczenia sprzedaży, średnio dokładne prace montażowe, okienka i kasy w halach	60-75	8-18
Pomieszczenia biurowe (pomieszczenia grupowe), elektroniczne przetwarzanie danych, sale wykładowe z niewystarczającym światłem dziennym lub wykorzystywane wieczorem, sale audytoria z oknami, dokładne prace montażowe i maszynowe, kuchnie w hotelach i restauracjach, laboratoria naukowe, domy towarowe, hale wystawowe i targowe, obróbka skór i drewna	100-120	10-25
Duże pomieszczenia biurowe, kreślarnie techniczne, miejsca kontroli, farbiarnie, grawerowanie, szycie, supermarkety, audytoria bez okien	-	15-30
Badania farb, montaż precyzyjnych urządzeń w przemyśle elektrycznym, precyzyjne prace mechaniczne, wytwarzanie towarów ozdobnych, duże pomieszczenia biurowe (szczególne przypadki)	-	20-40
Montaż części precyzyjnych, obróbka kamieni szlachetnych, warsztaty optyczne i naprawy zegarków, kontrola jakości przy bardzo wysokich wymaganiach	-	30-60

Tabela Jednostkowa moc zainstalowana P/A wg VDI 2078

Obliczenia dla III. Szczegółowa na podstawie zainstalowanych opraw

 $P = \sum P_J \bullet n$

 P_J – jednostkowa moc opraw (wartość wybierana z bazy opraw oświetleniowych)[W] n – ilość opraw [szt]

Zakładka zyski od oświetlenia

KOLUMNA TRYB PRACY – pole do wyboru jednego z trybów

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h
- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

KOLUMNA RODZAJ OSWIETLENIA – pole do wyboru jednego z czterech typów, na tej podstawie określany jest udział procentowy do wyboru wartości S_i:

- lampy z wywiewem powietrza, 00% S_i
- lampy wbudowane w ściany, sufity, 30% $S_{\rm i}$
- lampy wiszące, 50% S_i
- lampy działające cały czas, 100% S_i

KOLUMNA POBÓR MOCY P [W] – pole do wpisywania mocy opraw, użytkownik może obliczyć moc na podstawie jednego z 3 sposobów kiedy kliknie na przycisk …

Obliczenie mocy opraw oświetleniowych	×
Metoda obliczeń	
Na podstawie mocy W/m² (uproszczona)	
Jednostkowa moc zainstalowana	
$P/A = 11,00 \frac{W}{m^2}$	Tablice
Powierzchnia pomieszczenia	
$A_{1} = 40,00 \text{ m}^{2}$	
Pobór mocy opraw oświetleniowych	
$P = P/A \cdot A_{f} = 440.0 W$	
Apului	OK
Anuluj	UK

Obliczenia mocy opraw na podstawie mocy W/m² (uproszczona)

JEDNOSTKOWA MOC ZAINSTALOWANA P/A [W/m²] - pole do wpisywania liczby, użytkownik może skorzystać z podpowiedzi wciskając przycisk tablica wówczas pojawi mu się nowe okienko z zawartością tabelki nr 9

POWIERZCHNIA POMIESZCZENIA $A_f[m^2]$ – pole do wpisywania liczby, domyślnie przepisujemy wartość z powierzchni pomieszczenia w okienku pomieszczeń,

POBÓR MOCY OPRAW OŚWIETLENIOWYCH P [W] – pole do odczytu wartość przekazywana jest do kolumny Pobór mocy P po wciśnięciu przycisku OK, wyliczana z wzoru $P = P/A \cdot A_f$ [W]

Obliczania magy opraw of wigtleniowych	X
Metoda obliczeń	
Na podstawie ilości Ix	
Nominalne natężenie oświetlenia	
E _n = 200,00 lx	Tablice
Wydajność świetlna	
$\eta = 20,00 \frac{Lm}{W}$	Tablice
Sprawność pomieszczenia	
η ₅ = 0,61	Tablice
Powierzchnia pomieszczenia	
A ₁ = 8,00 m ²	
Pobór mocy opraw oświetleniowych	
$P = E_{N} \frac{1.25}{\eta \cdot \eta_{B}} A_{f} = 163,9 W$	
Anuluj	ок

Obliczenia mocy opraw na podstawie ilości lx

NOMINALNE NATĘŻENIE OŚWIETLENIA E_N [lx] – pole do wpisywania liczby, użytkownik może skorzystać z podpowiedzi wciskając przycisk tablica

WYDAJNOŚĆ ŚWIETLNA η [lm/W] - pole do wpisywania liczby, użytkownik może skorzystać z podpowiedzi wciskając przycisk tablica

SPRAWNOŚĆ POMIESZCZENIA η_B - pole do wpisywania liczby, użytkownik może skorzystać z podpowiedzi wciskając przycisk tablica

POWIERZCHNIA POMIESZCZENIA $A_f[m^2]$ – pole do wpisywania liczby, domyślnie przepisujemy wartość z powierzchni pomieszczenia w okienku pomieszczeń,

POBÓR MOCY OPRAW OŚWIETLENIOWYCH P [W] – pole do odczytu wartość przekazywana jest do kolumny Pobór mocy P po wciśnięciu przycisku OK, wyliczana z wzoru $P = E_N \cdot \frac{1,25}{\eta \cdot \eta_B} \cdot A_f$ [W]

egółowa) Ilość [szt.] 1	Pj [W] 120,0	ч × +			
Ilość [szt.] 1	Pj [W] 120,0	+ ×			
1	120,0	× ħ			
		Ph			
		Ē			
		1			
Pobór mocy opraw oświetleniowych					
	ок				
	Anuluj	Anuluj OK			

Obliczenia mocy opraw na podstawie zainstalowananych opraw(szczegółowa)

KOLUMNA MOC [W] – pole do wpisywania liczby w przypadku wybrania pozycji z bazy wartość wstawiana jest automatycznie

KOLUMNA ILOŚĆ [szt.] – pole do wpisywania ilości sztuk

KOLUMNA P_J [W] – pole do odczytu wartość wyliczana jest z wzoru P_J= Moc x ilość **POBÓR MOCY OPRAW OŚWIETLENIOWYCH P** [W] – pole do odczytu wartość przekazywana jest do kolumny Pobór mocy P po wciśnięciu przycisku OK, wyliczana z wzoru P = $\sum P_J$

KOLUMNA WSPÓŁCZYNNIK JEDNOCZESNOŚCI I – pole do wpisywania wartości liczbowej, przycisk •••• przenosi nas do okienka podpowiedzi:

Wartości współczynnika jednoczesności I							
Rodzaj pomieszczenia	1						
Biura, duże sale	0,75 - 0,95						
Hotele (recepcje), pokoje wieloosobowe	0,40 - 0,60						
Domy towarowe	0,80 - 0,90						
Pomieszczenia technologiczne	0,90 - 1,00						
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,00						
Anuluj	ОК						

Wartości współczynnika jednoczesności

KOLUMNA WSPÓŁCZYNNIK OBCIĄŻENIA μ_B – pole do wpisywania wartości liczbowej, przycisk … przenosi nas do okienka podpowiedzi:

Wartości współczynników obciążenia	pomie	eszczen	ia µb	×				
Strumień objętości powietrza w stosunku do mocy 0,2 0,3 0,5 1,0 zainstalowanego oświetlenia m³/hW m³/hW m³/hW m³/hW m³/hW								
Oprawy wentylowane								
Wentylowane oprawy wywiew przez przestrzeń między stropową*) 0,80 0,70 0,55 0,45								
Wentylowane oprawy wywiew przez przewody izolowane 0,45 0,40 0,35 0,30								
Wentylowane oprawy wywiew przez przewody nie izolowane 0,40 0,35 0,30 0,25								
Oprawy pozostałe								
Nie wentylowane oprawy			1,00					
Oprawy chłodzone powietrzem nawiewanym 1,00								
*) wartość obowiązuje dla antresoli i kondygnacji powyżej parteru. Jeżeli na piętrze nad rozpatrywanym pomieszczeniem nie występuje tego samego rodzaju system wentylacji, to wartość współczynnika należy pomnożyć 0,9.								
		Anulų	j	ОК				

Wartości współczynnika obciążenia pomieszczenia

Godzina [h]	P [kW]	Si	I	μВ	QB [kW]	max
1	0,164	0,200	0,850	0,300	0,008	
2	0,164	0,190	0,850	0,300	0,008	
3	0,164	0,180	0,850	0,300	0,008	
4	0,164	0,170	0,850	0,300	0,007	
5	0,164	0,170	0,850	0,300	0,007	
6	0,164	0,160	0,850	0,300	0,007	
7	0,164	0,150	0,850	0,300	0,006	
8	0,164	0,150	0,850	0,300	0,006	
9	0,164	0,470	0,850	0,300	0,020	
10	0,164	0,500	0,850	0,300	0,021	
11	0,164	0,530	0,850	0,300	0,022	
12	0,164	0,550	0,850	0,300	0,023	
13	0,164	0,580	0,850	0,300	0,024	
14	0,164	0,600	0,850	0,300	0,025	
15	0,164	0,610	0,850	0,300	0,026	
16	0,164	0,630	0,850	0,300	0,026	
17	0,164	0,320	0,850	0,300	0,013	
18	0,164	0,300	0,850	0,300	0,013	
19	0,164	0,280	0,850	0,300	0,012	
20	0,164	0,260	0,850	0,300	0,011	
21	0,164	0,250	0,850	0,300	0,010	
22	0,164	0,240	0,850	0,300	0,010	
23	0,164	0,220	0,850	0,300	0,009	
24	0,164	0,210	0,850	0,300	0,009	

KOLUMNA WYNIKI - pole do włączania okna z szczegółowymi wynikami przyciskiem ···

Wyniki obliczeń zysków od oświeltenia

KOLUMNA UDZIAL PROCENTOWY [%]- pole do podglądu udziału procentowego danego wiersza w całkowitych zyskach pomieszczenia dla krytycznej godziny

 $Q_M = \sum n \cdot l \cdot S_i \cdot \mu_a \cdot P_{ri}$

16.3.4.4 Zakładka Zyski od urządzeń

Wartość zysków od urządzeń oblicza się z wzoru:

n- ilość urządzeń

Pri- moc oddawana do pomieszczenia

η- sprawność maszyny

I – współczynnik jednoczesności, wg tabeli 5

µa- współczynnik obciążenia maszyny

S_i – współczynnik akumulacji

P – moc znamionowa

Moc oddawana do pomieszczenia wyliczana jest wg poniższych wzorów: A - silnik i napęd maszyny w pomieszczeniu $P_{ri} = \frac{P_{el}}{\eta}$

B - silnik poza pomieszczeniem, napęd w pomieszczeniu $P_{ri} = P$

C - silnik w pomieszczeniu, napęd poza pomieszczeniem $P_{ri} = \frac{P \cdot (1-\eta)}{\eta}$

D - pozostałe urządzenia $P_{ri} = P_{ri} = \frac{P}{n}$

Zakladka zyski od urządzeń

KOLUMNA TRYB PRACY - pole do wyboru jednego z trybów

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h
- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

KOLUMNA NAZWA URZĄDZENIA – pole wpisywania lub wybory z bazy zysków urządzeń odpowiedniej pozycji. Po wciśnięciu przycisku … otwiera się baza

			Edyte	or urzą	dzeń				- 🗆 🗙
Znajdź Szukaj: E Wyniki wyszukiwania aktualnie niedostępne.						Wyczy	ść	Wygląd urządzenia	+ ×
╪╪╅╳╠╔╔╗	Lp.	Nazwa urządzenia	P [W]	μ	η	Typ urządzenia	+		
Sprzęt biurowy Sprzęt agd	1	Szafa IT serwerowa typu rack	20000	1,00	1,00 D		×		
Sprzęt IT Silniki	2	Szafa IT biblioteka taśmowa typu rack	4000	1,00	1,00 D		۳'n		
Junki	3	Szafa IT sieciowa typu rack	4000	1,00	1,00 D		Ē	Opis	
	4	Szafa IT macierz dyskowa typu rack	6000	1,00	1,00 D				
	5	UPS	10000	1,00	0,15 D		*		
Przywróć domyślne wartości Wybór wersji	bazy d	anych: 6.0						Anuluj	ок

Baza urządzeń

KOLUMNA MOC NOMINALNA $P_{el}[W]$ – pole liczbowe do wpisywania mocy nominalnej, w przypadku wybrania urządzenia z bazy wstawia się automatycznie.

KOLUMNA ILOŚĆ n [szt] - pole liczbowe do wpisywania ilości urządzeń.

KOLUMNA SPRAWNOŚĆ URZĄDZENIA η - pole liczbowe do wpisywania mocy nominalnej, w przypadku wybrania urządzenia z bazy wstawia się automatycznie.

KOLUMNA TYP URZĄDZENIA – pole do wyboru jednego z 4 przypadków:

- A silnik i napęd maszyny w pomieszczeniu
- B silnik poza pomieszczeniem, napęd w pomieszczeniu
- C silnik w pomieszczeniu, napęd poza pomieszczeniem
- D pozostałe urządzenia

KOLUMNA KONWEKCJA % - pole liczbowe do wpisywania udziału konwekcji.

KOLUMNA WSPÓLCZYNNIK OBCIĄZENIA URZĄDZENIA W CZASIE µa - pole liczbowe do wpisywania współczynnika obciążenia, w przypadku wybrania urządzenia z bazy wstawia się automatycznie.

KOLUMNA WSPÓŁCZYNNIK JEDNOCZESNOŚCI I – pole do wpisywania wartości liczbowej, przycisk … przenosi nas do okienka podpowiedzi:

Wartości współczynnika jednoczesności l						
Rodzaj pomieszczenia	I					
Biura, duże sale	0,75 - 0,95					
Hotele (recepcje), pokoje wieloosobowe	0,40 - 0,60					
Domy towarowe	0,80 - 0,90					
Pomieszczenia technologiczne	0,90 - 1,00					
Teatry, kina, małe pomieszczenia o różnym przeznaczeniu	1,00					
Anuluj	ОК					

Wartości współczynnika jednoczesności

KOLUMNA WYNIKI – pole do włączania okna z szczegółowymi wynikami przyciskiem …

Wyniki obliczeń ×										
Godzina [h]	P [kW]	η	Pri [kW]	Si	Ι	µа	Qm [kW]	max		
1	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
2	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
3	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
4	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
5	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
6	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
7	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
8	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
9	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
10	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
11	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
12	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
13	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
14	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
15	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
16	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
17	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
18	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
19	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
20	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
21	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
22	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
23	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
24	0,150	0,660	0,227	1,000	0,850	1,000	0,000			
								ОК		

Wyniki obliczeń zysków od urządzeń

KOLUMNA UDZIAL PROCENTOWY [%]- pole do podglądu udziału procentowego danego wiersza w całkowitych zyskach pomieszczenia dla krytycznej godziny

16.3.4.5 Zakładka Zyski od materii

Wartość zysków od materii oblicza się z wzoru:

 $Q_G{=}\ m{\bullet} c{\bullet} (\theta_E {\ - \ } \theta_A) {\bullet} \ S_i {\bullet} \ 2,777 \ x \ 10^{-4}$ m- strumień masowy materii kg/h

c- ciepło właściwe kJ/kgK

 θ_E – wejściowa temperatura materiału

- θ_A wyjściowa temperatura materiału
- S_i współczynnik akumulacji

Zyski	od przegród Zyski od ludzi	Zyski od oświetlen	ia Zyski od urządzeń Zy	ski od materii						_
Lp.	Tryby pra	q	Strumień masowy materii [kg/h]	Ciepło właściwe C [kJ/kgK]	Wejściowa temperatura θe [°C]	Wyjściowa temperatura θa [°C]	Konwekcja [%]	Wyniki	Udział [%]	+
1	8-20 h		2,0	4200,0	20,0	15,0	100		48,1	
										יחי
										Đ
										*
										+

Zakładka Zyski od materii

KOLUMNA TRYB PRACY – pole do wyboru jednego z trybów

- Tryb pracy od 8 do 16 (czas pracy 8h), pokazujemy 8-16 h
- Tryb pracy od 8 do 20 (czas pracy 12h), pokazujemy 8-20 h
- Tryb pracy od 7 do 12 i od 14 do 17 (czas pracy 8h), pokazujemy 7-12/14-17 h
- Tryb pracy od 6 do 12 i od 14 do 18 (czas pracy 8h), pokazujemy 6-12/14-18 h
- Tryb pracy od 1 do 24 (czas pracy 24h), pokazujemy 24 h

KOLUMNA STRUMIEŃ MASOWY MATERII [kg/h] – pole do wpisywania liczb.

KOLUMNA CIEPŁO WŁAŚCIWE C [kJ/kg K] – pole do wpisywania liczb.

KOLUMNA WEJŚCIOWA TEMPERATURA MATERII θ_E [°C] – pole do wpisywania liczb.

KOLUMNA WYJŚCIOWA TEMPERATURA MATERII θ_A [°C] – pole do wpisywania liczb.

KOLUMNA KONWEKCJA % - pole liczbowe do wpisywania udziału konwekcji.

KOLUMNA WYNIKI – pole do włączania okna z szczegółowymi wynikami przyciskiem ···

Wyniki obliczeń 🗙										
Godzina [h]	m [kg/h]	C [kJ/kgK]	θe [°C]	θа [°C]	Si	Qg [kW]	max			
1	2,0	4200,0	20,0	15,0	1,0	0,1				
2	2,0	4200,0	20,0	15,0	1,0	0,1				
3	2,0	4200,0	20,0	15,0	1,0	0,1				
4	2,0	4200,0	20,0	15,0	1,0	0,1				
5	2,0	4200,0	20,0	15,0	1,0	0,1				
6	2,0	4200,0	20,0	15,0	1,0	0,1				
7	2,0	4200,0	20,0	15,0	1,0	0,1				
8	2,0	4200,0	20,0	15,0	1,0	0,1				
9	2,0	4200,0	20,0	15,0	1,0	0,1				
10	2,0	4200,0	20,0	15,0	1,0	0,1				
11	2,0	4200,0	20,0	15,0	1,0	0,1				
12	2,0	4200,0	20,0	15,0	1,0	0,1				
13	2,0	4200,0	20,0	15,0	1,0	0,1				
14	2,0	4200,0	20,0	15,0	1,0	0,1				
15	2,0	4200,0	20,0	15,0	1,0	0,1				
16	2,0	4200,0	20,0	15,0	1,0	0,1				
17	2,0	4200,0	20,0	15,0	1,0	0,1				
18	2,0	4200,0	20,0	15,0	1,0	0,1				
19	2,0	4200,0	20,0	15,0	1,0	0,1				
20	2,0	4200,0	20,0	15,0	1,0	0,1				
21	2,0	4200,0	20,0	15,0	1,0	0,1				
22	2,0	4200,0	20,0	15,0	1,0	0,1				
23	2,0	4200,0	20,0	15,0	1,0	0,1				
24	2,0	4200,0	20,0	15,0	1,0	0,1				
							ок			

Wyniki obliczeń zysków od urządzeń

KOLUMNA UDZIAL PROCENTOWY [%]- pole do podglądu udziału procentowego danego wiersza w całkowitych zyskach pomieszczenia dla krytycznej godziny

16.3.5 Opis okna wyników obliczeń zysków ciepła

Okno to służy do podglądu wyników obliczeń poszczególnych zysków ciepła.

Wyniki obliczeń	Wykresy			
Najgorszy dzień Zyski dla:	1 st	ycznia O [kW]	1 h Udział [%	1
Okna promieniow	/anie	0	0	1
Okna przenikanie	•	0	0	
Oświetlenie		0	0	
Zewnętrzne		0	0	
Sąsiadów		0	0	
Urządzenia		0	0	
Materia		55,54	100,00	
Q = 55,54 kW		Q m ² =:	325,90 <u>W</u> m ²	

Wyniki obliczeń

W oknie tym widoczne mamy obliczenia i udzial procentowy dla dnia i godziny krytycznej z rozbiciem na zyski od:

- okien promieniowania
- okna przenikanie
- oświetlenia
- zewnętrznych przegród
- sąsiadów
- urządzen
- materii

Dodatkowo podany jest wynik całkowity i z przeliczeniem na m² powierzchni pomieszczenia

Wykres zysków ciepła

W zakładce wykres mamy podgląd wykresu zyskow ciepła w rozbiciu dobowym dla krytycznego dnia. W przypadku gdy klikniemy na wykres wtedy otworzy się on powiększony w nowym okienku:

Wykres zysków ciepła w pomieszczeniu zakładka Wykres

Wykres zysków ciepła w pomieszczeniu – 🗖 🗙									×			
Wykres T	abela											
								N	ajgorszy d	zień	1 stycznia	
Godzina	Temperatura zewnętrzna ℃	Temperatura wewnętrzna °C	Qc W	Qfs W	Qft W	Qw W	Qr W	Qg W	Qe W	Qs W	Qp W	^
1	-4,3	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
2	-4,1	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
3	-4,0	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
4	-3,8	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
5	-3,5	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
6	-3,3	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
7	-3,0	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
8	-2,9	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
9	-2,8	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
10	-2,7	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
11	-2,2	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
12	-1,8	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
13	-1,3	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
14	-1,0	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
15	-0,7	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
16	-0,4	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
17	-0,4	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
18	-0,3	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	
19	-0,3	20,0	55540,0	0,0	0,0	0,0	0,0	55540,0	0,0	0,0	0,0	~
										Druk	иј ОК	

Wykres zysków ciepła w pomieszczeniu zakładka Tabela

16.3.6 Raporty zysków ciepła

	Obliczenia chłodu	
Dane ogólne	WYNIKI OGÓLNE	
Wyniki ogólne Przegrody Zyski ciepła Strefy chłodu	Kubatura budynku: 2815.4 m ³	Powierzchnia zabudowy Az: 914.0 m ²
	Kubatura pomieszczeń chłodzonych: 2751.7 m ³	Powierzchnia pomieszczeń chłodzonych: 786.2 m ²
	Kubatura pomieszczeń niechłodzonych: 63.7 m ³	Powierzchnia pomieszczeń niechłodzonych: 18.2 m ²
	Dzień krytyczny dla całego budynku: 16.Sierpień	Całkowite, chwilowe zapotrzebowanie na moc chłodnicząQI: 63690,16 kW
	Godzina krytyczna: 14 h	Wskaźnik zysków ciepła na powierzchnięQI,A: 69,68 kW
	Ciężar budynku: 547,5 kg/m²	Wskaźnik zysków ciepła na kubaturęQI,V: 22,62 kW
	Klasa budynku: M	
	Strumień powietrza w budynku: 0.0 m ³ /h	Średnia krotność wymian w budynku n: 0.0 1/h
	Sezonowe zapotrzebowanie na chłód budynku Q.:	Sezonowe zapotrzebowanie na chłód budynku
Obliczenia ciepine Obliczenia chłodu	59808.4 kWh/rok	Q _{c, A} na powierzchnię: 76.1 kWh/(m ² ·rok)
Certyfikat	Zyski od nasłonecznienia Q _s : 117349.0 kWh/rok	Wewnętrzne zyski ciepła Q _{int} : 7861.9 kWh/rok
CERTYEIKAT		
BADODTY	Raport o blędach	
	Lp. Typ	Upis

Æ	ArCADia-TERMO PRO 6.0 Licencji	a dla: Test - ArCADia-TERM	O PRO 6 [L01] - help	— kopia				- 5 ×
Plik Ustawienia Pomoc	E \$ 10 \$ \$ \$ \$ \$ \$?							
PODGLĄD PROJEKTU	Obliczenia cieplne - WT 2014							
Employee Comparison Co	WYNDIG OGÓLNE							
- (a) ⁻ · · · · · · · · · · · · · · · · · · ·	Kubatura budynku: m ³							
	Kubatura pomieszczeń ogrzewanych: 901.3 m ⁸	Kubatura pomiesz	tzeń nieogrzewanych: .	m ³				
	Powierzchnia budynku Ac: m ²	Powierzchnia zabu	dowy Az: 0.0 m ²					
	Powierzchnia pomieszczeń ogrzewanych: 285.2 m ²	Powierzchnia pom	eszczeń nieogrzewany	ch: m²				
	Wentylacja pomieszczeń							
	Typ wentylacji: grawitacyjna							
	Strumień powietrza V _{min} 0.0 m ³ /h	Strumień powietrz	V _{inf} 0.0 m ³ /h					
	Typ wentylacji: mechaniczna							
	Strumień powietrza wywiewanego V _{ex} : 0.0 m ³ /h	Strumień powietrz	a nawiewanego V _{sup} : 0.	0 m³/h				
	Całkowita moc źródła ciepła z uwzględnieniem zasilania nagrzewnic $\Phi_{\mu_{\rm c}}$ 9079.5 W	Calkowita nadwyżł	a mocy cieplnej Φ _{Ref} 0	.0 W				
	Obliczeniowe zapotrzebowanie na ciepło pomieszczeń ogrzewanych ©; 9079.5 W	Obliczeniowe zapr Ø _{ng} : 0.0 W	trzebowanie na moc n	a nagrzewnice				
	Całkowita strata cieplna przez przenikanie 0 ₁ : 9079.5 W	Obliczeniowe zapo pomieszczeń ogrz	trzebowanie na ciepło ewanych Φ _V : 0.0 W	do wentylacji				
	Wskaźnik cieplny budynku na powierzchnię: 32.9 W/m²	Wskaźnik cieplny t	udynku na kubaturę: 1	0.4 W/m ³				
Obliczenia cieptne Obliczenia chłodu	Wskaźnik zapotrzebowania na całkowitą energię użytkową EU _{ter} : MJ/(m ² · rok)	Wskaźnik zapotrze pierwotną EP: 0.00	bowania na całkowitą (kWh/(m² · rok)	energię				
DANE WEJŚCIOWE								
III. OBLICZENIA CIEPLNE								
C. PODGLĄD PROJEKTU	Report o bledach							
WYDRUKI	Lp. Typ			Opis				^
	4 Ostrzeżenie Parametr "Wsoółczwnik orzenikania Uc" w	orzegrodzie "DZ 100x200 do modern.	. powinien znaidować sie w	przedziałe od 0.00	do 1.70			~
< [729] >	B B B	12		12	5	G,	9	Zamknij

Raport Obliczenia chłodu - wyniki ogólne

Raport Obliczenia chłodu - zyski ciepła

W celu wygenerowania raportu rtf należy wcisnąć przycisk wówczas program wygeneruje raport, który będzie się składać z:

- Zestawienia zbiorcze zysków
- Zestawienia zysków ciepła dla poszczególnych pomieszczeń
- Zestawienia zysków ciepła dla poszczególnych grup
- Zestawienia zysków ciepła dla poszczególnych kondygnacji
- Zestawienia zysków ciepła dla całego budynku