ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE

Podręcznik użytkownika dla programu ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE

2019-03-07

Wprowadzenie

Spis treści

1	Wp	rowa	adzenie	1
	1.1	Ор	rogramie	5
	1.2	Cec	hy i możliwości programu	5
2	Inst	alov	vanie i uruchamianie programu	6
	2.1	Wyr	magania sprzętowe	7
	2.2	Inst	alowanie	7
	2.3	Uru	chamianie	7
	2.4	Ekra	an programu	7
	2.5	Otw	vieranie projektu (CAD)	Э
	2.6	Zap	is projektu (CAD)	C
	2.7	Aut	ozapis i kopia bezpieczeństwa (CAD)10	C
3	Pra	ca z	programem1	1
	3.1	Info	rmacje podstawowe o programie12	2
	3.2	Tab	ela funkcji dostępnych w ArCADia INSTALACJE KANALIZACYJNE ZEWNĘTRZNE 12	2
	3.3	Wyl	bór szablonu rysunku13	3
	3.4	Przy	/gotowanie mapy rastrowej13	3
	3.5	Орс	je programu16	6
	3.6	Ryse	owanie tras rurociągów20	C
	3.7	Doła	ączanie obiektów do fragmentu instalacji zewnętrznej22	2
	3.8	Opi	s obiektów profili kanalizacyjnych24	4
	3.8	.1	Armatura	4
	3.8	.2	Budynek	7
	3.8	.3	Kolanko	3
	3.8	.4	Komora 40	C
	3.8	.5	Odwodnienie liniowe	Э
	3.8	.6	Osadnik	4
	3.8	.7	Przejście szczelne	3
	3.8	.8	Przepompownia	1
	3.8	.9	Redukcja	C

Wprowad	Izenie	
3.8.10	0 Studzienka betonowa	
3.8.11	1 Studzienka inspekcyjna tworzywowa	102
3.8.12	2 Studzienka osadnikowa tworzywowa	112
3.8.13	3 Trójnik	120
3.8.14	4 Wpust betonowy	125
3.8.15	5 Wpust osadnikowy tworzywowy	136
3.8.16	6 Wpust przepływowy tworzywowy	
3.8.17	7 Wpust rynnowy	155
3.8.18	3 Zaślepka	
3.8.19	9 Zbiornik	
3.8.20) Złączka	173
3.8.21	1 Złączka przejściowa	
3.9 W	/stawianie skrzyżowań i uzbrojenia	177
3.9.1	Rodzaje skrzyżowań i ich wybór	177
3.9.2	Wstawianie skrzyżowań i uzbrojenia na mapę	
3.10	Wstawiane punktów wysokościowych terenu	
3.11	Generowanie profili podłużnych	
3.12	Generowanie rysunków szczegółowych elementów obiektów	
3.13	Generowanie zestawień	190
3.14	Generowanie raportów obliczeniowych	
3.15	Generowanie raportów współrzędnych xy	193
3.16	Numeracja i opis obiektów	

Wprowadzenie

1 Wprowadzenie

Wprowadzenie

1.1 O programie

Program *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* służy do projektowania przyłączy kanalizacji sanitarnej, deszczowej i ogólnospławnej. Dzięki podłączeniu z bazą rurociągów, kształtek, armatury i obiektów kanalizacyjnych użytkownik może dobrać szczegółowo, dowolny obiekt z zachowaniem rzeczywistych parametrów. Wygodny i przejrzysty interfejs, a także graficzne wprowadzanie danych pozwala na znaczne przyspieszenie prac projektowych. Program pozwala na rysowanie dowolnych układów rozgałęzionych posiadających dowolna ilość źródeł i jeden koniec. Profile sieci w *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* tworzone są automatycznie na podstawie narysowanej geometrii sieci.

Istnieje możliwość eksportu danych do formatu RTF akceptowanego przez większość edytorów tekstu.

1.2 Cechy i możliwości programu

- Obliczenia hydrauliczne kanałów grawitacyjnych,
- Dobór średnic dla kanałów ciśnieniowych,
- Dobór urządzeń typu osadnik, studzienka, wpust, przepompownia,
- Rysowanie tras sieci wybranymi typoszeregami producenta,
- Podstawowe kształtki, armatura i uzbrojenie kanalizacyjne,
- Inteligentne okna dialogowe pozwalające na dobranie wszystkich parametrów obiektu
- Automatyczne generowanie profilów podłużnych wraz z podziałem na główną magistrale i profile pomocnicze
- Tworzenie rysunków szczegółowych dobranych studzienek, wpustów,
- Generowanie raportów obliczeniowych w formacie rtf (zgodnym z MS OFFICE)
- Generowanie zestawień elementów w formacie rtf (zgodnym z MS OFFICE)
- Generowanie współrzędnych x,y wybranej sieci w formacie rtf (zgodnym z MS OFFICE)

2 Instalowanie i uruchamianie programu

2.1 Wymagania sprzętowe

- komputer klasy Pentium 4 (zalecany Pentium Core2Duo),
- 2 GB pamięci operacyjnej (zalecane min 4 GB),
- około 1 GB wolnego miejsca na dysku na instalację,
- karta graficzna kompatybilna z DirectX 9.0,
- system Windows Vista 32/64-bit, Windows 7 32/64-bit lub Windows 8 32/64-bit,
- napęd DVD-ROM.

2.2 Instalowanie

Standardowo instalacja programu uruchamia się automatycznie po włożeniu płyty CD do napędu. W przypadku gdy wyłączony jest Autostart należy samodzielnie uruchomić instalację. Należy otworzyć zawartość napędu CD (Mój komputer/Stacja dysków CD), a następnie uruchomić plik Setup.exe. Po rozpoczęciu instalacji należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie.

2.3 Uruchamianie

Program można uruchomić klikając dwukrotnie na ikonę programu CAD znajdującą się na Pulpicie, a następnie wybierając jedną z ikon na toolbarze ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE.

2.4 Ekran programu

Wygląd okna programu przedstawiony jest na rysunku rys. 1

ArCADia-INTELLICAD 7 Profes	e = 0 - WWWTT22K, NEDOWERCHA LCENCA - NETESOT [GC]0, Symook]	
		10
DOCA BE		
Image: Second		- 2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Polecenie: isa_nop		
Polecenie:		
Gotowy	1901.5328,1121.9592,0 ASOPENGL SNAP GRID ORTHO FOLAR ESNAP LWT MODEL TAE	SLET.

Rys. 1. Ekran programu ArCADia

°	°	×		2
146	145	瘷	1	17

Rys. 2. Pasek główny programu

- 🜃 Rysowanie kanalizacji deszczowej
- 🚾 Rysowanie kanalizacji sanitarnej
- 🖾 Wstawianie punktów wysokościowych
- 🗴 Wstawianie kolizji i uzbrojeń
- Pomoc

Rys. 3. Pasek akcji obiektów

Rys. 4. Pasek akcji rurociągu

- If Generowanie rysunków szczegółowych
- Generowanie raportów obliczeniowych
- Generowanie zestawienia elementów
- 🔛 Generowanie profilu podłużnego
- Generowanie współrzędnych
- Młączanie/wyłączanie opisu
- Malarz czcionek i pisaków

P

Przejście do dialogu własności

2.5 Otwieranie projektu (CAD)

Można otworzyć dowolny z poniższych plików:

- Standardowy plik rysunku z rozszerzeniem .dwg.
- Można użyć dowolnego z przykładowych rysunków dołączanych z ArCADią.
- Format wymiany rysunku .dxf.
- Format do przesyłania w sieci .dwf.
- Szablony rysunków .dwt.

Aby szybko otworzyć ostatnio używany rysunek, wybierz Plik > <nazwa pliku>. Program zapamiętuje nazwy ostatnich czterech rysunków. Aby szybko otworzyć rysunek z okna dialogowego Otwórz rysunek, kliknij dwukrotnie nazwę rysunku.

Można otworzyć rysunek podczas przeglądania rysunków na komputerze przy pomocy np. Windows Explorera. Wystarczy po prostu kliknąć dwukrotnie plik w celu otwarcia go w ArCADii. Identyfikację żądanego rysunku ułatwia wyświetlanie miniatur rysunków podczas ich przeglądania.

Sposób otwarcia istniejącego rysunku

- 1. Użyj jednej z poniższych metod:
 - Wybierz Plik > Otwórz.
 - Na pasku narzędzi Standard, kliknij narzędzie Otwórz (2).
 - Napisz *otwórz*, a następnie naciśnij Enter.
- 2. W typie pliku wybierz typ pliku, który chcesz otworzyć.
- 3. Wybierz katalog zawierający dany rysunek.
- 4. Wykonaj jedno z poniższych:

- Wybierz rysunek, który chcesz otworzyć i kliknij Otwórz.
- Kliknij dwukrotnie rysunek, który chcesz otworzyć.

Jeśli rysunek wymaga hasła, podaj hasło, kliknij OK aby sprawdzić hasło i ponownie kliknij Otwórz.

2.6 Zapis projektu (CAD)

Rysunek można zapisać w dowolnej chwili.

Aby zapisać rysunek, użyj jednej z poniższych metod:

- Na pasku narzędzi Standard, kliknij Zapisz.
- Wybierz Plik > Zapisz.
- Napisz *zapisz*, a następnie naciśnij Enter.
- Napisz *qsave* a następnie naciśnij Enter.

Gdy zapisujesz dany rysunek po raz pierwszy, program wyświetla okno dialogowe Zapisz rysunek jako, które umożliwia wybór katalogu i napisanie nazwy rysunku. Przy pierwszym zapisaniu rysunku można użyć dowolnej nazwy. Aby ten sam rysunek zapisać później przy użyciu innej nazwy, wybierz Plik > Zapisz jako, a następnie napisz nową nazwę.

2.7 Autozapis i kopia bezpieczeństwa (CAD)

Aby uniknąć utraty danych w przypadku awarii zasilania lub innego błędu systemowego, należy często zapisywać swoje pliki rysunków. Program można skonfigurować do okresowego automatycznego zapisywania rysunków. Ustawienie *Autozapis* określa odstęp w minutach między automatycznymi zapisami. Program zeruje ten odstęp czasowy przy każdym zapisie pliku rysunku przez użytkownika.

Gdy funkcja *Autozapis* jest włączona, program tworzy kopie rysunku. Plik ten jest zapisywany katalogu podanym w Opcje > Ścieżki/Pliki > Plik tymczasowy, z rozszerzeniem określonym w polu Rozszerzenie pliku autozapisu rysunku (domyślnie, SV\$).

Sposób skonfigurowania ArCADii do automatycznego zapisywania rysunków

- 1. Wykonaj jedną z poniższych czynności:
 - Wybierz Narzędzia > Opcje.
 - Napisz *konfig*, a następnie naciśnij Enter.
- 2. Kliknij zakładkę Ogólne.
- 3. W obszarze *Autozapis* zaznacz pole wyboru w celu włączenia funkcji *Autozapis* i wybierz częstotliwość autozapisu.
- 4. Kliknij OK.

3 Praca z programem

3.1 Informacje podstawowe o programie

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na rysowanie przyłączy wielokrotnie rozgałęzionych. Trasę sieci rysujemy w skali metrowej (1 jednostka na ekranie ArCADii odpowiada 1 metrowi w projekcie). Tok postępowania przy projektowaniu trasy jest następujący:

- 1) Kierunek rysowania jest zgodny z przepływem ścieków tzn. od źródeł do elementów końcowych,
- 2) W jednym obiegu może być n-źródeł i tylko jeden koniec,
- 3) Użytkownik zaczyna od magistrali głównej (tzn. profilu o największym zagłębieniu),
- 4) Używa jednego z dwóch sposobów doboru średnic i spadków (ręcznego podając własne średnice i spadki lub obliczonego dobierając je z tabeli)
- 5) Użytkownik w źródle wybiera czy sieć jest grawitacyjna czy ciśnieniowa (tylko przepompownia pozwala na zamianę w węzłach połączeniowych sieci z grawitacyjnej na ciśnieniową),
- 6) Do wygenerowania profilu potrzebne jest jedno źródło i koniec,

3.2 Tabela funkcji dostępnych w ArCADia INSTALACJE KANALIZACYJNE ZEWNĘTRZNE

Poniższe opcje opisane są w pomocy modułu ArCADia-SIECI KANALIZACYJNE, ikona znajduje się na wstążce *Kanalizacja*.

**BIM* – opcje dostępne dla posiadaczy licencji ArCADia BIM, czyli po zakupie jednego z programów: ArCADia, ArCADia AC, ArCADia LT lub ArCADia PLUS.

Ikona	Орсја	Opis	*BIM
	Sieć deszczowa	Rysowanie kanalizacji deszczowej przez wskazanie punktu i wybór elementu.	X
	Sieć sanitarna	Rysowanie kanalizacji sanitarnej przez wskazanie punktu i wybór elementu.	X
厳	Wstaw kolizje	Wstawianie kolizji/uzbrojenia.	X
-	Punkty wysokościowe	Wstawia punkty wysokościowe terenu.	x
?	Ротос	Wyświetla zawartość pomocy do programu.	X

Tab. 1 Funkcje modułu ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE

3.3 Wybór szablonu rysunku

Szablony rysunku pozwalają na odpowiedni dobór skali linii, obszaru rysunku i wielu innych ustawień. Z uwagi na to, że program ten może pracować równocześnie z innymi nakładkami (*ArCADia-Arch.*), w których używana jest inna skala rysunkowa (cm) zaleca się stworzenie szablonu rysunku, z którego korzystamy używając programu *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE*). Następnie po jego zapisaniu w katalogu z szablonami (pliki.dwt) użytkownik musi ustawić szablon ręcznie korzystając z poniższego schematu.

Z "*MENU*" wybieramy zakładkę "*Narzędzia*" ⇒" *Opcje*" ⇒ okno " *Opcje*"

Ор	ocje			×
	Ogólne	Ścieżki/Pliki	Ekran Krzyż nitkowy Profile Wydruk Zaczepianie Sc	howek
	Ścież	iki użytkow	Położenie	•
	Ścież	ika ustawień	\\ARCATOWER\UserMyDocs\eprokop\Documents\INTERs	
	Auto	tworzenie k	C:\Users\eprokop\AppData\Local\Temp	
	Katal	og tymczaso	C:\Users\eprokop\AppData\Local\Temp	
	Szab	lony	C:\Users\eprokop\AppData\Roaming\INTERsoft\ArCADia-I	. =
	Słow	nik mik	C:\Users\enrokon\AnnData\Roaming\INTERsoft\ArCADia-I	•
	510%	T IIIX	c. tosets teptokop oppraata (hoanning that Entonit of CAbia-I	· •
	. ◄ 📃		•	
			Przeglądaj	
	Pliki s	systemowe	Plik	•
	Szab	lon	icad.dwt	
	Czcio	onka dodatk	simplex.shx	-
	₹ _		D:\Program Files (x86)\INTERsoft\ArCADia-INTELLICAD 7 Pr	ofessional+ Pl
			Przeglądaj	
	?		ОК	Anuluj

Rys. 5. Okno opcji programu ArCADia 10

Wybieramy zakładkę *"Ścieżki/Pliki" i* w polu *"Szablon"* poprzez przycisk Przeglądaj… wybieramy utworzony szablon-plik (np. **ARCADIA-KANALIZACJA.dwt)**.

3.4 Przygotowanie mapy rastrowej

Program graficzny (ArCADia), w którym osadzona jest *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* umożliwia wczytywanie zeskanowanych map projektowych i geodezyjnych. Obiekty te można wprowadzać do ArCADii jako pliki: TIFF, JPG, BMP, PNG, itp. Dołączanie obrazów rastrowych możemy wykonywać na dwa sposoby:

Z "MENU" wybieramy "Wstaw" => "Obraz" ⇒" Dołącz obraz rastrowy"

Następnie z okna *"Proszę wybrać plik obrazu"* wybieramy ścieżkę dostępu do skanowanej mapy (patrz rysunek 3.4.1) i klikamy na przycisk *"Otwórz"*.

A	Proszę wybrać plik obr	azu			x
<	🔾 🕞 🗢 📙 « Testy_T	EMAT 🕨 Raster 🕨	✓ 4 Prz	zeszukaj: Raster	٩
	Organizuj 🔻 Nowy fo	lder		:≡ ▼ 🔟	(?)
	Nazwa	Data	Тур	Rozmiar Tagi	
	퉬 ZgloszBart	2012-03-28 14:46	Folder plików		
i -	SZCZYNSKA.jpg	2012-02-16 09:18	Obraz JPEG	1 744 KB	
	SZCZYNSKA.tif	2011-10-12 07:50	Obraz TIFF	138 KB	
	<u>N</u> azw	a pliku:	▼ Wszy	ystkie obsługiwane pliki (<u>O</u> twórz Anulu	; ▼]

Rys. 6. Okno wyboru ścieżki do pliku obrazu

Wywołane zostanie okno "Dołącz obraz", w którym możemy szczegółowo wpisać współrzędne wstawienia mapy (odznaczony znacznik w polu *"Punkt wstawienia"*) lub określić skalę (odznaczony znacznik w polu *"Określ na ekranie"*).

Dołącz Obraz						
Plik Obrazu		Podgląd				
Obraz został						
D:\WORK\zzTESTy\Testy_TEMAT\	D:\WORK\zzTESTy\Testy_TEMAT\Raster\PSZCZYNSKA.tif Ścieżka obrazu zostanie					
Ścieżka obrazu zostanie						
D:\WORK\zzTESTy\Testy_TEMAT\	Raster\PSZCZYNSKA.tif 🔊 🕟					
Plik pozycjonowania		and the second se				
📃 Użyj pliku pozycjonowania						
		Szczegóły obrazu				
Obraz						
Nazwi PSZCZYNSKA		Obrót				
Punkt wstawienia	Size	🔲 Określ na ekranie				
📝 Określ na ekranie	📝 Określ na ekranie	Kạt: 0				
X: 0.0000	📝 Zachowaj proporcję	Ustawienia				
Y: 0.0000	X: 6304.0000	🔲 Użyj przezroczystości				
Z: 0.0000	Y: 4671.0000	📝 Pokaż granicę przycinania				
?		OK Anuluj				

Rys. 7. Okno: *Dołącz obraz*

Prostszą metodą jest wstawienie mapy z ustawieniami domyślnymi (wciśnięcie przycisku "OK.", *a* następnie dwukrotnie "ENTER"), wówczas mapa wstawi się w punktach x=0.0, y=0.0, z=0.0 i skalą 1.0. Następnie należy wycentrować widok poprzez wciśnięcie ikony *D*. Teraz przystępujemy do odpowiedniego wyskalowania mapy w tym celu musimy wiedzieć jaka jest odległość między krzyżami

geodezyjnymi (zazwyczaj jest to 50.0 lub 100.0). Wybieramy na wstawionej mapie dwa sąsiadujące

z sobą krzyże i przy pomocy paska narzędzi "Zapytanie" ikony "Odległość" me program poda nam rzeczywistą odległość miedzy punktami (wartość wyświetlana jest w wierszu poleceń). Następnie odległość między krzyżami (50.0, 100.0) dzielimy przez rzeczywistą odległość (wyświetloną przez program) wówczas dostaniemy skalę o jaką musimy zmienić wstawioną mapę. Zaznaczamy mapę i wybieramy z paska narzędzi "Modyfikuj" ikonę "Skala" następnie wybieramy punkt na mapie, wg którego odbędzie się skalowanie i wpisujemy obliczoną wartość skali (należy pamiętać aby wstawić "." zamiast ", "). Następnie możemy wypozycjonować mapę wg zawartych na niej danych w tym celu w miejscu krzyża z wypisanymi wartościami x,y wstawiamy punkt pasek narzędzi "Modyfikuj" ikonę "Przesuń" ikonę "Przesuń" w ustawiamy punkt bazowy w miejscu wstawienia punkty i wpisujemy wartości (przedstawione na mapie) x i y w wierszu poleceń wg schematu wartość x, wartość y (np. 5000,2500).

3.5 Opcje programu

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE opcje programu są włączane poprzez polecenia z menu:

ArCADia => Opcje => ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE, która otwiera okno:

Opcje						
Ogólne Mapa Bazy da	nych					
Dane adresowe						
Nazwa i adres firmy:	INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057					
Nazwa i adres obiektu budowlanego, nr. ewindecyjny działki:	Budynek "Orion" 90-057 Łódź, ul. Sienkiewicza 85/87					
Nazwa i adres inwestora:	INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057					
Projektant:	mgr inż. J. Kowalski					
Data:	16 ▼: 10 ▼: 2012					
Współpraca autorska:	mgr inż. J. Kowalczyk					
Data:	16 ▼: 10 ▼: 2012					
Sprawdzający:	mgr inż. M. Mikołajczyk					
Data:	16 ▼: 10 ▼: 2012					
	Dane strefy projektu					
Minimalne zagłębienie kar	nału Zmin: 1.8 v m					
Miarodajne natężenie des	zczu qn: [100] dm² s·ha					
Maksymalne natężenie de	stha					
	OK Anuluj					

Rys. 8. Okno Opcje, zakładka Ogólne

W zakładce tej użytkownik definiuje Dane adresowe i parametry obliczeniowe potrzebne do wyliczania zlewni i min głębokości zagłębienia.

Pole "Nazwa i adres firmy" – pole pozwalające na wpisanie danych firmy projektującej dane przyłącze, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Nazwa i adres obiektu budowlanego, nr ewidencji działki" – pole pozwalające na wpisanie danych adresowych projektowanego obiektu, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Nazwa i adres inwestora" – pole pozwalające na wpisanie danych adresowych inwestora, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Projektant" – pole pozwalające na wpisanie danych projektanta przyłącza, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Data" – pole pozwalające na wpisanie daty wykonania projektu , program generuje datę wg ustawień zegara systemowego, ale użytkownik może wpisać własne wartości. Informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Współpraca autorska" – pole pozwalające na wpisanie danych asystenta projektanta przyłącza, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Sprawdzający" – pole pozwalające na wpisanie danych sprawdzającego projekt przyłącza, informacja ta będzie wyświetlana w każdym wygenerowanym rysunku profilu i szczególe.

Pole "Minimalne zagłębienie kanału Zmin" – pole pozwalające na wybór lub wpisanie min zagłębienia kanału związanego ze strefami przemarzania wg normy **PN-81/B-03020** (dla strefy i = 1.2 m, strefy II = 0.8 m, strefy III = 0.8 m, strefy IV = 0.6 m). na tej podstawie w oknach doboru poszczególnych obiektów wstawiane będą wartości domyślne.

Pole "Miarodajne natężenie deszczu qn" – pole służące do wpisania miarodajnego natężenia deszczu dla metody stałych natężeń (dla całego projektu). Użytkownik powinien przyjmować wartości w zależności od strefy klimatycznej. Program domyślnie ma ustawioną wartość 100 dm3/ s • ha.

Pole "Maksymalne natężenie deszczu qmax" – pole służące do wpisania max natężenia deszczu dla metody granicznych natężeń. Użytkownik powinien przyjmować wartości w zakresie normy PN-92/B-01707 (150, 200, 300, 400 dm3/ s • ha) lub obliczyć z wzoru:

q max =
$$\frac{A}{t^{0,67}}$$
 dm3/ s • ha

gdzie:

A – współczynnik liczbowy charakteryzujący warunki hydrologiczne obszaru oraz przyjęty przez projektanta okres jednokrotnego przekraczania deszczu o danym natężeniu,

t – czas trwania deszczu miarodajnego, [min].

Opcje					
Ogólne Mapa Bazy da	anych				
	Rura				
Zakresy spadków wg:	Producentów 👻				
Max. odległość między ob	viektami: 50.000 m				
Wstaw opis przy rurze					
Materiał	Srednica 🛛 Kierunek spływu				
V Długość:	Spadek				
Grupa elementów:					
Grupa elementow.					
Producent:	Ekol-Unicon				
Średnica wewnętrzna:	1.200 • m				
Typ zwieńczenia:					
Płyta pokrywowa z otwo	rem 🔻				
Typ włazu:					
Właz kanałowy okragły	śr. 600 h=115mm z zamknieciem z ▼				
10 1					
Nasa obciązenia:	D400 ¥				
Wstaw opis przy obie	ktach domyślnych				
	OK Anuluj				

Rys. 9. Okno *Opcje*, zakładka *Mapa*

Zakładka ta służy do ustawienia domyślnych parametrów projektu. Podzielona jest na części:

- ustawienia rury użytkownik definiuje tutaj wg jakiego typu obliczane są min i max wartości spadków, podaje, definiuje max odległość między węzłami po której automatycznie zostanie wstawiona domyślny obiekt, wybiera co ma być wyświetlone w opisie rurociągu,
- 2) element domyślny użytkownik wybiera w nim domyślny element jaki będzie wstawiany na każdym załamaniu trasy.

Pole "Zakres spadków wg" – pole służące do wyboru jednego z trzech zakresów spadków (wg normy PN-EN, wg producentów, wg Profil)

Zakres spadków wg PN-EN				
Zakres średnic [m]	l min [%]	l max [%]		
<0,11	0,6	30		
0,16	0,4	30		
0,2	0,3	30		
0,2 >	0,2	30		

Zakres spadków	Zakres spadków wg PRODUCENTÓW			
Zakres średnic [m]	l min [%]	l max [%]		
<0,15	2	15		
0,15 - 0,2	1,5	10		
0,2	1	10		
0,25	0,8	8		
0,315	0,67	8		
0,4	0,25	8		
0,45	0,22	8		
0,5	0,2	8		
0,63	0,16	8		
> 0,8	0,125	8		

Zakres spac	dków wg PRC	DFIL
Zakres średnic [m]	l min [%]	l max [%]
0,2	0,45	20
0,3	0,25	20
0,4	0,17	20
0,5	0,1	20
0,6	0,08	20

Pole "Max. odległość miedzy punktami" – pole służące do wpisywanie max odległości pomiędzy obiektami po której zostanie wstawiony automatycznie obiekt domyślny.

Pole "Wstaw opis przy rurze" – pole to służy do włączania/wyłączania opisów rurociągów dla całego projektu.

- Pole "Materiał" pole to służy do włączania/wyłączania opisu materiału przy rurociągu.
- Pole "Długość" pole to służy do włączania/wyłączania opisu długości odcinka przy rurociągu.
- Pole "Średnica" pole to służy do włączania/wyłączania opisu średnicy przy rurociągu.
- Pole "Spadek" pole to służy do włączania/wyłączania opisu spadku przy rurociągu.

Pole "Kierunek spływu" – pole to służy do włączania/wyłączania strzałki kierunku spływu przy rurociągu.

Część obiekt kończący pozwala na wstawianie domyślnego obiektu na każdym załamaniu trasy (mamy do wyboru studzienki betonowe, zbiorniki, komory). Po wyborze jednego z typów obiektu pojawiają się pola z parametrami obiektu wg okien dialogowych z rozdziału 3.7

Pole "Wstaw opis przy obiektach domyślnych" – pole to służy do włączania/wyłączania opisów obiektów (opcja ta działa od następnego wstawionego obiektu).

3.6 Rysowanie tras rurociągów

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE powala na rysowanie tras sieci kanalizacyjnych w trzech wymiarach. Dzięki temu, cały proces rysowania odbywa się wg logiki programów CAD, w którym użytkownik graficznie wskazuje współrzędne x, y, a ręcznie wpisuje rzędną terenu i rzędną dna kanału wychodzącego z elementu źródłowego (początkowych).

Program pozwala na projektowanie kanalizacji zewnętrznej deszczowej i sanitarnej, w jednym z dwóch systemów (grawitacyjna, ciśnieniowa). W elementach źródłowych następuje wybór metody doboru średnicy i spadku, a także systemu sieci (tylko element przepompownia pozwala zamienić systemy grawitacyjny na ciśnieniowy).

Ręczna metoda doboru średnicy i spadku pozwala użytkownikowi na wybór średnicy wg zadanego producenta i wpisanie dowolnego spadku kanału. W metodzie obliczeniowej program na podstawie podanego (lub wyliczonego) przepływu i wybranych średnic (wg producentów) oblicza prędkość i napełnienie w kanale dla wszystkich spadków (w opcjach użytkownik wybiera zakresy spadków).

Program pozwala na rysowanie dowolnie rozgałęzionej sieci, w której musi być przynamniej jeden element źródłowy i tylko jeden końcowy. Rysowanie powinno odbywać się zgodnie z przepływem ścieków (tzn. od elementu źródłowego do końcowego). Użytkownik powinien zaczynać od magistrali o największym zagłębieniu (głównej), a następnie dołączać pozostałe odnogi.

W celu rozpoczęcie rysowania użytkownik musi z paska głównego programu wybrać jedną z dwóch ikon ¹/₂ (rysowanie kanalizacji deszczowej), ¹/₂ (rysowanie kanalizacji sanitarnej). Następnie należy podać punkt wstawienia, obrót dla pierwszego elementu źródłowego i z wyświetlonego okna obiektów (patrz rozdział 3.7) podać dane wejściowe (rzędną terenu, rzędną dna kanału wylotowego, wymiary obiektu). Wywołujemy w ten sposób okno rysowania sieci (Rys. 10):

Rys. 10. Okno wprowadzania rurociągów

W oknie tym użytkownik może zdefiniować rzędne terenu (projektowanego i istniejącego) obiektu wstawianego i poprzedzającego go, a także podejrzeć rzędna dna kanału. Umieszczone po prawej stronie przyciski pozwalają na cofnięcie się do okna poprzedniego obiektu lub zdefiniowanie następnego elementu.

Pole "Rzędna terenu istniejącego początkowa" – pole służące do wpisania wartości rzędnej terenu istniejącego obiektu poprzedniego, program automatycznie wstawia wartość jaka została podana w polu Rzędna terenu projektowana początkowa.

Pole "Rzędna terenu istniejącego końcowa" – pole służące do wpisania wartości rzędnej terenu istniejącego obiektu który zostanie wstawiony na rysunek. Program automatycznie wstawia wartość jaka została podana w polu Rzędna terenu projektowana końcowa.

Pole "Rzędna terenu projektowana początkowa" – pole służące do podglądu wartości rzędnej terenu projektowanego obiektu poprzedniego (wartość odpowiadająca Rz.t. W oknie dialogowym obiektu poprzedniego).

Pole "Rzędna terenu projektowana końcowa" – pole służące do wpisania wartości rzędnej terenu projektowanego obiektu który zostanie wstawiony na rysunek. Program domyślnie wstawia wartość z poprzedniego elementu, ale użytkownik może ja dowolnie modyfikować.

Pole "Rzędna rury początkowa" – pole służące do podglądu wartości rzędnej dna kanału wychodzącego z obiektu poprzedniego (wartość ta odpowiada Rz.d.k.wyl z okna dialogowego obiektu poprzedniego).

Pole "Rzędna rury końcowa" – pole służące do podglądu wartości rzędnej dna kanału wchodzącego do następnego obiektu (wartość ta odpowiada Rz.d.k.wl w oknie obiektu, który wstawimy).

Przycisk "Poprzedni" – służy do podglądu okna dialogowego poprzedniego elementu.

Przycisk "Następny" – służy do podglądu okna dialogowego następnego elementu.

Przycisk "Zakończ polecenie" – służy do zamykania okna.

Y.

Zakończenie rysowania odbywa się albo poprzez wybór i wstawienie na rysunek z oknie dialogowym obiektu końcowego, albo poprzez zakończenie funkcji rysowania prawym klawiszem myszki lub zamknięcie okna rysowania sieci (wtedy program automatycznie zamieni obiekt na węzeł końcowy).

Rys. 11. Rysowanie rurociągów w programie

Rys. 12. Rysowanie w programie

3.7 Dołączanie obiektów do fragmentu instalacji zewnętrznej

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE powala na rysowanie dowolnie rozgałęzionej sieci kanalizacyjnej. Proces dołączania nowych elementów do projektu polega na włączeniu funkcji rysowania (w tym celu należy w podłączanym obiekcie włączyć węzeł połączeniowy, a następnie wybrać w zależności od sieci ikonę ¹/₂ lub¹/₂ i kliknąć w obszar obiektu. N a ekranie zostanie wyświetlona linia rysowania rurociągu, której koniec musimy nakierować na obiekt do którego chcemy się podłączyć). Wywołane zostanie okno wyboru metody podłączenia, które uzależnione jest od typu obiektu.

Sposób podłączenia	
Metoda podłączenia:]
Dowolna 🔻	
Metoda modyfikacji układu:	
Stałych spadków 👻	
Stałych spadków	-

Rys. 13. Okno wyboru typu podłączenia

W programie użytkownik ma do wyboru dwie metody podłączeń do istniejącej trasy:

- Metoda dowolna pozwala na dołączanie się do wszystkich elementów, które są węzłami połączeniowymi lub końcowymi. Polega na tym, że dołączany odcinek zachowuje dobrane parametry spadku i średnicy, zmianie ulegają natomiast parametry wysokościowe dołączanego obiektu tzn. Rz.d.k.wyl i Rz.d.obiektu. Jedynym ograniczeniem dla tego typu podłączenia jest zakres rzędnych, w który można się włączyć do wybranego obiektu, zawiera się między Rz.t.- zmin (górnej części kanału) i Rz.d.obiektu + H kinety (dla dolnej części kanału).
- 2) Metoda do kinety pozwala na dołączenie się do kinety wybranego obiektu (studzienki inspekcyjne tworzywowe, wpusty przepływowe tworzywowe, trójniki, kolanka, armatura, złączki). W metodzie tej użytkownik może podłączyć się jedną z dwóch metod pomocniczych:

 - <u>albo z zachowaniem wysokości</u> – wówczas Rz.d.k.wyl (z obiektu, który chcemy połączyć) i Rz.d.k.wl. (obiektu do którego chcemy się podłączyć) pozostaje nie zmieniona. Program automatycznie obliczy i sprawdzi (zakres imin, imax) spadek.

Rys. 14. Graficzne przedstawienie metody stałych wysokości

 - <u>albo z zachowaniem spadków</u> – jest to metoda, która pozostawia spadek dobrany w oknie obiektu dołączanego, zmianie ulega natomiast Rz.d.k.wyl i Rz.d.obiektu (obiektu dołączanego).

Rz.d.k.wl.	Wartos <u>c wyliczona w oknie obiektu który</u> chceny podłączyc Vartosc wyliczon <u>a po podł</u> ączeniu <u>obiektu</u>	Rz.al.k.wyl.
	Rz.d.k.wyl= Rz.d.k.wl + 100	

Rys. 15. Graficzne przedstawienie metody stałych spadków

W przypadku kiedy projekt wykonywany jest metodą obliczeniową doboru średnicy i spadku (z zadanym przepływem Q) w oknie podłączenia otrzymamy dodatkowy wybór modyfikacji układu, dla którego zmienił się przepływ.

Użytkownik może wybrać jeden z dwóch sposobów modyfikacji układu:

- z zachowaniem spadków, wówczas narysowana cześć trasy (w której zmienił się przepływ Q) zachowa obliczone wcześniej spadki, natomiast ponownie dobrane zostaną średnice (metoda ta jest nie dostępna gdy w układzie znajdują się obiekty studzienki inspekcyjne tworzywowe, wpusty przepływowe tworzywowe, trójniki, kolanka, armatura, złączki).

- z zachowaniem średnic, wówczas narysowana cześć trasy (w której zmienił się przepływ Q) zachowa obliczone wcześniej średnice, natomiast ponownie dobrane zostaną spadki.

3.8 Opis obiektów profili kanalizacyjnych

3.8.1 Armatura

W programie *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* armatura podzielona jest na trzy grupy:

Syfony - to elementy, w których znajduje się zamkniecie wodne, uniemożliwiające przedostawanie się gazów i przykrych zapachów z sieci kanalizacyjnej.

Zawory - to elementy służące do zabezpieczenia przyłącza przed przepływami zwrotnymi. W skład ich wchodzą zawory zwrotne i zasuwy przeciw burzowe.

Czyszczaki (rewizje)- to elementy służące do punktowego udrażniania przyłącza.

Armatura jest obiektem, który można wstawić na rysunek tylko jako węzeł połączeniowy, do którego może być podłączony jedne rurociąg wlotowy i jeden wylotowy. Dobór elementu przypisany jest do wybranego typoszeregu rurociągu wg katalogów producenta (dla niektórych typoszeregów rurociągu może nie występować ten element).

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Własności elementu: O	biekt łączący *	×
	Zarządzanie elementem	
ld elementu 0		
	Parametry	
	Wygląd	
Pisaki 🔻 Czcio	nki 🔻 Powierzchnie 💌	
Grupa elementów:	Amatura 🔹	
Producent:	Nomowe	
	Parametry	_
Symbol: Z -		
Typ sieci: Połączeniowy		
Kanalizacja grav	vitacyjna 🔻	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Wymiary		
Typoszereg kształtek:		
Kształtki kamionkowe kiel	ichowe	-
Typ kształtki:		
Czyszczak kamionkowy		-
Długość L:	m	
Typ objektu:	J.390 m	
Czys	szczak 🔻	
Dobrony elements	zozak kamioskowa	
Nr. katalogowy:		ka
- Allandy Wy.		Ng I
	Zapisz w szablonie	luj
		<u> </u>

Rys. 16. Okno dialogowe elementu łączącego 'Armatura'.

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.1.1 Zakładka wymiary (Rys. 16)

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ armatury" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica D:" – pole definiujące średnicę wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik może wstawić własną wartość wg której zostanie odrysowany symbol graficzny tego obiektu w projekcie.

Pole "Typ obiektu" – pole służące do sprawdzenia wybranego typu obiektu (syfon, zawór, czyszczak).

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.2 Budynek

W programie *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* budynek można wstawić na początku i na końcu przyłącza. Obiekt ten pozwala na podłączenie jednego wlotu (węzeł źródłowy) lub jednego wylotu (węzeł połączeniowy). Do budynku można podłączyć wszystkie typy rurociągów grawitacyjnych i ciśnieniowych. Okno dialogowe obiektu pozwala na dobór natężenia przepływu na podstawie sumy jednostkowych odpływów.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Nazwa" – pole pozwalające na nadanie nazwy budynkowi.

Pole "Typ budynku" – pole pozwalające wybrać odpowiedni typ budynku, który określi odpowiedni współczynnik częstości K wg PN-EN 12056-2:2002:

Charakter budynku	Wsp częstości K
Budynki mieszkalne	0,5
Pensjonaty	0,5
Biurowy	0,5
Szpitale	0,7
Szkoły	0,7
Restauracje	0,7
Hotele	0,7
Ustępy publiczne	1,0
Natryski zbiorcze	1,0
Laboratoria	1,2

Pole "System" – pole pozwalające wybrać odpowiedni system kanalizacyjny w budynku (wpływa na wartość DU) uzależniony od projektowanego napełnienia podejść kanalizacyjnych lub rodzaju odprowadzanych ścieków wg PN-EN 12056:

SYSTEM i - System pojedynczego pionu kanalizacyjnego z podejściami częściowo wypełnionymi. Urządzenia sanitarne są podłączone do podejść częściowo wypełnionych. Podejścia te są projektowane na częściowe napełnienie (50%) i są podłączone do pojedynczego pionów kanalizacyjnych.

SYSTEM II - System pojedynczego pionu kanalizacyjnego z podejściami częściowo wypełnionymi o mniejszej średnicy. Urządzenia sanitarne są podłączone do podejść o mniejszej średnicy. Podejścia te są projektowane przy stopniu napełnienie (70%) i są podłączone do pojedynczego pionu.

SYSTEM III - System pojedynczego pionu kanalizacyjnego z podejściami całkowicie wypełnionymi. Urządzenia sanitarne są podłączone do podejść całkowicie wypełnionych. Podejścia te są projektowane przy stopniu napełnienie (100%) i każde podejście jest podłączone oddzielnie do pionu kanalizacyjnego.

SYSTEM IV - System oddzielnych pionów kanalizacyjnych. Każdy system kanalizacyjny typu I,II i III może być również podzielony na pion kanalizacyjny odprowadzający ścieki czarne z ustępów spłukiwanych i pisuarów oraz na pion kanalizacyjny odprowadzający ścieki szare z pozostałych urządzeń sanitarnych.

Własności elementu: Obiekt łącz	ący *			×
	Zarządzanie e	lementem		Ĵ
ld elementu 0				
	Parame	try		
	Wygl	ąd ———		
Pisaki 🔻 Czcionki 🔻	Powierzchnie	•		
	Eleme	ent		
Grupa elementów: Budyne	*k			•
Producent: Brak pr	oducenta			
Sumbol: B . 1	raramet	ly -		IDr.d.n
Wezeł: Źródło w		The second second		TR2.0.p.
		EL BAR	N FE	
Budynek M1		Martin Street	THE T	
Typ budynku:		Rz.d.t.	State - E	
Budynek mieszkalny	•	N 100 100 1	-Th	
System: System I	•	1		
		Rz.d.Ł.	Rz.d.k.	CONTRACTOR OF
Obliczenia przepływu Dobór średnicy	v Wymiary	and the second second		State of State of States
Urządzenie:	Sztuk:	DUjed.[dm³/s]	DU[dm ³ /s]	Dodaj
Umywalka	0	0.5	0.0	Rz.d.p. P Rz.d.p. DN DN DN DN DN DN DN DN DN DN
Wanna	0	0.8	0.0	
5 Du- 0.00 dm ³		0-K*	(Σ Du)- 0.0	o dm ³
2.00- 0.00 8		G-N	0.0	U <u>s</u>
			ОК	Anuluj

Rys. 17. Okno dialogowe elementu 'Budynek'

3.8.2.1 Zakładka obliczenia przepływu

Obliczenia przepływu Dobór średnicy V	Vymiary			
Urządzenie:	Sztuk:	DUjed.[dm ³ /s]	DU[dm³/s]	Dodaj
Wpust podłogowy DN50	2	0.8	1.6	Usuń
Pralka automatyczna do 12kg	3	1.5	4.5	
Σ Du= 6.10 $\frac{dm^3}{s}$		Q=K*	(Σ Du)= 1.23	dm ^a s
		(ок	Anuluj

Rys. 18. Obliczenia natężenia przepływu w budynku

Dodaj Usuń Przycisk "Dodaj" służy do dodawania wierszy do tabeli obliczeniowej.

Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Tabela obliczeń natężenie przepływów w budynku" – w tabeli tej zawarte są obliczenia natężenie przepływów ścieków wg normy PN-EN 12056-2:2002 i wzoru:

$$Q = K \bullet \sqrt{\Sigma D U} [dm^3/s]$$

gdzie:

Q- natężenie przepływu ścieków, [dm³/s]

K- współczynnik częstości zależny od przeznaczenia budynku, [-],

DU- odpływ jednostkowy z urządzeń sanitarnych, [dm³/s].

Tabela podzielona jest na cztery kolumny:

Kolumna "Urządzenie" użytkownik wybiera w polu tym interesujący go typ urządzenia, wg poniższej tabeli,

Kolumna "Sztuk" użytkownik podaje ilość danego obiektu w sztukach,

Kolumna "DUjed.[dm³/s]" pole określające wartość odpływu jednostkowego wypełniające się same na podstawie wybranego typu systemu i urządzenia wg poniższej tabeli,

Kolumna "DU [dm³/s]" pole wyliczające całkowite DU wg wzoru:

DU = Ilość • DUjed.

Tabela Odpływów jednostkowych DU wg PN-EN 12056

Urządzenie	SYSTEM I	SYSTEM II	SYSTEM III	SYSTEM IV
UIząuzenie	DU	DU	DU	DU

	[dm³/s]	[dm³/s]	[dm³/s]	[dm³/s]
Umywalka	0,5	0,3	0,3	0,3
Bidet	0,5	0,3	0,3	0,3
Natrysk bez korka	0,6	0,4	0,4	0,4
Natrysk z korkiem	0,8	0,5	1,3	0,5
Pojedynczy pisuar ze zbiornikiem	0,8	0,5	0,4	0,5
Pisuar z zaworem spłukującym	0,5	0,3	-	0,3
Pisuar płytowy	0,2	0,2	0,2	0,2
Wanna	0,8	0,6	1,3	0,5
Zlew kuchenny	0,8	0,6	1,3	0,5
Zmywarka	0,8	0,6	0,2	0,5
Pralka automatyczna do 5 kg	0,8	0,6	0,6	0,5
Pralka automatyczna do 12 kg	1,5	1,2	1,2	1
Ustęp spłukiwany ze zbiornikiem 4 l	-	1,8	-	-
Ustęp spłukiwany ze zbiornikiem 6 l	2	1,8	1,2	2
Ustęp spłukiwany ze zbiornikiem 7,5 l	2	1,8	1,4	2
Ustęp spłukiwany ze zbiornikiem 9 l	2,5	2	1,6	2,5
Wpust podłogowy DN 50	0,8	0,9	-	0,6
Wpust podłogowy DN 70	1,5	0,9	-	1
Wpust podłogowy DN 100	2	1,2	-	1,3

Pole "Σ*DU*" – pole służące do podglądu całkowitej sumy DU w budynku zliczanej z kolumny czwartej.

Pole $_{n}Q = K * \sqrt{\Sigma DU''}$ – pole służące do podglądu wyliczonej wartości natężenie przepływu ścieków w [dm³/s]. Wartość ta przekazywana jest do następnej zakładki "Dobór średnicy" i na jej podstawie dobierana jest średnica i spadek.

3.8.2.2 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 x Q}{\pi x V max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x DN^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz Rys. 19: "Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz Rys. 20 "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Obliczenia przepł	ywu Dobór średnicy Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🛛 🔻
Typoszereg rur:	KACZMAREK rury ciśnieniowe PE HD 100 klasy SDR17 🔹
Dobierz średni	cę wg przepływu:
📃 edycja przep	lywu
Q =	1.23 dm ³
Vmax =	5.0 m
	Dobrane parametry
Spadek:	2.0 %
Prędkość V =	1.5 <u>m</u>
Średnica DN =	0.032 m
<u></u>	
	OK Anuluj

Rys. 19. Wybór metody analitycznej dla kanalizacji ciśnieniowej

✓ Pole "edycja przepływu" – pole to służy do wyboru sposobu wpisywania przepływu do obliczeń. Jeśli pole jest odznaczone wówczas wartość przekazywana jest z zakładki Obliczenia przepływu (na podstawie wyliczonych wartości z tabeli "obliczeń natężenie przepływów w budynku"). Zaznaczenie pola powoduje włączenie możliwości edycji co pozwoli użytkownikowi na wpisanie dowolnej wartości nie połączonej z obliczeniami " natężeń przepływów w budynku".

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia (pole uzależnione od wyboru w polu **☑ "edycja przepływu"**)

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Obliczenia przepł	Wu Dobór średnicy Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔻
Typoszereg rur:	KACZMAREK rury ciśnieniowe PE HD 100 klasy SDR17 🔹
Dobierz średni	zę wg przepływu:
Średnica wylotu:	0.032 v m
Spadek:	2.00 %
	OK Anuluj

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.2.3 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3.7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

posz	ereg rur:	Rury kam	iionkowe k	ielichowe				
Dob	oierz średnice	ę wg prz	epływu:					
р.	Średnic	i[%]	V[m/s]	Napełnienie[%]		edycja przepł	ywu	
1	0.400	15.0	1.3	2.6		Q =	1.23	dm ³
2	0.400	14.0	1.3	2.7		Dobr	ane parame	try —
3	0.400	4.0	0.8	3.4		Spadek:	20	%
1	0.400	7.0	1.0	3.0		D II (())	0.0	m
5	0.400	6.0	0.9	3.1		Prędkość V =	0.8	s
6	0.400	13.0	1.2	2.7		Średnica DN =	0.150	m
7	0.400	3.0	0.7	3.7				
3	0.400	12.0	1.2	2.7				
9	0.400	11.0	1.2	2.8				
10	0.400	8.0	1.0	2.9	-			

Rys. 21. Wybór metody analitycznej dla kanalizacji grawitacyjnej

✓ Pole "edycja przepływu" – pole to służy do wyboru sposobu wpisywania przepływu do obliczeń. Jeśli pole jest odznaczone wówczas wartość przekazywana jest z zakładki "Obliczenia przepływu" (na podstawie wyliczonych wartości z tabeli "obliczeń natężenie przepływów w budynku"). Zaznaczenie pola powoduje włączenie możliwości edycji co pozwoli użytkownikowi na wpisanie dowolnej wartości nie połączonej z obliczeniami " natężeń przepływów w budynku".

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia (pole uzależnione od wyboru w polu **☑ "edycja przepływu"**)

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Obliczenia przepływ	/u Dobór średnicy Wymiary
Typ sieci:	analizacja ciśnieniowa 🔻
Typoszereg rur:	AVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średnicę	wg przepływu:
Średnica wylotu:	0.04 v m
Spadek:	1.00 %
	OK Anuluj

Rys. 22. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.2.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.
Obliczenia przepływu Dobór śr	ednicy Wymia	iry
		y wysokościowe
Rzędna terenu projektowanego:	100.00	m n.p.m.
Rzędna terenu istniejącego:	100.00	m n.p.m.
Rzędna podłogi:	100.50	m n.p.m.
Rz. dolna ławy funadament.:	98.50	m n.p.m.
Rzędna dna kanału:	98.00	m n.p.m.
· · · · · · · · · · · · · · · · · · ·		Wymiary
Gr. ścianki S:	0.500 m	
Szr. ławy W:	1.950 m	
Wys. ławy H:	0.950 m	
		OK Anuluj

Rys. 23. Wymiary elementu 'Budynek'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Jeśli jest to element końcowy to program automatycznie wstawi wartość z poprzedniego obiektu. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna podłogi" – pole służące do ręcznego wpisania rzędnej podłogi budynku. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rz. dolna ławy fundamentowej" – pole służące do ręcznego wpisania rzędnej ławy fundamentowej budynku. Program ma ustawioną domyślną wartość równą Rz.t. – 1,5 m. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna dna kanału" – pole służące do ręcznego wpisania rzędnej dna kanału wylotowego z budynku (dla węzła źródłowego). W przypadku węzła końcowego pole to jest tylko do podglądu, a wartość w nim odpowiada rzędnej dna kanału wlotowego do obiektu. W przypadku węzła źródłowego zmiana wartości rzędnej terenu powoduje automatyczne wygenerowanie rzędnej dna kanału z wzoru Rz.d.kanału = Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Grubość ścianki" – pole służące do ręcznego wpisania grubości ściany budynku. Informacja ta jest potrzebna do wygenerowania profilu sieci. Wartości podawane w tym polu powinny być podawane w metrach.

Pole "Szr. ławy W" – pole służące do ręcznego wpisania szerokości ławy fundamentowej budynku. Informacja ta jest potrzebna do wygenerowania profilu sieci. Wartości podawane w tym polu powinny być podawane w metrach.

Pole "Wys. ławy H" – pole służące do ręcznego wpisania wysokości ławy fundamentowej budynku. Informacja ta jest potrzebna do wygenerowania profilu sieci. Wartości podawane w tym polu powinny być podawane w metrach.

3.8.3 Kolanko

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt kolanko służy do zmiany kierunku sieci. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy kolanek. Wg zasady, że każdy producent ma swoje typoszeregi kształtek i rurociągów. Kolanko może być tylko węzłem połączeniowym co oznacza, że ma tylko jeden wlot i wylot.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Własności elementu	u: Obiekt łączący *	×
	Zarządzanie elementem	
ld elementu	0	
	Parametry	
	Wygląd	
Pisaki 🔻	Czcionki 🔻 Powierzchnie 👻	
	Element	
Grupa elementów:	Kolanko 💌	
Producent:	KACZMAREK 🗸	
	Parametry	_
Symbol: Ko -		
vvęzeł: Połączenio		
Typ sieci: Kanalizacja	grawitacyjna	
Wymiany		
Typoszereg kształtek:		
Kształtki kanalizacvin	e zew. PVC-U klasv S SN8	-
Typ kolanka:		
Kolanko 15		•
Średnica DN =	0.2 v m	
16.1		
Kąta =	15.0 °	
Długość L1 =	0.015 m	
Długość L2 =	0.024 m	
Debrony element:	Kelopka 15 PVC II	
Nr. katalogowa:	022521226 Capp: 22.27 zk Mass. 0	ka
Natalogowy.	US2321320 USHa. 22.37 21 MdSd. U	ng l
	Zapisz w szablonie V OK Anu	luj

Rys. 24. Okno dialogowe elementu 'Kolanko'

3.8.3.1 Zakładka wymiary (Rys. 24)

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ kolanka" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica DN:" – pole definiujące średnicę wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Kąt a:" – pole służące do podglądu dobranego kąta kolanka, który jest wyświetlany w stopniach.

Pole "Długość L1" – pole wstawiające domyślnie wartość długości pierwszego ramienia obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik może wstawić własną wartość wg

której zostanie odrysowany symbol graficzny tego obiektu w projekcie. Wpisywana wartość podawana jest w metrach.

Pole "Długość L2" – pole wstawiające domyślnie wartość długości drugiego ramienia obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik może wstawić własną wartość wg której zostanie odrysowany symbol graficzny tego obiektu w projekcie. Wpisywana wartość podawana jest w metrach.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.4 Komora

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt komora podobnie jak studzienka używany jest w przypadku zmiany kierunku, średnicy sieci, a także w wielu innych przypadkach. Do tego obiektu możemy dołączyć wszystkie typoszeregi rurociągów i średnic. Komora może być węzłem źródłowym, połączeniowym

i końcowym co oznacza, że możemy podłączyć n wlotów i jeden wylot.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Własno	ści elem	entu: Ob	iekt łąc	zący *		x
				Zarządzanie eleme	ientem	
ld ele	ementu	0				
			_	Parametry		
Pis	aki 🔻	Czcior	iki 🔻	Powierzchnie 🔻		
Grupa e	lementów:		Komor	а		
Produce	ent:		Brak p	roducenta		
				Parametry		
Symbol:	К		2		Rz.d.wł. IRz.d.t.	
Węzeł:	Źródło		•	a second	The state of the s	
	200.0					N
Średnica	a. 0.600		▼ m	H	DN S.	
Kinen:	A15		-	and the	Rz.d.k.wl. IRz.d.w.	
Nasa.	4		- e7		HP	
liosc:	4		- J 521.			
Dobór	średnicy w	ylotowej	Wymiary		Sector and the sector of the	
Typ sie	eci:	Kaaaliaaa				
Typos	zerea nur:	Kanalizac	ja grawitai			
Typos.		KACZMAI	KEK rury li	te PVC-U klasy 5 SN	N8 •	
Dol	bierz średni	icę wg prze	pływu:		0 - 10.00 dm ³	
Lp.	Srednic	. i[%]	V[m/s]	Napełnienie[%]	Dobrane parametry	
1	0.110	12.0	2.8	40.4	Spadek: 20 %	
2	0.110	7.0	2.3	47.0		
4	0.110	60	2.7	49.2	Prędkosc V = 1.4	
5	0 110	10.0	26	42.5	Średnica DN = 0.160 m	
6	0 110	9.0	2.5	43.7		
7	0 110	15.0	3.0	37.9		
8	0.110	8.0	2.4	45.2		
9	0.110	14.0	2.9	38.6		
10	0.110	13.0	2.9	39.5		
11	0.160	7.0	2.2	27.5		
12	0.160	1.0	1.1	46.6	-	
				Zapisz w szablonie	e V OK Anulu	i i

Rys. 25. Okno dialogowe elementu 'Komora'

Pole "Średnica" – pole służące do wyboru z listy średnicy włazów, użytkownik ma do wyboru trzy typy 0.6 m, 0.8 m, 1.0 m.

Pole "Klasa" – pole służące do wyboru z listy klasy obciążenia włazów, użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

Pole "ilość" – pole służące do wyboru ilości włazów od 1 do 4.

3.8.4.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie

wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 x Q}{\pi x V max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz Rys. 26 "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	otowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔹 🔻
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średni Q =	ę wg przepływu: 10.00 dm ²
Vmax =	5.0 m/s
Spadek:	Dobrane parametry 2.0 %
Prędkość V =	5.1 <u>m</u> s
Średnica DN =	0.050 m
	Zapisz w szablonie

Rys. 26. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Dobór średnicy wylotowej Wymiary
Typ sieci: Kanalizacja ciśnieniowa 🔻
Typoszereg rur: WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średnicę wg przepływu:
Średnica wylotu: 0.05 🗸 m
Spadek: 2.00 %
Zapisz w szablonie V OK Anuluj

Rys. 27. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.4.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik Manninga wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz Rys. 29 "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

yposz	ereg rur:	REHAU	cja grawitac rury struktu	ralna z rdzeniem spier	nionym	RAU-PVC AWAD	UKT SKR	typ 🔻
/ Dol	pierz średnic	ę wg prz	epływu:					3 سام 1
Lp.	Średnic	i[%]	V[m/s]	Napełnienie[%]	-	Q =	10.00	s
1	0.160	3.0	1.6	34.4		Dobran	ne parameti	у
2	0.160	4.5	1.9	31.0		Spadek:	2.0	%
3	0.160	0.8	1.0	49.7		Predkość V =	1.4	m
4	0.160	15.0	2.9	22.6		Čestere DN	0.100	S
5	0.160	5.0	2.0	30.1		Srednica DIN =	0.160	m
6	0.160	12.0	2.7	24.0				
7	0.160	14.0	2.8	23.1				
8	0.160	6.0	2.1	28.7				
9	0.160	13.0	2.7	23.5				
10	0.160	11.0	2.6	24.6				
11	0.160	0.9	1.0	48.0				
12	0.160	1.0	1.1	46.6	-			
				1				

Rys. 28. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "V[m/s]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór średnicy v	vylotowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔹
Typoszereg rur:	KACZMAREK rury ciśnieniowe PE HD 100 klasy SDR17 🔹
Dobierz średn	icę wg przepływu:
Średnica wylotu	0.032 - m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 29. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.4.3 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór średnicy w	vylotowej	Wymiary				
Para	ametry wys	okościowe ———			Wymiary	
Rzędna terenu pr	ojektowani	ego:				
Rz.t.p. =	100.00	m n.p.m.	W =	3.20	m	
Rzędna terenu ist	niejącego:					
Rz. t. i. =	100.00	m n.p.m.	A =	2.90	m	
Rzędna góma:						
Rz. g. =	99.85	m n.p.m.	S =	0.12	m	
Rzędna dna kana	ału wylotov	vego:				
Rz. d. k. wyl. =	99.00	m n.p.m.	Hp =	0.30	m	
Rzędna dna:						
Rz. d. =	98.95	m n.p.m.	G =	0.13	m	
Minimalna wysoko	ość kanału	wylotowego od dna:				
Hmin =	0.05	m	Hwł =	0.15	m	
		Zapiez w	ezablonia		OK Apului	٦
						J

Rys. 30. Wymiary dla węzła: 'Źródłowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy komory, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna" – pole służące do podglądu wartości dna komory wyliczonej z wzoru Rz.d.k.wyl – Hmin.

Pole "Minimalna wysokość kanału wylotowego od dna" – pole służące do wpisywania minimalnej wartości Hmin o jaką należy opuścić dno komory względem kanału wylotowego.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów komory Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Dobor areanicy wylotowej	Trymony .			
Parametry wys	sokościowe ———			Wymiary
Rzędna terenu projektowar	nego:			
Rz. t. p. = 100.00	m n.p.m.	W =	3.20	m
Rzędna terenu istniejącego	:			
Rz. t. i. = 100.00	m n.p.m.	A =	2.90	m
Rzędna góma:				
Rz.g. = 99.85	m n.p.m.	S =	0.12	m
Rzędna dna kanału włotow	/ego:			
Rz. d. k. wl. = 97.72	m n.p.m.	Hp =	0.30	m
Rzędna dna kanału wyloto	wego:			
Rz. d. k. wyl. = 97.72	m n.p.m.	G =	0.13	m
Rzędna dna:				
Rz. d. = 97.67	m n.p.m.	Hwł =	0.15	m
Minimalna wysokość kanał	u wylotowego od dna:			
Hmin = 0.05	m			
Zapisz w szablonie 💌 OK Anuluj				

Rys. 31. Wymiary dla węzła: 'Połączeniowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy komory, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym ustawiony jest warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzoru Rz.d.k.wyl = Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna" – pole służące do podglądu wartości dna komory wyliczonej z wzoru Rz.d.k.wyl – Hmin.

Pole "Minimalna wysokość kanału wylotowego od dna" – pole służące do wpisywania minimalnej wartości Hmin o jaką należy opuścić dno komory względem kanału wylotowego.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów komory Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Wymiary					
	-Parametry wys	okościowe		Wymiary	
Rzędna terer	nu projektowane	ego:			
Rz. t. p. =	100.00	m n.p.m.	W =	3.20 m	
Rzędna terer	nu istniejącego:				
Rz. t. i. =	100.00	m n.p.m.	A =	2.90 m	
Rzędna góm	a:				
Rz. g. =	99.85	mn.p.m.	S =	0.12 m	
Rzędna dna	kanału włotowe	ego:			
Rz. d. k. wl.	= 97.72	m n.p.m.	Hp =	0.30 m	
Rzędna dna:	:				
Rz. d. =	97.67	m n.p.m.	G =	0.13 m	
Minimalna wy	ysokość kanału	wylotowego od dna:			
Hmin =	0.05	m	Hwł =	0.15 m	
		Zapier w e			
		Zapisz w s			uluj

Rys. 32. Wymiary dla węzła: 'Końcowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy komory, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna" – pole służące do podglądu wartości dna komory wyliczonej z wzoru Rz.d.k.wl – Hmin.

Pole "Minimalna wysokość kanału wylotowego od dna" – pole służące do wpisywania minimalnej wartości Hmin o jaką należy opuścić dno komory względem kanału wylotowego.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów komory Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

3.8.5 Odwodnienie liniowe

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt odwodnienie liniowe służy do

kontrolowanego zbierania opadów deszczowych z utwardzonych terenów. Do tego obiektu możemy dołączyć wszystkie typoszeregi rurociągów i średnic grawitacyjnych. Odwodnienie może być tylko węzłem źródłowym co oznacza, że można podłączyć tylko jeden wylot. Program na podstawie zadanych parametrów: długość L, spadek i, wysokość H, szerokość B pozwala dobrać odpowiedni przepływ.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Nazwa odwodnienia" – pole pozwalające na nadanie nazwy, która będzie wyświetlana w zestawieniu materiałów.

Własności elemen	ntu: Obiekt łączący *	x
	Zarządzanie elementem)
ld elementu	0	
Ø	Parametry	
	Wygląd	
Pisaki 🔻	Czcionki 🔻 Powierzchnie 🔻	
Grupa elementów:	Odwodnienie liniowe 👻	
Producent:	Brak producenta	
	Parametry -	
Wezeł:	Rz.d.t.	
Nazwa odwodnienia:		1000
Odwodnienie		
	DN	
	Rz.d.k.	
	SPADEK %	
Deb fe e dura de insta		
	Dobor srednicy wylotowej Wymiary	
Długość L =	5.000 m	
Spadek I =	0.0 • %	
Szerokość B =	0.100 v m	
Zagłębienie H=	0.300 - m	
Klasa obciążenia:	A15 -	
-	Dobrany przepływ:	
Q =	9.80 dm ³	
	Zapisz w szablonie	Jui

Rys. 33. Okno dialogowe

3.8.5.1 Zakładka dobór odwodnienia

Pole "Długość L" – pole służące do wpisania długości odwodnia. Wartość podawać w metrach.

Pole "Spadek I" – pole służące do wyboru z listy spadku i odwodnienia (0.0, 0.5, 1.0, 1.5) . Wartość podawana w procentach.

Pole "Szerokość B" – pole służące do wyboru z listy szerokości B odwodnienia (0.1, 0.2,) . Wartość podawana w metrach.

Pole "Zagłębienie H" – pole służące do wyboru z listy zagłębienia H odwodnienia (0.25, 0.3, 0.35, 0.4, 0.45,) . Wartość podawana w metrach.

Pole "Klasa obciążenia" – pole służące do wyboru z listy klasy obciążenia odwodnienia, użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

Pole "Q" – pole służące do podglądu przepływu dla zadanych parametrów L, I, B, H pobieranych z bazy programu. Wartość podawana w metrach

3.8.5.2 Zakładka dobór średnicy wylotowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

posz	ereg rur:	Rury żeli	wne kielich	owe				
Dob	oierz średnic	ę wg prz	epływu:					
Ļρ.	Średnic	i[%]	V[m/s]	Napełnienie[%]	-	🔽 edycja przep	lywu	
1	0.100	3.5	1.7	68.9		Q =	10.00	dm ³
2	0.100	4.0	1.8	65.7		Dobrar	ne parame	try
3	0.100	4.5	1.9	63.1	-	Spadek:	3.50	%
4	0.100	5.0	2.0	60.8	=	Decilies (4.17	17	m
5	0.100	6.0	2.1	57.3		Prędkosc V =	1.7	s
6	0.100	7.0	2.3	54.6		Średnica DN =	0.100	m
7	0.100	8.0	2.4	52.4		J		
8	0.100	9.0	2.5	50.6				
9	0.100	10.0	2.6	49.1				
10	0.100	11.0	2.7	47.7	-			

Rys. 34. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór odwodnier	nia Dobór średnicy wylotowej Wymiary
Typ sieci:	Kanalizacja grawitacyjna 🔻
Typoszereg rur:	Rury żeliwne kielichowe
📃 Dobierz średni	icę wg przepływu:
Średnica wylotu:	0.1 v m
Spadek:	3.5 %
	Zapisz w szablonie CK Anuluj

Rys. 35. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.5.3 Zakładka wymiary

Dobór odwodnienia Dobór średnicy wylotowe	ej Wymiary								
Wymiary wysokościowe:									
Rzędna początkowa terenu projektowanego:	100.00	m n.p.m.							
Rzędna końcowa terenu projektowanego:	100.00	m n.p.m.							
Rzędna początkowa terenu istniejącego:	100.00	m n.p.m.							
Rzędna końcowa terenu istniejącego:	100.00	m n.p.m.							
Rzędna dna kanału:	99.75	m n.p.m.							
Zapisz w szablonie 🔽 OK Anuluj									

Rys. 36. Zakładka 'Wymiary'

Pole "Rzędna początkowa terenu" – pole służące do wpisania rzędnej początkowej terenu. Wartość podawana w m npm.

Pole "Rzędna końcowa terenu" – pole służące do wpisania rzędnej końcowej terenu. Wartość podawana w m npm.

Pole "Rzędna dna kanału" – pole służące do podglądu rzędnej dna kanału, która wyliczana jest na podstawie wysokości odwodnienia z wzoru Rz.d.k = Rz.t.końcowa – [(i x 0,01 x L) +H] + (0,5 x DN wlotu). Wartość podawana w m npm.

3.8.6 Osadnik

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt osadnik służy do usuwania

z ścieków zawiesiny o gęstości większej od 1 kg/m³ poprzez proces sendymentacji. Do tego obiektu możemy dołączyć wszystkie typoszeregi rurociągów i średnic. Osadnik może być tylko węzłem źródłowym, połączeniowym i końcowym. Oznacza to, że można podłączyć tylko jeden wlot i wylot. Użytkownik może dobrać osadnik dwoma sposobami ręcznym wym.

i szczegółowym.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

Węzeł źródłowy – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Węzeł połączeniowy – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

Węzeł końcowy – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Typ" – pole pozwalające na wpisanie typu osadnika, który uwzględniony będzie w zestawieniu elementów.

Pole "Wybór typu zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia osadnika. Użytkownik ma do dyspozycji dwa rodzaje zwieńczeń: właz żeliwny Ø 0,6 m lub właz żeliwny z wypełnieniem betonowym Ø 0,6 m.

Pole "Klasa obciążenia" – pole służące do wyboru z listy klasy obciążenia włazu, użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

Właściwości elementu: Obiekt łączący *	2			×
	Zarządzanie e	lementem		
ld elementu 0				
	Parame	stry		
		ląd —		
Pisaki 🔻 Czcionki 🔻 P	owierzchnie	•		
	Eleme	ent		
Grupa elementów: Osadnik			-	
Producent: Brak prod	lucenta			
	Paramet	ry	_	
Symbol: Os - 1			IPz dt	
Węzeł: Źródło 🔻			The second	1.2.0
Typ: OS			THE REAL PROPERTY AND INCOMENTS	DN
Wybór typu zwieńczenia:			Rz.d.k.wy	
Właz żeliwny 🛊 0.6 m		-	DN Rz.d.k.wl.	
Klasa obciążenia: A15 🔻				
Metoda doboru: Obliczeniowa	•		Rz.d.st.	
Obliczenia przepływu Dobór średnicy	Obliczenia sp	orawności	Dobór urządzenia Wymian	/
Metoda obliczeniowa: Stałych natęż	eń.	•	Maksymalne natężenie	deszczu
Tvo zlewni	A zl [m²]	Współ	9max- 300 s	ha
Ogrady	500.0	0.150	Miarodajne natężenie d	eszczu
Ulice klasy N i W w liniach rozoraniczaia	300.0	0.650	qm- 100 a	<u>ma</u> ha
			Współczynnik typu zlev	vni
			n= 2	
			Obliczono	
			F _{zr} - 0.0270 ha	3
			Q _{max} - 9.55 dr	<u>n³</u>
				\$
Dodaj Usuń				
				A. 1 :
Zapi	sz w szabionie		UK	Anuluj

Rys. 37. Okno dialogowe elementu łączącego 'Osadnik'

Pole "Metoda wyboru" – pole służące do wyboru jednej z dwóch metod doboru osadnika. Pierwsza metoda własna ogranicza się do wprowadzenia ręcznie danych o średnicy osadnika i objętości czynnej

Vcz. Drugą metodą obliczeniowa na podstawie danych początkowych dobiera automatycznie parametry obiektu.

3.8.6.1 Metoda własna

W metodzie tej użytkownik ma do wyboru tylko dwie zakładki, w których może dobrać średnice i sadek rurociągu wylotowego, a także wymiary i rzędne osadnika.

3.8.6.2 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Obliczenia przepł	ywu Dobó	r średnicy	Obliczenia sprawności	Dobór urządzenia	Wymiary				
Typ sieci:	Kanalizacja	a ciśnieniov	va 🔻						
Typoszereg rur:	WAVIN run	y ciśnienio	we w zwojach klasy SDR	17 PE80	•				
🔽 Dobierz średni	Dobierz średnicę wg przepływu:								
🔽 edycja przep	ywu								
Q =	10.00	dm ³							
Vmax =	5.0	m							
		3	Dobrane parametry						
Spadek:	2.0	%							
Prędkość V =	5.1	m s							
Średnica DN =	0.050	m							
			Zapisz w szablonie	ок	Anuluj				

Rys. 38. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

ywu	Dobór średnicy	Obliczenia sprawności	Dobór urządzenia	Wymiary					
Kanali	analizacja ciśnieniowa 🔻								
GAMF	RAT rury ciśnieni	owe PE 80 SDR21		•					
cę wg	przepływu:								
0.05	→ m								
	4.00 %								
		Zapisz w szablonie	ОК	Anuluj					
	ywu Kanali GAMF cęwg 0.05	ywu Dobór średnicy Kanalizacja ciśnieniow GAMRAT rury ciśnieni cę wg przepływu: 0.05 v m 4.00 %	ywu Dobór średnicy Obliczenia sprawności Kanalizacja ciśnieniowa GAMRAT rury ciśnieniowe PE 80 SDR21 cę wg przepływu: 0.05 4.00 % Zapisz w szablonie	ywu Dobór średnicy Obliczenia sprawności Dobór urządzenia Kanalizacja ciśnieniowa GAMRAT rury ciśnieniowe PE 80 SDR21 cę wg przepływu: 0.05 • m 4.00 % Zapisz w szablonie • OK OK OK OK OK OK OK <					

Rys. 39. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.6.3 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=\mathsf{4} \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

Oblicz	enia przepły	ywu Dol	bór średnicy	Obliczenia sprawno	ści	Dobór urządzenia	Wymian	y	
Typ sie	eci:	Kanalizad	cja grawitac	:yjna 🔻					
Typoszereg rur: Rury PVC kielichowe									
V Dol	bierz średnie	cę wg prz	epływu:						
Lp.	Średnic	i[%]	V[m/s]	Napełnienie[%]	-	📝 edycja przepły	/wu		
1	0.110	2.5	1.5	64.9		Q =	10.00	dm ³	
2	0.110	8.0	2.4	45.2		Dobrane	e parameti	у	
3	0.110	10.0	2.6	42.5		Spadek:	4.0	%	
4	0.110	9.0	2.5	43.8		Prodkość V –	10	m	
5	0.110	11.0	2.7	41.3		Frędkosc v =	1.0	s	
6	0.110	3.0	1.6	60.9		Średnica DN =	0.110	m	
7	0.110	5.0	2.0	51.9					
8	0.110	7.0	2.3	47.0					
9	0.110	3.5	1.8	58.0					
10	0.110	6.0	2.1	49.1					
11	0.110	4.0	1.8	55.6	Ŧ				
								A	
				Zapisz w szablonie		OK		Anuluj	

Rys. 40. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Obliczenia przepł	ywu	Dobór średnicy	Obliczenia sprawności	Dobór urządzenia	Wymiary					
Typ sieci:	Kana	alizacja grawitacyj	na 🔻							
Typoszereg rur:	Rury	ury PVC kielichowe								
Dobierz średni	Dobierz średnicę wg przepływu:									
Średnica wylotu:	0.2	→ m								
Spadek:		4.00 %								
			Zapisz w szablonie	ОК	Anuluj					
	_									

Rys. 41. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.6.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Obliczenia przepł	ywu Do	bór średnicy	Obliczenia	sprawności	Dobór urządze	enia Wymiary	
Para	metry wys	okościowe —			Wym	iary	
Rzędna terenu pro	jektowan	ego:					
Rz.t.p. =	100.00	mn.p.m.		S =	0.12 m		
Rzędna terenu istr	niejącego:						
Rz. t. i. =	100.00	mn.p.m.		Hp =	0.30 m		
Rzędna góma:							
Rz.g.wł. =	100.00	mn.p.m.		G =	0.13 m		
Rzędna dna kana	łu wylotov	vego:					
Rz. d. k. wyl. =	99.00	m n.p.m.		Hwl =	0.15 m		
Rzędna dna:							
Rz. d. =	98.80	m n.p.m.					
			Zapisz w	szablonie	• OI	K Ani	uluj

Rys. 42. Wymiary dla węzła źródłowego elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wyl $-\frac{4 \cdot V_{CZ}}{\pi \cdot D^2}$

Pole "Średnica osadnika D" – pole służące do wyboru wartości wewnętrznej średnicy osadnika z rozwijanej listy (0.8 m, 1.0 m, 1.2 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m). na podstawie wybranej wartości program odrysuje obiekt w rzucie płaskim i profilu. Wartość podawać w metrach.

Pole "Objętość czynna osadnika Vcz" – pole służące do wpisania wartości objętości czynnej osadnika, na tej podstawie zostanie obliczona rzędna dna obiektu. Wartość podawać w metrach sześciennych.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Dobór średnicy wylotowej Wymi	ary						
Parametry wyso	Parametry wysokościowe						
Rzędna terenu projektowanego:	100.00	m n.p.m.	Wysokość włazu:				
Rzedna terenu istniejaceno:	100.00	m n n m	Hwł =	0.115			
nzędna terena istniejącego.	100.00	mrupun.	Wysokość podsta	wy:			
Rzędna góma włazu:	100.00	m n.p.m.	Hp =	0.150	m		
Rzedna górna zwieńczenia:	99.89	m n.p.m.	Grubość ścianki:				
	07.50		S =	0.150	m		
Rzędna dna kanału włotowego:	97.56	mn.p.m.	Wcięcie podstawy				
Rzędna dna kanału wylotowego:	97.56	mn.p.m.	G =	0.150	m		
Rzedna dna kinety studzienki:	97.23	mnnm	Wysokosc min.:	0 333			
		in ripan.	Hmin =	0.323			
Różnica włot/wyłot:	0.00	m					
	Zapi	sz w szablonie	- ок		Anuluj		

Rys. 43. Wymiary dla węzła połączeniowy dla elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym ustawiony jest warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzoru Rz.d.k.wyl = Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wyl $-\frac{4 \cdot V_{cz}}{\pi \cdot D^2}$

Pole "Średnica osadnika D" – pole służące do wyboru wartości wewnętrznej średnicy osadnika z rozwijanej listy (0.8 m, 1.0 m, 1.2 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m). na podstawie wybranej wartości program odrysuje obiekt w rzucie płaskim i profilu. Wartość podawać w metrach.

Pole "Objętość czynna osadnika Vcz" – pole służące do wpisania wartości objętości czynnej osadnika, na tej podstawie zostanie obliczona rzędna dna obiektu. Wartość podawać w metrach sześciennych.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Wymiary				
Parametry wyso	V			
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu:		
Deadea tarra interior	100.00	Hwł =	0.115	
Rzędna terenu istniejącego:	100.00 m n.p.m.	Wysokość podsta	wy:	
Rzędna góma włazu:	100.00 m n.p.m.	Hp =	0.150	m
Rzedna góma zwieńczenia:	99 89 m n n m	Grubość ścianki:		
rizgana gonia zmonozonia.	00.00 1111.0.111	S =	0.150	m
Rzędna dna kanału włotowego:	97.56 m n.p.m.	Wcięcie podstawy	r:	
Rzędna dna kinety studzienki:	97.23 m n.p.m.	G =	0.150	m
		Wysokość min.:		
		Hmin =	0.323	m
	Zapisz w szabloni	e 🔻 OK		Anuluj

Rys. 44. Wymiary dla węzła końcowego elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wl $-\frac{4 \cdot V_{cz}}{\pi \cdot D^2}$

Pole "Średnica osadnika D" – pole służące do wyboru wartości wewnętrznej średnicy osadnika z rozwijanej listy (0.8 m, 1.0 m, 1.2 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m). na podstawie wybranej wartości program odrysuje obiekt w rzucie płaskim i profilu. Wartość podawać w metrach.

Pole "Objętość czynna osadnika Vcz" – pole służące do wpisania wartości objętości czynnej osadnika, na tej podstawie zostanie obliczona rzędna dna obiektu. Wartość podawać w metrach sześciennych.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

3.8.6.5 Metoda obliczeniowa

W metodzie tej użytkownik ma do wyboru pięć zakładek: obliczenia przepływu, dobór średnicy, obliczenia sprawności, dobór urządzenia, wymiary. Dokonuje w nich szczegółowego doboru elementów osadnika, wymiarów, rzędnych i średnicy wylotowej rurociągu.

3.8.6.6 Zakładka obliczenia przepływu

Obiekt ten umożliwia użytkownikowi na wybór jednego z trzech sposobów zdefiniowania przepływu obliczeniowego. Pierwszy z nich to przejęcie z podłączonego wlotu wartości Q(ustawiony automatycznie w przypadku nie wypełnienia tabelki obliczeń zlewni). Drugi sposób to wpisanie ręcznie interesującej nas wartości Q w zakładce dobór średnicy. Trzeci to nowe obliczenie przepływu na podstawie typu i powierzchni zlewni. Obliczenia wykonywane są jednym z dwóch sposobów:

Granicznych natężeń deszczu wyliczanym z wzoru:

$$Q = qmax \cdot Fzr \ [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qmax – miarodajne natężenie deszczu, liczone jako zmienne dla każdego przekroju węzłowego i jednocześnie maksymalne, które daje największy przepływ obliczeniowy przy założeniu, że największe natężenie przepływu daje deszcz o czasie trwania równym czasowi dopływu ścieków do rozpatrywanego węzła, licząc od początku układu kanalizacyjnego, [dm³/ s • ha],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

 $Fzr = \Psi \bullet A zl. \bullet 0,0001$ [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Stałych natężeń deszczu wyliczanym z wzoru:

$$Q = qm \cdot Fzr \cdot \varphi \quad [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qm – natężenie deszczu miarodajnego, będące stałą klimatyczną, którą w warunkach polskich należy przyjmować jako natężenie deszczu o czasie trwania równym 10 min, [dm³/ s • ha],

 φ - współczynnik opóźnienia dopływu, wartość bezwymiarowa wyliczana z wzoru:

$$\varphi = \frac{1}{\sqrt[n]{A_{zl \cdot 0,0001}}} \left[- \right]$$

gdzie:

n – współczynnik kształtu zlewni przyjmowany w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

A zl. – rzeczywista powierzchnia zlewni, [m²],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

$$Fzr = \Psi \bullet A zl. \bullet 0,0001$$
 [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Obliczenia przepływu	Dobór średnicy	Obliczenia s	prawności	Dobór urządzenia Wymiary
Metoda obliczeniowa:	Granicznych	natężeń	•	Maksymalne natężenie deszczu
Typ zlewni		A. zl. [m²]	Współ.	Miarodajne natężenie deszczu
Parki		500.0	0.050	0
				sha Współczynnik typu zlewni n= 2 Obliczono Fzr- 0.0025 ha Q _{max} - 0.75 dm ² s
Dodaj Usuń				
		Zapisz w sz	ablonie	OK Anuluj

Rys. 45. Obliczenia przepływu metoda granicznych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Maksymalne natężenie deszczu q max" – pole służące do wpisania max natężenia deszczu dla metody granicznych natężeń. Użytkownik powinien przyjmować wartości w zakresie normy PN-92/B-01707 (150, 200, 300, 400 dm3/ s • ha) lub obliczyć z wzoru:

q max =
$$\frac{A}{t^{0,67}}$$
 dm3/ s • ha

gdzie:

A – współczynnik liczbowy charakteryzujący warunki hydrologiczne obszaru oraz przyjęty przez projektanta okres jednokrotnego przekraczania deszczu o danym natężeniu,

t – czas trwania deszczu miarodajnego, [min].

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Przycisk "Dodaj" służy do dodawania wierszy do tabeli obliczeniowej.

Usuń

Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr i miarodajnego natężenia deszczu qmax. Wartość podawana w dm3/ s.

Obliczenia przepływu	Dobór średnicy	Obliczenia s	prawności	Dobór urządz	zenia Wym	niary		
Metoda obliczeniowa:	Metoda obliczeniowa: Stałych natężeń 🗸			Maksymalne natężenie deszczu				
T				q _{max} -	300	sha		
Typ zlewni		A. zl. [m²]	Wspoł.	Miarodaj	ne natężeni	e deszczu		
Parki		500.0	0.050	qm-	100	dm³ s·ha		
				Współczynnik typu zlewni				
				n=	2			
					Obliczono			
				F _{zr} =	0.0025	ha		
				Q _{max} -	1.12	dm ³ s		
	_							
Dodaj Usuń	Dodaj Usuń							
Zapisz w szablonie CK Anuluj								

Rys. 46. Obliczenia przepływu metoda stałych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Miarodajne natężenie deszczu qm" – pole służące do wpisania miarodajnego natężenia deszczu dla metody stałych natężeń. Użytkownik powinien przyjmować wartości w zależności od strefy klimatycznej. Program domyślnie ma ustawioną wartość 100 dm3/ s • ha.

Pole "Współczynnik typu zlewni n" – pole służące do wpisania współczynnika zlewni przyjmowanego w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj **Przycisk "Dodaj"** służy do dodawania wierszy do tabeli obliczeniowej.

Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr, miarodajnego natężenia deszczu qmax i współczynnika opóźnienia odpływu. Wartość podawana w dm3/ s.

3.8.6.7 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} \, [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm3/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} \,[\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	ylotowej N	Vymiary						
Typ sieci:	Typ sieci: Kanalizacja ciśnieniowa 🔻							
Typoszereg rur: WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80								
Dobierz średni	cę wg przej	oływu: dm³						
Vmax =	5.0	m s	Delana annaire					
Spadek:	2.0	%	— Dobrane parametry —					
Prędkość V =	5.1	m s						
Średnica DN =	0.050	m						
			Zapisz w szablonie V OK Anuluj					

Rys. 47. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy wylotowej Wymiary
Typ sieci: Kanalizacja ciśnieniowa 🔻
Typoszereg rur: WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średnicę wg przepływu:
Średnica wylotu: 0.05 🗸 m
Spadek: 2.00 %
Zapisz w szablonie V OK Anuluj

Rys. 48. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.6.8 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

Do	bierz średnic		enhwu:	raina z rozeniem spiel	nionym	I RAU-PVC AWAL	JUNI SKR	тур 🔻
р.	Średnic	i[%]	V[m/s]	Napełnienie[%]	-	Q =	10.00	dm ³ s
1	0.160	3.0	1.6	34.4	Ξ	Dobrar	ne paramet	ry —
2	0.160	4.5	1.9	31.0		Spadek:	2.0) %
3	0.160	0.8	1.0	49.7		Predkość V =	1.4	m
4	0.160	15.0	2.9	22.6		Ćudata DN	0.100	S
5	0.160	5.0	2.0	30.1		Srednica DIN =	0.160	m
6	0.160	12.0	2.7	24.0				
7	0.160	14.0	2.8	23.1				
В	0.160	6.0	2.1	28.7				
Э	0.160	13.0	2.7	23.5				
10	0.160	11.0	2.6	24.6				
11	0.160	0.9	1.0	48.0				
12	0.160	1.0	1.1	46.6	-			
	1		1					

Rys. 49. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Obliczenia przepł	ywu	Dobór średnicy	Obliczenia sprawności	Dobór urządzenia	Wymiary
Typ sieci:	Kana	alizacja grawitacyj	ina 🔻		
Typoszereg rur:	Rury	kamionkowe kiel	lichowe		-
Dobierz średni	cę wg	g przepływu:			
Średnica wylotu:	0.15	5 🔻 m			
Spadek:		2.00 %			
		Zap	isz w szablonie	ОК	Anuluj

Rys. 50. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.6.9 Zakładka obliczenia sprawności

Zakładka służąca do wyliczenia średnicy wewnętrznej i sprawności osadnika.

Pole "Stężenie zawiesiny ogólnej na wlocie Z1" – pole służące do ręcznego wpisania wartości stężenia zawiesiny Z1 wartość podawana jest w [mg/dm³]. Program domyślnie przyjmuje wartość 250 mg/dm³.

Pole "Stężenie zawiesiny ogólnej na wylocie Z2" – pole służące do ręcznego wpisania wartości stężenia zawiesiny Z2 wartość podawana jest w [mg/dm³]. Program domyślnie przyjmuje wartość wg Rozporządzenia Ministra Środowiska lipca 2004 r., która wynosi 100 mg/dm³.

Obliczenia przepływu	Dobór średnicy	, Obliczenia	sprawności	Dobór urząd	zenia Wym	iary	
		Sprav	wność				
Stężenie zawiesiny og	jólnej na wlocie		Współczynni	ik bezpieczeń	ístwa:		
Z1 =	250	mg dm ³	a =		1.25		
Stężenie zawiesiny og	jólnej na wylocie	um	Prędkość opa	adania:			
Z2 =	100	mg dm ³	Vo =	36.	00	m	
Sprawność:		um-	Powierzchnia	wewnętrzna	c.	n	
$\eta = \frac{(Z1-Z2)\cdot 100}{Z1} = 0$	60.00	%	$A = \frac{a \cdot Q}{Vo} =$	1.1	93	m²	
Obliczona średnica:			Średnica dob	orana według	typowych:		
$D = \sqrt{\left(\frac{4 \cdot A}{n}\right)} =$	1.233	m	Dtyp =	1.5	00	m	
Zapisz w szablonie							

Rys. 51. Zakładka obliczenia sprawności osadnika

Pole "Sprawność η" – pole służące podglądu wyliczonej wartości sprawności osadnika z wzoru:

$$\eta = \frac{(Z1 - Z2) \cdot 100\%}{Z1} \, [\%]$$

gdzie:

η – sprawność osadnika, [%],

Z1 – stężenie zawiesiny ogólnej na wlocie do osadnika, [mg/dm³]

Z2 – stężenie zawiesiny ogólnej na wylocie z osadnika, [mg/dm³]

Pole "Współczynnik bezpieczeństwa a" – pole służące do ręcznego wpisywania współczynnika bezpieczeństwa, który musi być większy bądź równy 1,25.

Pole "Prędkość opadania Vo" – pole służące do podglądu pobieranej z bazy programu informacji o max prędkości opadania najmniejszej usuwanej cząstki, zależne od sprawności osadnika. Wartość wyświetlana jest w m/h.

Pole "Powierzchnia wewnętrzna A" – pole służące do podglądu wyliczonej wartości powierzchni wewnętrznej na podstawie wzoru:

$$A = \frac{a \cdot Q}{Vo} \left[\mathsf{m}^2 \right]$$

gdzie:

A – obliczona powierzchnia płaska osadnika, [m²],
a – współczynnik bezpieczeństwa, [-],

Q – przepływ obliczeniowy, [dm³/s],

Vo – prędkość opadania najmniejszej usuwanej cząstki, [m/h].

Pole "Wyliczona średnica" – pole służące do podglądu wyliczonej wartości średnicy wg której program dobierze średnice dostępną w podstawowym typoszeregu wyliczaną z wzoru:

$$D = \sqrt{\frac{4 \cdot A}{\pi}} \, [m]$$

gdzie:

D – obliczona średnica osadnika, [m],

A- powierzchnia wewnętrzna osadnika, [m²],

Pole "Średnica wybrana według typowych" – pole służące do podglądu dobranej przez program średnicy osadnika na podstawie wyliczonej wartości w polu D i bazy średnic (0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0).

3.8.6.10 Zakładka dobór urządzenia

Zakładka służące do doboru podstawowych parametrów wysokościowych osadnika, a także obliczenia pojemności.

Pole "Stężenie zawiesiny ogólnej na wlocie Z1" – pole służące do ręcznego wpisania wartości stężenia zawiesiny Z1 wartość podawana jest w [mg/dm³]. Program domyślnie przyjmuje wartość 250 mg/dm³.

Pole "Stężenie zawiesiny ogólnej na wylocie Z2" – pole służące do ręcznego wpisania wartości stężenia zawiesiny Z2 wartość podawana jest w [mg/dm³]. Program domyślnie przyjmuje wartość wg Rozporządzenia Ministra Środowiska lipca 2004 r., która wynosi 100 mg/dm³.

Obliczenia przepływu Dob	oór średnicy	Obliczenia	a sprawności	Dobór urządze	enia Wymiary	
		-Część	osadowa ——			
Stopień uwodnienia osadu:			Pojemność:			
Suo =	40		$Vos = \frac{Fzr(Z)}{Vos}$	<u>1 - Z2)·Hr·Vu _</u>	0.013	m ³
Krotność usuwania osadu:			10 D	00000 · n		
n =		2	Prędkosc gra	iniczna:	0.05	m
Objętość uwodnionego osac	du:		Wunokość o	na n	0.00	s
Vu =	1.1		. 24	cesci pizepiywu O	Jwej.	
Roczna wysokość opadów:			$hp = \frac{2}{Vm \cdot D}$	1000 =	0.255	m
Hr =		600	Wysokość ca	zęści osadowej	:	
			$ho = \frac{Vos}{100}$	-	0.011	m
			czvnna A			
Wysokość:			Pojemność:			
hcz = ho + hp =	0.266	m	Vcz = hcz · A	\ =	0.317	m ³
	Zap	isz w szabl	onie 🔽	0	K 📃 🗖	Anuluj

Rys. 52. Zakładka obliczenia sprawności osadnika

Pole "Stopień uwodnienia osadu Suo" – pole służące do wyboru jednej z trzech wartości (40,50,60 %) uwodnienia osadu wg której program z bazy pobierze informację o objętości uwodnienia osadu. Wartości podawane są w %.

Pole "Krotność usuwania osadu" – pole służące do ręcznego wpisywania krotności usuwanego osadu w ciągu roku. Wartość ta należy przyjmować w zakresie 2 - 4.

Pole "Objętość uwodnienia osadu Vu" – pole służące do podglądu pobieranej z bazy programu informacji o objętości uwodnienia osadu na podstawie wybranych wartości w polu Suo. Wartość podawana w [m³/1000 kg s.m.].

Pole "Roczna wysokość opadów Hr" – pole służące do ręcznego wpisywania rocznej wysokości opadów dla danej strefy klimatycznej. Wartość wpisywana jest w mm/rok, domyślnie ustawiona jest na 600 mm/rok.

Pole "Pojemność Vos" – pole służące do podglądu wyliczonej wartości pojemności części osadczej osadnika na podstawie wzoru:

$$Vos = \frac{Fzr x (Z1 x Z2) x Hr x Vu x 0,01}{n x 1000}$$
 [m³]

gdzie:

Vos – pojemność części osadczej osadnika, [m³],

Fzr – zredukowana powierzchnia zlewni, [ha],

Z1 – stężenie zawiesiny ogólnej na wlocie do osadnika, [mg/dm³]

Z2 – stężenie zawiesiny ogólnej na wylocie z osadnika, [mg/dm³]

Hr - roczna wysokość opadów, [mm/rok],

Vu – objętość uwodnienia osadu, [m³/1000 kg s.m.],

n – krotność usuwania osadu.

Pole "Prędkość graniczna Vm" – pole służące do podglądu dobranej przez program wartości prędkości granicznej na podstawie obliczonej sprawności osadnika. Wartość podawana w m/s.

Pole "Wysokość części przepływowej hp" – pole służące do podglądu wyliczonej wysokości części przepływowej osadnika na podstawie wzoru:

$$h_p = \frac{2 x Q}{Vm x D x 1000}$$
 [m]

gdzie:

hp – wysokość części przepływowej, [m],

Q – przepływ obliczeniowy, [dm³/s],

D – dobrana średnica osadnika, [m],

Vm – prędkość graniczna, [m/s].

Pole "Wysokość części osadczej hos" – pole służące do podglądu wyliczonej wysokości części osadczej osadnika na podstawie wzoru:

$$h_o = \frac{Vos}{A}$$
 [m]

gdzie:

ho – wysokość części osadczej, [m],

Vos – pojemność części osadczej osadnika, [m³],

A- powierzchnia wewnętrzna osadnika, [m²],

Pole "Wysokość części czynnej hcz" – pole służące do podglądu wyliczonej wysokości części czynnej osadnika na podstawie wzoru:

gdzie:

hcz – wysokość części czynnej, [m],

ho – wysokość części osadczej, [m],

hp – wysokość części przepływowej, [m],

Pole "Pojemność części czynnej Vcz" – pole służące do podglądu wyliczonej pojemności części czynnej osadnika na podstawie wzoru:

gdzie:

Vcz – pojemność części czynnej osadnika, [m³],

hcz – wysokość części czynnej, [m],

A- powierzchnia wewnętrzna osadnika, [m²],

3.8.6.11 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Obliczenia przep	ływu Do	bór średnicy	Obliczenia	sprawności	Dobór urządzenia	Wymiary		
Para	ametry wys	okościowe —			Wymiary			
Rzędna terenu pr	ojektowan	ego:						
Rz. t. p. =	100.00	mn.p.m.		S =	0.12 m			
Rzędna terenu istniejącego:								
Rz. t. i. =	100.00	mn.p.m.		Hp =	0.30 m			
Rzędna góma:								
Rz.g.wł.=	100.00	mn.p.m.		G =	0.13 m			
Rzędna dna kana	ału wylotow	vego:		1				
Rz. d. k. wyl. =	98.20	mn.p.m.		Hwl =	0.15 m			
Rzędna dna:				1				
Rz. d. =	98.00	mn.p.m.						
		7-0	ioz w ozoblo			Apului		
		Zap	iisz w szabio		UK	Anuluj		

Rys. 53. Wymiary dla węzła: 'Źródłowy' dla elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wyl $-\frac{4 \cdot V_{cz}}{\pi \cdot D^2}$

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Obliczenia przepły	wu Dol	bór średnicy	Obliczenia	sprawności	Dobór urządzenia	Wymiary	
Param	netry wys	okościowe —			Wymiary		
Rzędna terenu proje	ektowan	ego:					
Rz.t.p. =	100.00	mn.p.m.		S =	0.12 m		
Rzędna terenu istniejącego:							
Rz. t. i. =	100.00	mn.p.m.		Hp =	0.30 m		
Rzędna góma:							
Rz.g.wł.=	100.00	mn.p.m.		G =	0.13 m		
Rzędna dna kanału	u wlotow	ego:					
Rz. d. k. wl. = 9	7.95	mn.p.m.		Hwl =	0.15 m		
Rzędna dna kanału	u wylotov	vego:					
Rz. d. k. wyl. =	97.80	mn.p.m.					
Rzędna dna:							
Rz. d. = 9	7.33	mn.p.m.					
Różnica włot/wyłot: 0.15 m							
Zapisz w szablonie OK Anuluj							

Rys. 54. Wymiary dla węzła :,Połączeniowy' dla elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym ustawiony jest warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzoru Rz.d.k.wyl = Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wyl $-\frac{4 \cdot V_{CZ}}{\pi \cdot D^2}$

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

Obliczenia przep	ływu Ob	liczenia sprawności	Dobór urządzenia	Wymiary					
Para	ametry wy:	sokościowe ———							
Rzędna terenu pr	ojektowar	lego:							
Rz.t.p. =	100.00	m n.p.m.	S =	0.12 m					
Rzędna terenu ist	niejącego	:							
Rz. t. i. =	100.00	m n.p.m.	Hp =	0.30 m					
Rzędna góma:									
Rz.g.wł.=	100.00	m n.p.m.	G =	0.13 m					
Rzędna dna kana	łu wlotow	/ego:							
Rz. d. k. wl. =	97.95	m n.p.m.	Hwl =	0.15 m					
Rzędna dna:									
Rz. d. =	97.48	m n.p.m.							
	Zapisz w szablonie								

Rys. 55. Wymiary dla węzła końcowego dla elementu 'Osadnik'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy osadnika, która wyliczana jest z wzoru Rz.g. = Rz.t. – Hwł.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna os." – pole służące do podglądu wartości dna osadnika wyliczonej z wzoru Rz.d.k.wl $-\frac{4 \cdot V_{cz}}{2}$

 $\pi \cdot D^2$

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian osadnika S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy osadnika Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy osadnika G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisywania wysokości włazów osadnika Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu i obliczona Rz.g. Wartość podawać w metrach.

3.8.7 Przejście szczelne

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt przejście szczelne służy do

zabezpieczenia przed infiltracją wód gruntowych przejść przez przegrody budowlane. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy przejść szczelnych. Wg

zasady, że każdy producent ma swoje typoszeregi kształtek i rurociągów. Przejście szczelne może być tylko węzłem połączeniowym.

Właściwości elementu: Ol	viekt łączący *
	Zarządzanie elementem
ld elementu 0]
	Parametry
Pisaki 🔻 Czc	ionki 🔻 Powierzchnie 💌
	Element
Grupa elementów:	Przejście szczelne 🔹
Producent:	KACZMAREK
	Parametry
Symbol: Ps -	
Vvęzeł: Połączeniowy	
Typ sieci: Kanalizacja gra	witacyjna 🔻
Wymiary	
Typoszereg kształtek:	
Kształtki kanalizacyjne ze	ew. PVC-U klasy S SN8 👻
Typ przejścia szczelnego:	
Tuleja ochronna PS L=0.	24m 🔹
Średnica D:	Średnica zewnętrzna:
D= 0.110 m	Dmax= 0.137 m
Długość L:	
L= 0.240 m	
Dobrany element: Tul	eja ochronna długa PS
Nr. katalogowy: 492	2026000 Cena: 34.74 zł Masa: 0 kg
	Zapisz w szablonie

Rys. 56. Okno dialogowe elementu 'Przejście szczelne'

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

Węzeł źródłowy – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Węzeł połączeniowy – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

Węzeł końcowy – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.7.1 Zakładka wymiary (Rys. 56.)

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ przejścia szczelnego" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica D:" – pole definiujące średnicę wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Średnica zewnętrzna" – pole definiujące średnicę zewnętrzną wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.8 Przepompownia

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt przepompownia służy do

podnoszenia ścieków, gdy nie ma możliwości odprowadzenia ich grawitacyjnie. Do tego obiektu możemy dołączyć wszystkie typoszeregi rurociągów i średnic ciśnieniowych. Przepompownia może być węzłem źródłowym, połączeniowym i końcowym. Oznacza to, że można podłączyć tylko jeden wlot i wylot. Użytkownik może dobrać przepompownie dwoma sposobami ręcznym i szczegółowym. Z obiektu tego może być wyprowadzona tylko

rura ciśnieniowa, co oznacza że służy on nam do zmiany typu sieci z grawitacyjnej na ciśnieniową.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

Węzeł źródłowy – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Węzeł połączeniowy – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

Węzeł końcowy – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

☑ Pole "Dobierz średnicę wew. przepompowni" – pole to służy do wybory czy przepompownie dobierać będziemy ręcznie (odznaczone), czy analitycznie (zaznaczony). Pierwszy przypadek dodaje pole średnica wew., w którym użytkownik wpisuje wartość. Drugi przypadek dodaje zakładki dobór pomp i dobór urządzenia, w których program wylicza średnicę.

Pole "Średnica wew." – pole pojawiające się tylko w przypadku odznaczenia pola *"Dobierz średnicę wew. przepompowni"* służące do ręcznego wpisywania średnicy przepompowni. Wartość podajemy w metrach.

Pole "Średnica włazu" – pole służące do ręcznego wpisania średnicy włazu. Wartość w polu tym podajemy w metrach. Użytkownik musi pamiętać o warunku, że wartości wpisane w tym polu muszą być mniejsze od średnicy przepompowni. Wartość podajemy w metrach.

Właściwości elementu: Obiek	t łączący *
	Zarządzanie elementem
ld elementu 0	
2	Parametry
	Wygląd
Pisaki 🔻 Czcionki	i 🔻 Powierzchnie 🔻
	Element
Grupa elementów:	Przepompownia 💌
Producent:	Brak producenta
	Parametry
Symbol: Pp -	1 Rz.wł.
Połączeniowy	
Crednice where it is a con-	
Klasa obciatenia:	RZ.G.K.WYL
Alo	RZ.G.K.WI.
Opis przepompowni:	Him
Frzepompownia	JH wg
	and the second se
Dobór średnicy Dobór pomp	Dobór urządzenia Wymiary
Typ sieci: Kanalizacja	a ciśnieniowa 🔻
Typoszereg rur: WAVIN run	y ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Średnica wylotu: 0,04	-] m
Spadek: 2.0	D %
	Zapisz w szablonie

Rys. 57. Okno dialogowe dla elementu 'Przepompownia'

Pole "Klasa obciążenia" – pole służące do wyboru z listy klasy obciążenia włazu przepompowni, użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

Pole "Opis przepompowni" – pole pozwalające na wpisanie typu przepompowni, który uwzględniony będzie w zestawieniu elementów.

3.8.8.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Typoszereg rur:	WAVIN rury	AVIN rury ciśnieniowe w zwojach klasy SDR17 PE80							
Q =	10.00	s s							
Vmax =	5.0	s .							
D	F 1	m	Jobrane paran	netry					
Pręakosc V =	0.1	s							
Srednica DN =	0.050	m							
Spadek:	10.00	%							

Rys. 58. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy	Dobór pomp	Dobór urządzenia Wymiary						
Typ sieci:	Kanalizacja	Kanalizacja ciśnieniowa 🔻						
Typoszereg rur:	WAVIN rury	ciśnieniowe w zwojach klasy SDR17 PE80 🔹						
Q =	10.00	dm ³						
Vmax =	5.0	<u></u>						
		Dobrane parametry						
Prędkość V =	5.1	<u>m</u>						
Średnica DN =	0.050	m						
Spadek:	10.00	%						
		Zapisz w szablonie 💌 OK Anuluj						

Rys. 59. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.8.2 Zakładka dobór pomp

Zakładka służąca do obliczenia przepływu przepompowni i zdefiniowania wysokości podnoszenia przepompowni.

Dobór średnicy Dobór pomp	Dobór urządzenia Wymiary
	Parametry przepływowe
	Obl. przepływ pompy:
$Q = 10.00 \frac{dm^3}{s}$	Qp=1.1*Q= 11.00 dm ³ /s
	Parametry wysokości podnoszenia:
Hdł= 3.000 m	
Hlok= 3.000 m	H=Hgeo+Hlok+Hdł= 7.000 m
Hgeo= 1.000 m	
Typ pomp:	
	Zapisz w szablonie
Rvs	. 60. Dobór pomp

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia. Wartość podawana w dm³/s.

Pole "Qp" – pole służące do podglądu obliczonej wartości przepływu przepompowni wg wzoru:

$$Qp = 1,1 \bullet Q [dm^{3}/s]$$

Pole "Hdł" – pole służące do ręcznego wpisania starty na długości rurociągu wg wzoru:

Hdł = L • i [m]

gdzie :

Hdł – strata na długości rurociągu tłocznego, [m],

L – długość odcinka tłocznego, [m],

i – spadek hydrauliczny, [-]

Pole "Hlok" – pole służące do ręcznego wpisania starty lokalnych powstających w miejscach załamań trasy wg wzoru:

$$Hlok = L' \bullet i[m]$$

gdzie :

Hlok – strata lokalna na kształtkach i armaturze, [m],

L' – długość zastępcza, [m],

i – spadek hydrauliczny, [-]

Pole "Hgeo" – pole służące do ręcznego wpisania geometrycznej wysokości podnoszenia między najniższym punktem rurociągu tłocznego, a najwyższym. Wartość podawana w metrach.

Pole "H" – pole służące do podglądu obliczonej całkowitej wysokości podnoszenia pompy, wg tej wartości należy dobrać pompę do przepompowni. Wartość wyliczana jest z wzoru H= Hdł + Hlok + Hgeo.

Pole "Typ pomp" – pole służące do wpisania dobranej przez użytkownika pompy.

3.8.8.3 Zakładka dobór urządzenia

Zakładka służy do doboru rzędnej dna i średnicy przepompowni. Zakładka ta widoczna jest tylko w trybie analitycznego doboru przepompowni.

Dobór średnicy Dobór pom	Dobór urządzenia Wymiary	
Dobór średnicy:	Paran	netry retencyjne:
Liczba włączeń pompy:	Objętość retencji:	
S = 6 → 1/h	V=0.9*(Qp/S)= 1.65	m ³
Dobrano średnicę wew.:	Wysokość retencji:	
Dwew= 1.500 m	h=V/F= 0.934	m
	Zapisz w szablonie	OK Anuluj

Rys. 61. Dobór urządzenia

Pole "Liczba włączonych pomp S" – pole służące do wyboru ile razy w ciągu godziny włączy się pompa. Użytkownik może wybrać jedną z wartości (4, 6,8, 10, 12, 15). Wartość podawana w jednostce 1/h.

Pole "Objętość retencyjna V" – pole służące do podglądu objętości retencyjnej pompowni wyliczonej z wzoru:

$$V = 0.9 \cdot \frac{Q_p}{S} \, [\text{m}^3]$$

gdzie:

V – objętość retencyjna zbiornika, [m³],

Qp – obliczeniowa wydajność pompowni, [dm³/s],

S – liczba włączeń pompy, [1/h].

Pole "Dobrana średnica wew. Dwew" – pole służące do podglądu dobranej z bazy programu średnicy przepompowni na podstawie obliczeniowej wartości przepompowni i liczby włączeń pompy. Wartość wyświetlana jest w metrach.

Pole "Wysokość retencji h" – pole służące do podglądu wysokości retencyjnej pompowni wyliczonej z wzoru:

$$h = \frac{V}{F}$$
 [m]

gdzie:

h – wysokość retencji pompowni, [m],

V – objętość retencyjna zbiornika, [m³],

F – powierzchnia poziomego przekroju zbiornika pompowni, [m²], wartość wyliczana z wzoru F= $\frac{4 \cdot Qp}{\pi \cdot D_{wew}^2}$

Pole "Hmin" – pole służące do podglądu rzędnej wyłączenia pracy pompy Hmin wyliczona z wzoru:

$$Hmin = Rz. d. k. wl - (0, 1 + h)$$
 [m npm.]

gdzie:

Hmin – rzędna włączenia pracy pompy, [m npm.],

h – wysokość retencji pompowni, [m],

Rz.d.k.wl - rzędna dna kanału wlotowego do przepompowni, [m npm.],

Pole "Wys. Zalania pompy R1" – pole służące do ręcznego wprowadzenia wysokości zalania pompy. Wartość uzależniona od typu pompy, program domyślnie przyjmuje wartość 0,65 m.

Pole "Rzędna dna Ho" – pole służące do podglądu rzędnej dna przepompowni wyliczona z wzoru:

Ho = Hmin - (0, 1 + R1) [m npm.]

gdzie:

Ho – rzędna dna przepompowni, [m npm.],

Hmin – rzędna włączenia pracy pompy, [m npm.],

R1 – wysokość zalania pompy, [m],

3.8.8.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Rys. 62. Wymiary dla węzła: 'Źródłowy' dla elementu 'Przepompownia'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu przepompowni, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna przepompowni" – pole służące do wpisania lub podglądu wartości rzędnej dna przepompowni wyliczonej z wzoru z poprzedniej zakładki "Dobór urządzenia" pole Ho.

Pole "Rz. lustra wód gruntowych" – pole służące do wpisania wartości rzędnej lustra wody gruntowej. Wartość należy podawać w jednostce m npm.

Pole "Grubość ścianki" – pole służące do wpisania lub podglądu grubości ścian przepompowni S pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisania lub podglądu wysokości podstawy przepompowni Hp pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisania lub podglądu wcięcia podstawy przepompowni G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisania lub podglądu wysokości włazów przepompowni Hwł pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

	Dobór średnicy	y Dobór	pomp	Dobór urządzenia	Wymiary				
	Wymiary								
	Wysokość włazu:		Rzędna te	erenu projek	towanego:	100.00	m n.p.m.		
	Hwl = 0.150 m		m	Rzedna te	aranu istoiai	20000	100.00		
	Wysokość pod	dstawy:	,	nzęuna k	erenu istniej	ącego.	100.00	mn.p.m.	
	Hp = 0.150 m		Rzędna g	jóma włazu	:	100.00	m n.p.m.		
	Grubość ścian	ki:	J	Rzędna d	lna kanału v	vlotowego:	96.66	m n.p.m.	
	S =	0.150	m	Rzędna d	lna kanału v	vylotowego:	98.20	m n.p.m.	
	Wcięcie podstawy:			Rzędna d	lna:		94.88	m n.p.m.	
	G =	0.100	m	Rz. lustra	wód grunto	wych:	94.88	mn.p.m.	
_	Zapisz w szablonie 💌 OK Anuluj								

Rys. 63. Wymiary dla węzła: 'Połączeniowy' dla elementu 'Przepompownia'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu przepompowni, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek,

że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna przepompowni" – pole służące do wpisania lub podglądu wartości rzędnej dna przepompowni wyliczonej z wzoru z poprzedniej zakładki "Dobór urządzenia" pole Ho.

Pole "Rz. lustra wód gruntowych" – pole służące do wpisania wartości rzędnej lustra wody gruntowej. Wartość należy podawać w jednostce m npm.

Pole "Grubość ścianki" – pole służące do wpisania lub podglądu grubości ścian przepompowni S pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisania lub podglądu wysokości podstawy przepompowni Hp pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisania lub podglądu wcięcia podstawy przepompowni G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisania lub podglądu wysokości włazów przepompowni Hwł pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Dobór pomp	Dobór ur	ządzenia	Wymiary				
W	ymiary —						
Wysokość wł	Wysokość włazu:		Rzędna terenu projektowanego:	100.00	mn.p.m.		
Hwl =	0.150	m	Rzedna terenu istniejacego:	100.00			
Wysokość po	Wysokość podstawy:		nzędna terena istniejącego.	100.00	m n.p.m.		
Hp =	0.150	m	Rzędna góma włazu:	100.00	m n.p.m.		
Grubość ściar	nki:		Rzędna dna kanału włotowego:	95.89	m n.p.m.		
S =	0.150	m	Rzędna dna:	94.11	m n.p.m.		
Wcięcie pods	Wcięcie podstawy:		Rz. lustra wód gruntowych:	94.11	m n n m		
G =	0.100 m			34.11	m n.p.m.		
Zapisz w szablonie OK Anuluj							

Rys. 64. Wymiary dla węzła: 'Końcowy dla elementu 'Przepompownia'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu przepompowni, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna przepompowni" – pole służące do wpisania lub podglądu wartości rzędnej dna przepompowni wyliczonej z wzoru z poprzedniej zakładki "Dobór urządzenia" pole Ho.

Pole "Rz. lustra wód gruntowych" – pole służące do wpisania wartości rzędnej lustra wody gruntowej. Wartość należy podawać w jednostce m npm.

Pole "Grubość ścianki" – pole służące do wpisania lub podglądu grubości ścian przepompowni S pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisania lub podglądu wysokości podstawy przepompowni Hp pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisania lub podglądu wcięcia podstawy przepompowni G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość włazu" – pole służące do wpisania lub podglądu wysokości włazów przepompowni Hwł pobranej z bazy programu na podstawie obliczonej średnicy. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

3.8.9 Redukcja

W programie *ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE* obiekt redukcja służy do zmiany średnicy rurociągu. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy redukcji. Wg zasady, że każdy producent ma swoje typoszeregi

kształtek i rurociągów. redukcja może być tylko węzłem połączeniowym co oznacza, że ma tylko jeden wlot i wylot.

Właściwości elementu: Obiekt łączący *
Zarządzanie elementem
Id elementu 0
Parametry
Pisaki Czcionki Powierzchnie
Grupa elementów: Redukcia 🔹
Producent: KACZMAREK
Parametry-
Symbol: Re - 1 Wqzel: Połączeniowy -
Wymiary Dobór średnicy
Typoszereg kształtek:
Kształtki kanalizacyjne zew. PVC-U klasy S SN8 👻
lyp redukcji:
neaukge r vc-u
Średnice D1: Średnice D2: D1 0.315 • m D2 0ługość L: L L = 0.064 m
Dobrany element: Redukcja PVC-U Nr. katalogowy: 889121300 Cena: 264.00 zł Masa: 0 kg
Zapisz w szablonie 💌 OK Anuluj

Rys. 65. Okno dialogowe elementu 'Redukcja'

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.9.1 Zakładka wymiary

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ redukcji" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

12	ksztartek:		0.0110			
Kształtki ka	analizacyjn	e zew. PVC-U klas	ay S SN8			•
yp redukcji	:					
Redukcje F	VC-U					•
6	rednice D	1:	Średnice D	2:		
[0.31	5 v m	D2 = 0.4	•		
C)ługość L:					
L	.= 0.06	4 m				
	0.00					
Dobrany ele	ement:	Redukcja PVC-U			_	
Nr. katalogo	owy:	889121300	Cena:	264.00 zł	Masa:	0 kg

Rys. 66. Zakładka 'Wymiary' dla elementu 'Redukcja'

Pole "Średnica D1:" – pole definiujące średnicę wlotową wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Średnica D2:" – pole definiujące średnicę wylotową wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu). na tej podstawie wykonywane będą obliczenia w zakładce Dobór średnicy.

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik może wstawić własną wartość wg której zostanie odrysowany symbol graficzny tego obiektu w projekcie.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.9.2 Zakładka dobór średnicy wylotowej

Pole "Typoszereg rur" – pole to służy do wyboru typoszeregu rurociągu dla jakiego będziemy wykonywać obliczenia. Lista dostępnych rurociągów uzależniona jest od typu obiektu i wybranego producenta.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Wymiary Dobór	średnicy
Typ sieci:	Kanalizacja grawitacyjna 🔻
Typoszereg rur:	KACZMAREK rury lite PVC-U klasy S SN8
Średnica wylotu:	0.4 v m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 67. Dobór średnicy

3.8.10 Studzienka betonowa

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt studzienka betonowa służy

do zmiany kierunku, średnicy lub spadku profilu sieci. Do tego obiektu możemy dołączyć wszystkie typy rurociagów. Studzienka może być węzłem źródłowym, połączeniowym i końcowym. Oznacza to, że można podłączyć n wlotów i jeden wylot. Obiekt ten można wstawić w dowolnym typie kanalizacji. Obiekt do obliczeń przepływu rury wylotowej

sumuje wszystkie wloty, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Obiekty te wykonane są z betonu z zakresem średnic od 0.8 do 3.0 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Średnica wewnętrzna" – pole służące do doboru średnicy studzienki uzależnionej od wybranego producenta studzienek.

Właściwości elementu: Obiekt łąc	zący *		X			
Zarządzanie elementem						
ld elementu 21						
	Parametry					
Pisaki 🔻 Czcionki	Powierzchnie					
Grupa elementów: Str	udzienka betonowa		-			
Producent:	ol-Unicon		•			
	Parametry					
Symbol: S - 12		Rz.g.wł.				
Węzeł: Źródło 👻		Rz.t.	A STATE			
Średnica wewpetrzna: 1.200	▼ m		IDAL			
Typ zwieńczenia:		IRz.d.k.w	A. TON			
Phta poknawowa z otworam		DN Rz.d.k.wl.				
Plyta pokrywowa z otworem						
When here have a long to the COO h	115	IDa d et				
vvraz kanałowy okrągły sr. 600 n=	1 Iomm z zamknięciem z 🔻	Contract,	A CONTRACTOR			
Klasa obciążenia: D400	Klasa obciążenia: D400 🔻					
Dobór średnicy wylotowej Wymia	ary					
Typ sieci: Kanalizacja grav	witacyjna 🔻					
Typoszereg rur: Rury kamionkov	ve kielichowe		•			
Dobierz średnicę wg przepływu	I:					
Lp. Średnic i[%] V[m/	s] Napełnienie[%]	▲ Q = 10.00	dm ³ s			
1 0.150 2.0 1.4	42.1	Dobrane paran	ietry-			
2 0.150 9.0 2.4	28.2	Spadek:	2.0 %			
3 0.150 8.0 2.3	29.1	Prędkość V = 1.4	m s			
4 0.150 4.0 1.8	34.9	Średnica DN = 0.150	m			
5 U.150 4.5 1.9 C 0.150 7.0 2.2	33.8 20.2					
7 0 150 7.0 2.2	20.2					
8 0 150 14.0 2.9	25.2					
0 0.150 14.0 2.0	20.2	•				
L						
	Zapisz w szablonie	ОК	Anuluj			

Rys. 68. Okno dialogowe dla elementu "Studzienka betonowa'

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia studzienki. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład obiektu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów studzienki (redukcje, pierścienie odciążające, itp.)

Pole "Typ włazu" – pole pozwalające na szczegółowy wybór typu włazu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia włazu" – pole służące do wyboru z listy klasy obciążenia włazu, uzależnione od wybranego typu włazu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.10.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie

wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 x Q}{\pi x V max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	rylotowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔹
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
☑ Dobierz średni Q =	icę wg przepływu: 10.00 dm ² /s
Vmax =	5.0 m/s Dobrane parametry
Spadek:	2.0 %
Prędkość V =	5.1 <u>m</u>
Średnica DN =	0.050 m
	Zapisz w szablonie

Rys. 69. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy wylotowej Wymiary
Typ sieci: Kanalizacja ciśnieniowa 🔻
Typoszereg rur: WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średnicę wg przepływu:
Średnica wylotu: 0.05 🗸 m
Spadek: 2.00 %
Zapisz w szablonie) 💌 OK Anuluj

Rys. 70. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.10.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

pos:	zereg rur:	Rury kan	nionkowe k	ielichowe				•
) Doi Lp.	Średnic	cę wg prz i[%]	V[m/s]	Napełnienie[%]	*	Q =	10.00	dm³ s
1	0.150	2.0	1.4	42.1		Dobrar	ne parametr	у ——
2	0.150	9.0	2.4	28.2		Spadek:	2.0	%
3	0.150	8.0	2.3	29.1		Predkość V =	1.4	<u>m</u>
4	0.150	4.0	1.8	34.9		Á	0.450	s
5	0.150	4.5	1.9	33.8		Srednica DN =	0.150	m
6	0.150	7.0	2.2	30.2				
7	0.150	2.5	1.5	39.6				
8	0.150	14.0	2.8	25.2	-			
•	0.450	10.0	2.0	05.0				

Rys. 71. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór średnicy w	vylotowej Wymiary
Typ sieci:	Kanalizacja grawitacyjna 🔹
Typoszereg rur:	Rury kamionkowe kielichowe
📃 Dobierz średn	icę wg przepływu:
Średnica wylotu:	0.15 v m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 72. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.10.3 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór średnicy wylotowej Wymi	ary				
Parametry wyso	V	Vymiary—			
Rzędna terenu projektowanego:	100.00	m n.p.m.	Wysokość włazu:		
Prodes terreru istricises est	100.00		Hwł =	0.150	
Rzędna terenu istniejącego:	100.00	m n.p.m.	Grubość podbudov	wy:	
Rzędna góma włazu:	100.00	m n.p.m.	Hp =	0.150	m
Rzedna górna zwieńczenia:	99.85	m n.p.m.	Grubość ścianki:		
			S =	0.150	m
Rzędna dna kanału wylotowego:	98.20	mn.p.m.	Wysunięcie podbu	dowy:	
Rzędna dna studzienki:	97.95	m n.p.m.	G =	0.150	m
			Min. odległ. kinety	od dna st	udni:
			Hmin =	0.250	m
	Zapisz v	v szablonie 💌	ОК		Anuluj

Rys. 73. Wymiary dla węzła źródłowego

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i włazu, producenta.

Pole "Grubość podbudowy"/"Wysunięcie podbudowy" – pole służące do wpisywania wymiarów podbudowy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Dobór średnicy wylotowej Wymi	ary		
Parametry wyso	·	Wymiary	
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu:	
Prodec torony interiorcone:	100.00 m n n m	Hwł =	0.150
nzędna terenu istniejącego.	100.00 1111.p.m.	Grubość podbudo	wy:
Rzędna góma włazu:	100.00 m n.p.m.	Hp =	0.150 m
Rzedna górna zwieńczenia:	99.85 m n.p.m.	Grubość ścianki:	
		S =	0.150 m
Rzędna dna kanału wlotowego:	97.59 m n.p.m.	Wysunięcie podbu	udowy:
Rzędna dna kanału wylotowego:	97.59 m n.p.m.	G =	0.150 m
Deadaa daa atudaiaalai	07.45	Min. odległ. kinety	y od dna studni:
nzędna dna słudzienki:	57.45 m n.p.m.	Hmin =	0.143 m
Różnica włot/wyłot:	0.00 m		
	Zapisz w szablonie	ОК	Anuluj

Rys. 74. Wymiary dla węzła: 'Połączeniowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do podglądu rzędnej dna kanału wylotowego z obiektu. Wartość wyliczana jest na podstawie Różnicy wlot/wylot wg wzoru Rz.d.k.wyl = Rz.d.k.wl – Różnica wlot/wylot. Dodatkowo uwzględniany jest tu warunek, że wartość wyliczona z wzoru nie może być mniejsza od Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Różnica wlot/wylot" – pole służące do wpisania wartości różnicy między rzędna dna kanału wlotowego, a rzedną dna kanału wylotowego. na podstawie tej wartości wyliczana jest rzędna dna kanału wylotowego.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Grubość podbudowy"/"Wysunięcie podbudowy" – pole służące do wpisywania wymiarów podbudowy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Wymiary		
Parametry wyso	Wymiary	
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu:
Prodec torony inteleicones:	100.00 m n n m	Hwł = 0.150
nzędna terenu istniejącego.	100.00 mm.p.m.	Grubość podbudowy:
Rzędna góma włazu:	100.00 m n.p.m.	Hp = 0.150 m
Rzedna góma zwieńczenia:	99.85 m n.p.m.	Grubość ścianki:
		S = 0.150 m
Rzędna dna kanału wlotowego:	96.36 m n.p.m.	Wysunięcie podbudowy:
Rzędna dna studzienki:	96.20 m n.p.m.	G = 0.150 m
		Min. odległ. kinety od dna studni:
		Hmin = 0.163 m
		1
	Zapisz w szablonie	OK Anuluj

Rys. 75. Wymiary dla węzła: 'Końcowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Grubość podbudowy"/"Wysunięcie podbudowy" – pole służące do wpisywania wymiarów podbudowy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

3.8.11 Studzienka inspekcyjna tworzywowa

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt studzienka inspekcyjna

tworzywowa służy do zmiany kierunku, średnicy lub spadku profilu sieci. Do tego obiektu możemy dołączyć tylko wybrane typoszeregi rurociągów uzależnione od wybranego typu studzienki i producenta. Studzienka może być węzłem źródłowym, połączeniowym i końcowym. Oznacza to, że można podłączyć n wlotów i jeden wylot. Obiekt ten można

wstawić w dowolnym typie kanalizacji. Obiekt do obliczeń przepływu rury wylotowej sumuje wszystkie wloty, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Studzienki te są wyposażone w kinetę, które pozwalają na podłączenie do trzech wlotów. Obiekty te wykonane są z tworzywa sztucznego z zakresem średnic od 0.315 do 1.0 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Ø" – pole służące do doboru średnicy studzienki uzależnionej od wybranego producenta i podłączonej do obiektu rury.

Właściwości elementu: Obiekt łączący *
Zarządzanie elementem
ld elementu 0
Parametry
Wygląd
Pisaki Czcionki Powierzchnie
Grupa elementów: Studzienka inspekcyina tworzywowa
Producent: GAMRAT
Parametry
Symbol: S - 16 Węzel: Żródło → Średnica wewnętrzna: 0.315 → m Typ zwieńczenia:
Teleskop z włazem
Typ włazu:
Rura teleskopowa śr. 0.315 m z włazem żeliwnym śr. 0.315 w Klasa obciążenia: A15 w Dobór średnicy Dobór średnicy Dobór średnicy
Typ sieci: Kanalizacja grawitacyjna 🔻
Typoszereg rur: GAMRAT rury lite kielichowe klasy L
Dobierz średnicę wg przepływu:
Średnica wylotu: 0.16 🔻 m
Spadek: 2.00 %
Zapisz w szablonie

Rys. 76. Okno dialogowe dla elementu 'Studzienka inspekcyjna tworzywowa'

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia studzienki. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład obiektu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów studzienki (redukcje, teleskopy, pierścienie odciążające, adaptery, itp.)

Pole "Typ włazu" – pole pozwalające na szczegółowy wybór typu włazu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia włazu" – pole służące do wyboru z listy klasy obciążenia włazu, uzależnione od wybranego typu włazu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.11.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x DN^2} \,[\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	ylotowej Wymiary				
Typ sieci:	Kanalizacja ciśnieniowa 🔻				
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹				
Dobierz średni Q =	cę wg przepływu: 10.00 dm ²				
Vmax =	5.0 m S				
Spadek:	2.0 %				
Prędkość V =	5.1 m				
Średnica DN =	0.050 m				
	Zapisz w szablonie 💌 OK Anuluj				

Rys. 77. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy w	ylotowej Wymiary					
Typ sieci:	Kanalizacja ciśnieniowa 🔻					
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹					
Dobierz średni	icę wg przepływu:					
Średnica wylotu:	0.05 v m					
Spadek:	2.00 %					
	Zapisz w szablonie					

Rys. 78. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.11.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik Manninga wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

 $\mathsf{K}=4\bullet\sqrt{g}\cdot\left(\frac{32}{D}\right)^{\frac{1}{6}}\cdot log\left(\frac{3,7\cdot D}{k}\right)[\mathsf{m}^{1/3}\bullet\ \mathsf{s}^{-1}],$

gdzie:

- K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],
- g- stała grawitacji, [m/s²],
- D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

posa	zereg rur:	Rury kar	nionkowe k	ielichowe				-
Dol	u bierz średnic	e wa prz	epływu:					
	Średnic	i[%]	V[m/s]	Napełnienie[%]		Q =	10.00	dm ³ s
	0.150	2.0	1.4	42.1		Dobrar	ne parametry	/
2	0.150	9.0	2.4	28.2		Spadek:	2.0	%
3	0.150	8.0	2.3	29.1		Predkość V =	14	m
1	0.150	4.0	1.8	34.9		Średnica DN =	0.450	S
5	0.150	4.5	1.9	33.8			0.150	m
6	0.150	7.0	2.2	30.2				
7	0.150	2.5	1.5	39.6				
3	0.150	14.0	2.8	25.2	_			
•	0.150	10.0	2.0	05.0				

Rys. 79. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór średnicy w	ylotowej Wymiary					
Typ sieci:	Kanalizacja grawitacyjna 🔹					
Typoszereg rur:	Rury kamionkowe kielichowe 🔻					
Dobierz średnicę wg przepływu:						
Średnica wylotu: 0.15 🗸 m						
Spadek:	2.00 %					
	Zapisz w szablonie					

Rys. 80. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.
3.8.11.3 Zakładka dobór kinety

Zakładka ta służy użytkownikowi do doboru typu kinety. Studzienki przepływowe mają kilka typów kinet do, których można podłączyć 1, 2 i 3 wloty pod kątem od 30° do 90 °.

Dobór średnicy Dobór kinety Wymiary Typ kinety Połączeniowa III	•]				
D1	Nr	Średnica	а	wej		
	D1	0.200	0.0	wlot		
	D2	0.200	60.0	wlot		
	D	0.200	0.0	wylot		
				ОК	Anuluj	

Rys. 81. Zakładka doboru kinety

Pole "Typ kinety" – pole służące do wyboru jednego z kilku typów kinet, które zdefiniują nam ile można podłączyć dodatkowych wlotów i pod jakim kątem. Maksymalna ilość wlotów do kinety to trzy. Do każdego typu kinety podłączony jest rysunek, który pozwoli na zapoznanie się z wyborem.

Tabela "Parametry kinety" – tabela ta pozwala na podgląd wybranego typu kinety, składa się z czterech kolumn, w których kolejno podane są informacje o nazwie wlotu i wylotu, dobranej średnicy, kącie i typie włączenia rurociągu (wlotowy, wylotowy)

3.8.11.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór średnicy Dobór kinety V	Vymiary	
Parametry wysok	ościowe	Wymiary
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu: Hwł = 0.495
Rzędna terenu istniejącego:	100.00 m n.p.m.	
Rzędna góma włazu:	100.00 m n.p.m.	Wysokość podstawy: Hp = 0.150 m
Rzędna dna kanału wylotowego:	98.20 m n.p.m.	Wysokość prześwitu:
Rzędna dna studzienki:	98.20 m n.p.m.	Hmin = 0.100 m
	Zapisz w szablonie	OK Anuluj

Rys. 82. Wymiary dla węzła źródłowego

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i włazu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

Dobór średnicy Dobór kinety	Wymiary	
Parametry wyso	kościowe	Wymiary
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu:
Rzędna terenu istniejącego:	100.00 m n.p.m.	1111 - 0.033
Rzedna góma włazu:	100.00 m n.p.m.	Wysokość podstawy:
		Hp = 0.150 m
Rzędna dna kanału włotowego:	97.28 m n.p.m.	Wysokość prześwitu:
Rzędna dna kanału wyłotowego:	97.28 m n.p.m.	Hmin = 0.100 m
Rzędna dna studzienki:	97.28 m n.p.m.	
	Zapisz w szablonie	OK Anuluj

Rys. 83. Wymiary dla węzła połączeniowy

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do podglądu rzędnej dna kanału wylotowego z obiektu. Wartość wyliczana jest na podstawie Różnicy wlot/wylot wg wzoru Rz.d.k.wyl = Rz.d.k.wl – Różnica wlot/wylot. Dodatkowo uwzględniany jest tu warunek, że wartość wyliczona z wzoru nie może być mniejsza od Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Różnica wlot/wylot" – pole służące do wpisania wartości różnicy między rzędna dna kanału wlotowego, a rzedną dna kanału wylotowego. na podstawie tej wartości wyliczana jest rzędna dna kanału wylotowego.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

Wymiary		
Parametry wyso	kościowe	Wymiary
Rzędna terenu projektowanego: Rzędna terenu istniejącego: Rzędna góma włazu:	100.00 m n.p.m. 100.00 m n.p.m. 100.00 m n.p.m.	Wysokość włazu: Hwł = 0.035 Wysokość podstawy: Hp = 0.150 m
Rzędna dna kanału włotowego: Rzędna dna studzienki:	97.01 m n.p.m. 97.01 m n.p.m.	Wysokość prześwitu: Hmin = 0.100 m
	Zapisz w szablonie	OK Anuluj

Rys. 84. Wymiary dla węzła końcowego

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

3.8.12 Studzienka osadnikowa tworzywowa

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt studzienka osadnikowa

 \odot

tworzywowa służy do zmiany kierunku, średnicy lub spadku profilu sieci. Do tego obiektu możemy dołączyć tylko wybrane typoszeregi rurociągów uzależnione od wybranego typu studzienki i producenta. Studzienka może być węzłem źródłowym, połączeniowym i końcowym. Oznacza to, że można podłączyć n wlotów i jeden wylot. Obiekt ten można

wstawić w dowolnym typie kanalizacji. Obiekt do obliczeń przepływu rury wylotowej sumuje wszystkie wloty, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Studzienki te są wyposażone w osadnik, którego pojemność zależy od wybranego typu. Obiekty te wykonane są z tworzywa sztucznego z zakresem średnic od 0.315 do 1.0 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Ø" – pole służące do doboru średnicy studzienki uzależnionej od wybranego producenta i podłączonej do obiektu rury.

Pole "V" – pole służące do doboru objętości osadnika, wyświetlane wartości uzależnione są od wybranego producenta, podłączonej rury wlotowej i dobranej średnicy studzienki. na podstawie tego pola program automatycznie zawęża listę dostępnych typów zwieńczeń studzienki. Wartość podawana w dm³ (litrach).

Właściwości elementu: Obiekt łączący	
Zarządzanie elemen	item
ld elementu 26	
Parametry	
Wygląd	
Pisaki 🔻 Czcionki 🔻 Powierzchnie 👻	
Element	
Grupa elementów: Studzienka osadnikowa two	zywowa 🔻
Producent: KACZMAREK	
Parametry	
Symbol: S - 16	Rz.t. Rz.wł.
Węzeł: Źródło 👻	
φ= 0.315 → m V 30.00 → dm ³	
Typ zwieńczenia:	DN IDN
Stożek odciążający+pokrywa	
Typ włazu:	
Pokrywa betonowa kl. A15	TRzdet
Klasa obciążenia: A15 👻	
Dobór średnicy Wymiary	
Parametry wysokościowe	Wymiary
Rzedna terenu projektowanego: 100.00 m n.p.m.	Wysokość włazu:
	Hwł = 0.080
Hzędna terenu istniejącego: 100.00 m n.p.m.	Wyrakaść podstawa
Rzędna góma włazu: 100.00 m n.p.m.	Hp = 0.150 m
Rzędna dna kanału wylotowego: 98.20 m n.p.m.	
	Wysokość prześwitu:
Kzędna dna studzienki: 97.30 m n.p.m.	
L	
7	
	OK Anuluj

Rys. 85. Okno dialogowe dla elementu 'Studzienka osadnikowa tworzywowa'

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia studzienki. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład obiektu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów studzienki (redukcje, teleskopy, pierścienie odciążające, adaptery, itp.)

Pole "Typ włazu" – pole pozwalające na szczegółowy wybór typu włazu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia włazu" – pole służące do wyboru z listy klasy obciążenia włazu, uzależnione od wybranego typu włazu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.12.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	ylotowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔹
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średni	icę wg przepływu:
Q =	10.00 dm ³ /s
Vmax =	5.0 m
	Dobrane parametry
Spadek:	2.0 %
Prędkość V =	5.1 <u>m</u>
Średnica DN =	0.050 m
	Zapisz w szablonie

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy w	ylotowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔻
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średni	icę wg przepływu:
Średnica wylotu:	0.05 • m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 87. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.12.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

posa	zereg rur:	Rury kan	nionkowe k	ielichowe				•
Do	bierz średni	cę wg prz	epływu:					- J 3
р.	Średnic	. i[%]	V[m/s]	Napełnienie[%]	*	Q =	10.00	s
	0.150	2.0	1.4	42.1		Dobrar	ne parametr	/
2	0.150	9.0	2.4	28.2		Spadek:	2.0	%
3	0.150	8.0	2.3	29.1		Predkość V =	14	<u>m</u>
1	0.150	4.0	1.8	34.9		Á	0.450	S
5	0.150	4.5	1.9	33.8		Srednica DN =	0.150	m
6	0.150	7.0	2.2	30.2				
7	0.150	2.5	1.5	39.6				
3	0.150	14.0	2.8	25.2	-			
`	0.100	10.0	2.0	05.0				

Rys. 88. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "V[m/s]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

	Dobór średnicy wylotowej Wymiary				
	Typ sieci:	Kanalizacja grawitacyjna 🔹			
	Typoszereg rur:	Rury kamionkowe kielichowe			
	Dobierz średnicę wg przepływu:				
	Średnica wylotu:	0.15 v m			
	Spadek:	2.00 %			
-					
		Zapisz w szablonie			

Rys. 89. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.12.3 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór średnicy Wymiary	
Parametry wysokościowe	Wymiary
Rzędna terenu projektowanego: 100.00 m n.p.m. Rzędna terenu istniejącego: 100.00 m n.p.m. Rzędna góma włazu: 100.00 m n.p.m. Rzedna dna kanału wyłotowego: 98.20 m n.p.m.	Wysokość włazu: Hwł = 0.080 Wysokość podstawy: Hp = 0.150 m
Rzędna dna studzienki: 97.30 m n.p.m.	Wysokość prześwitu: Hmin = 0.100 m
Zapisz w szablonie	OK Anuluj

Rys. 90. Wymiary dla węzła źródłowego

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i włazu, producenta.

pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

Dobór średnicy Wymiary		
Parametry wysol	kościowe	Wymiary
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu: Hwł = 0.090
Rzędna terenu istniejącego:	100.00 m n.p.m.	
Rzędna góma włazu:	100.00 m n.p.m.	Wysokość podstawy: Hp = 0.150 m
Rzędna dna kanału włotowego:	98.17 m n.p.m.	Wysokość prześwitu:
Rzędna dna kanału wylotowego:	98.17 m n.p.m.	Hmin= 0.100 m
Rzędna dna studzienki:	97.27 m n.p.m.	
Różnica włot/wyłot:	0.00 m	
	Zapisz w szablonie	OK Anuluj

Rys. 91. Wymiary dla węzła połączeniowy

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do podglądu rzędnej dna kanału wylotowego z obiektu. Wartość wyliczana jest na podstawie Różnicy wlot/wylot wg wzoru Rz.d.k.wyl = Rz.d.k.wl – Różnica wlot/wylot. Dodatkowo uwzględniany jest tu warunek, że wartość wyliczona z wzoru nie może być mniejsza od Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Różnica wlot/wylot" – pole służące do wpisania wartości różnicy między rzędna dna kanału wlotowego, a rzedną dna kanału wylotowego. na podstawie tej wartości wyliczana jest rzędna dna kanału wylotowego.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

Wymiary		
Parametry wyso	kościowe	Wymiary
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wysokość włazu: Hwł = 0.090
Rzędna góma włazu:	100.00 m n.p.m.	Wysokość podstawy: Hp = 0.150 m
Rzędna dna kanału włotowego:	98.14 m n.p.m.	Wysokość prześwitu:
Rzędna dna studzienki:	97.08 m n.p.m.	Hmin= 0.100 m
	Zapisz w szablonie	OK Anuluj

Rys. 92. Wymiary dla węzła końcowego

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna włazu" – pole służące do podglądu górnej rzędnej włazu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna studzienki" – pole służące do podglądu wartości dna studni. Wartość wyliczana jest w jednostce m npm.

Pole "Wysokość włazu" – pole służące do podglądu wysokości włazu Hwł. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

3.8.13 Trójnik

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt trójnik służy do łączenia

7

z sobą obiegów kanalizacyjnych. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy trójnika. Wg zasady, że każdy producent ma swoje typoszeregi kształtek

i rurociągów. Trójnik jest węzłem połączeniowym, do którego możemy podłączyć dwa wloty(D1, D2) i jeden wylot(D3). W obiekcie tym następuje sumowanie przepływów. Użytkownik może go wstawić do sieci jednym z dwóch ramion wlotowych.

Właściwości elementu:	Obiekt łączący
	Zarządzanie elementem
ld elementu	38
	Parametry
	Wygląd
Pisaki 🔻 C	zcionki 🔻 Powierzchnie 💌
	Element
Grupa elementów:	Trójnik 👻
Producent:	KACZMAREK -
	Parametry
Symbol: T - Węzeł: Połączeniow Typ sieci: Kanalizacja g	
Wymiary Dobór średr	nicy
Typoszereg kształtek:	
Kształtki kanalizacyjne	zew. PVC-U klasy L SN2 🔹
Typ trójnika:	
Trójnik równoprzelotow	▼ 45 Prawy
Punkt podłączenia ruły D2: 0	.16 ▼ m
Średnica: D1: 0.	.160 m Kat 45.0 °
D3: 0.	160 m Z1: 0.036 m Z2: 0.200 m Z3: 0.200 m
Dobrany element:	Trójnik równoprzelotowy 45 PVC-U
Nr. katalogowy:	844621329 Cena: 27.15 zł Masa: 0 kg
	Zapisz w szablonie

Rys. 93. Okno dialogowe dla elementu trójnik

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór jako 'Połączeniowy'.

Pole "Typ sieci" – pozwala na wybór jako '<u>Grawitacyjny'</u>.

3.8.13.1 Zakładka wymiary

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ trójnika" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

		IC III	danı I	CND							_
izacyji	le zew. F	VC-01	uasy L	. JINZ							<u> </u>
rzeloto	www.45 Pra	ww									Ţ
enia n	INY 43110		-								<u> </u>
)2: [0.16 🔻	m									
D1: [0.160	m	Kąt	45.0	٠						
03:	0.160	m	Z1:	0.036	m	Z2 :	0.200	m Z3:	0.200	m	
ent:	Trójnik r	ównoj	przelot	owy 45	PVC-U						-
/ :	844621	329		C	iena:	2	7.15 zł	Masa		0	kg
	rzeloto enia ru 22: (0)1: (0)3: (r:	zzecyjne zew. P ¹ rzelotowy 45 Prz enia rury: 12: 0.16 ▼ 0.160 03: 0.160 03: 0.160 mt: Trójnik r r: 844621	zacyjne zew. PVC-U ł rzelotowy 45 Prawy enia rury: D1 12: 0.16 ▼ m 01: 0.160 m 03: 0.160 m ent: Trójnik równoj r: 844621329	zzelotowy 45 Prawy enia rury: D1 → 12: 0.16 → m 21: 0.160 m Kąt 7: 0.160 m Z1: ent: Trójnik równoprzelot 844621329	zzecyjne zew. PVC-U klasy L SN2 rzelotowy 45 Prawy enia rury: D1 ▼ 12: 0.16 ▼ m 01: 0.160 m Kąt 0.160 m Z1: 0.036 ent: Trójnik równoprzelotowy 45 r: 844621329 C	zacyjne zew. PVC-U klasy L SN2 rzelotowy 45 Prawy enia rury: D1 → 12: 0.16 → m 01: 0.160 m Kąt 45.0 * 10: 0.160 m Z1: 0.036 m ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena:	zzelotowy 45 Prawy enia rury: D1 ▼ 12: 0.16 ▼ m 01: 0.160 m Kąt 45.0 ° 03: 0.160 m Z1: 0.036 m Z2: ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena: 2	zzelotowy 45 Prawy enia rury: D1 ▼ 12: 0.16 ▼ m 01: 0.160 m Kąt 45.0 ° 03: 0.160 m Z1: 0.036 m Z2: 0.200 ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena: 27.15 zł	zzelotowy 45 Prawy enia rury: D1 ♥ 12: 0.16 ♥ m 11: 0.160 m Kąt 45.0 ° 13: 0.160 m Z1: 0.036 m Z2: 0.200 m Z3: ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena: 27.15 zł Masa	zzelotowy 45 Prawy enia rury: D1 ▼ 12: 0.16 ▼ m 11: 0.160 m Kąt 45.0 * 10: 0.160 m Z1: 0.036 m Z2: 0.200 m Z3: 0.200 ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena: 27.15 zł Masa:	zzelotowy 45 Prawy ania rury: D1 ▼ 2: 0.16 ▼ m 01: 0.160 m Kąt 45.0 ° 03: 0.160 m Z1: 0.036 m Z2: 0.200 m Z3: 0.200 m ent: Trójnik równoprzelotowy 45 PVC-U r: 844621329 Cena: 27.15 zł Masa: 0

Rys. 94. Wymiary

Pole "Punkt podłączenia rury" – pole pozwalające użytkownikowi na dokładne zdefiniowanie do którego wlotu trójnika ma być podłączony rurociąg. Do wyboru mamy ramie D1 i D2.

Pole "D1:" lub "D2:" – pole uzależnione od wyboru typu w polu "Punkt podłączenia rury". Gdy w polu "Punkt podłączenia rury" zostanie wybrany D1 to wówczas użytkownik musi dobrać średnicę ramienia D2 z rozwijanej listy dostępnych średnic dla zadanych parametrów producenta, typoszeregu i średnicy D1, która uzależniona jest od podłączonego odcinka(program pobiera od niego średnicę).

W przypadku gdy w polu **"Punkt podłączenia rury"** wybierzemy D2 to wówczas użytkownik musi dobrać średnicę ramienia D1 z rozwijanej listy dostępnych średnic dla zadanych parametrów producenta, typoszeregu i średnicy D2, która uzależniona jest od podłączonego odcinka(program pobiera od niego średnicę).

Pole "D2:" lub **"D1:"** – pole to podobnie jak powyższe uzależnione jest od wybranej opcji w polu **"Punkt podłączenia rury"**. Służy użytkownikowi do podglądu średnicy przejmowanej z rurociągu. W zależności od wybranego typu punktu podłączeni rury gdy będzie to wartość D1 to w polu tym wyświetla się D1, natomiast gdy będzie D2 to w polu tym wyświetla się D2.

Pole "D3:" – pole to przyjmuje takie sama wartości jak D1 i jest średnicą wylotową z obiektu.

Pole "Kąt:" – pole służące do podglądu dobranego kąta ramienia D2 trójnika względem ramienia D1. Wartość podawana w stopniach.

Pole "Długość Z1" – pole wstawiające domyślnie wartość długości pierwszego ramienia D1 obiektu z bazy programu na podstawie dobranego typu i średnicy. Wpisywana wartość podawana jest w metrach.

Pole "Długość Z2" – pole wstawiające domyślnie wartość długości drugiego ramienia D2 obiektu z bazy programu na podstawie dobranego typu i średnicy. Wpisywana wartość podawana jest w metrach.

Pole "Długość Z3" – pole wstawiające domyślnie wartość długości trzeciego ramienia D3 obiektu z bazy programu na podstawie dobranego typu i średnicy. Wpisywana wartość podawana jest w metrach.

Pole "Nowy typoszereg rury" – pole wstawiające domyślnie wartość podłączonego rurociągu. Służy do zmiany typoszeregu rurociągu w zależności od wybranej opcji w polu "Punkt podłączenia rury". W przypadku wyboru D1 użytkownik może zamienić typoszereg wlotu D2. Gdy wybierze w polu "Punkt podłączenia rury" wartość D2 wówczas w polu tym może zmienić typoszereg wlotu D1 i wylotu D3 (do obu ramion można podłączyć tylko ten sam typoszereg).

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.13.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do szczegółowego doboru spadków na podstawie zadanej średnicy D3 (dla sieci typu grawitacyjnego). Do obliczeń został wykorzystany przekształcony wzór *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik Manninga wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

- K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],
- g- stała grawitacji, [m/s²],
- D- wewnętrzna średnica przewodu, [m],
- k- współczynnik chropowatości bezwzględnej przewodu, [m]

Typ sicci. Kanalizacja grawitacyjna 🔻									
ypos	zereg rur:	KACZMA	REK rury lite PVC-U klasy S SN8 ▼						
Lp.	Średnic.	i[%]	V[m/s]	Napełnienie[%]	-	Q =	10.00	dm ³ s	
1	0.160	4.5	1.9	31.0		Dobrane	parametry-		
2	0.160	5.0	2.0	30.1		Spadek:	2.0	%	
3	0.160	1.5	1.3	41.5	-	Predkość V =	1.4	<u>m</u>	
4	0.160	15.0	2.9	22.6	=	Ó de la compositione de la compo	0.100	S	
5	0.160	1.0	1.1	46.6		Srednica DIN =	0.160	m	
6	0.160	11.0	2.6	24.6					
7	0.160	0.8	1.0	49.7					
8	0.160	14.0	2.8	23.1					
9	0.160	10.0	2.5	25.3					
10	0.160	4.0	1.8	31.9					
11	0.160	13.0	2.7	23.5					
12	0.160	9.0	2.4	25.9					
13	0 160	12 0	27	24 0	Ŧ				
					2				

Rys. 95. Dobór średnicy dla instalacji kanalizacyjnej metodą analityczną

Wymiary Dobd	ir średnicy
Typ sieci:	Kanalizacja grawitacyjna 🔹
Typoszereg rur:	KACZMAREK rury z rdzeniem spenionym PVC-U klasy L SN2
Średnica wylotu	.: 0.16 ▼ m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 96. Dobór średnicy dla instalacji kanalizacyjnej metodą ręczną

Pole "Przepływ Q" – pole określające wartość przepływu wychodzącego z trójnika ramieniem D3.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %,

Kolumna "V[m/s]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy,

Kolumna **"Napełnienie[%]"** pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.14 Wpust betonowy

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt wpust betonowy osadnikowy

ma za zadanie odprowadzić nadmiar wody deszczowej z powierzchni ulic, chodników i dachów. Do tego obiektu możemy dołączyć wszystkie typu rurociągów. Wpust może być tylko węzłem źródłowym i połączeniowym. Oznacza to, że można podłączyć n wlotów i jeden wylot. Obiekt ten można wstawić tylko w kanalizacji deszczowej i ogólnospławnej.

Obiekt do obliczeń przepływu rury wylotowej sumuje wszystkie wloty i dodaje wartość wyliczoną w obliczeniach zlewni, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Wpusty te są wyposażone w osadnik, którego pojemność zależy od wybranego typu. Obiekty te wykonane są z betonu z zakresem średnic od 0.45 do 0.5 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do

szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Żródło'.

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Pole "Ø" – pole służące do doboru średnicy wpustu uzależnionej od wybranego producenta i podłączonej do obiektu rury.

Pole "V" – pole służące do doboru objętości osadnika, wyświetlane wartości uzależnione są od wybranego producenta, podłączonej rury wlotowej i dobranej średnicy wpustu. na podstawie tego pola program automatycznie zawęża listę dostępnych typów zwieńczeń wpustu. Wartość podawana w dm³ (litrach).

Właściwości elementu: Obiekt ła	ączący *		X
	Zarządzanie	elementem	
Id elementu 0			
	Param	etry	
		ıląd —	
Pisaki 🔹 Czcionki	Powierzchnie	•	
	Elem	ient	1
Grupa elementów:	Vpust betonowy osad	Inikowy	
Producent:	IB ŁOWICZ		•
Carboli Min 1	Farame	ary-	Dz wn
Wezeł: Żródko - I	1	1 Rz.t.	Com -
¢= 0.500 ▼ m [*] 30.00	▼] dm²		
Typ zwiericzenia.			IDN
Piescien dys.+pierscien odc.+pok	rywa z otw. 👻		Rz.d.k.
			IDe dama
Wpust uliczny typu 6/ BK bez Koł	nierza 🔻		N. C. C. WD.
Nasa obciązenia. B12:			
Dobor ziewni Dobor średnicy	Wymiary		Malananaka antaisain darara
Metoda obliczeniowa: Grani	cznych natężeń	•	maksymaine natężenie deszczu
Typ zlewni	A. zl. [m²]	Współ.	Misendaina entetenia deseau
Chodniki nie pokryte płytami	1000.0	0.500	
			Współczynnik typu zlewni
			n= 4
			Obliczono
			F ₂₇ = 0.0500 ha
			Q _{max} = 15.00 <u>dm³</u>
			S
Dodai Usuń			
	Zapiez w ezebler	ia 🗣	OK Amitri
	Zapisz w szabion		

Rys. 97. Okno dialogowe elementu 'Wpust betonowy osadnikowy,

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia wpustu. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład wpustu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów wpustu (redukcje, pierścienie odciążające, itp.)

Pole "Typ wpustu" – pole pozwalające na szczegółowy wybór typu wpustu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia wpustu" – pole służące do wyboru z listy klasy obciążenia wpustu, uzależnione od wybranego typu wpustu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.14.1 Zakładka dobór zlewni

Obiekt ten umożliwia użytkownikowi na wybór jednego z dwóch sposobów zdefiniowania przepływu obliczeniowego. Pierwszy to wpisanie ręcznie interesującej nas wartości Q w zakładce dobór średnicy Drugi to przejęcie z podłączonego wlotu wartości Q(ustawiony automatycznie w przypadku nie wypełnienia tabelki obliczeń zlewni) i dodatkowe obliczenie przepływu na podstawie typu i powierzchni zlewni. Obliczenia wykonywane są jednym z dwóch sposobów:

Granicznych natężeń deszczu wyliczanym z wzoru:

 $Q = qmax \cdot Fzr \ [dm^3/s]$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qmax – miarodajne natężenie deszczu, liczone jako zmienne dla każdego przekroju węzłowego i jednocześnie maksymalne, które daje największy przepływ obliczeniowy przy założeniu, że największe natężenie przepływu daje deszcz o czasie trwania równym czasowi dopływu ścieków do rozpatrywanego węzła, licząc od początku układu kanalizacyjnego, [dm³/ s • ha],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

 $Fzr = \Psi \bullet A zl. \bullet 0,0001$ [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Stałych natężeń deszczu wyliczanym z wzoru:

$$Q = qm \cdot Fzr \cdot \varphi \quad [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qm – natężenie deszczu miarodajnego, będące stałą klimatyczną, którą w warunkach polskich należy przyjmować jako natężenie deszczu o czasie trwania równym 10 min, [dm³/ s • ha],

 φ - współczynnik opóźnienia dopływu, wartość bezwymiarowa wyliczana z wzoru:

$$\varphi = \frac{1}{\sqrt[n]{A_{Zl \cdot 0,0001}}} \, [\text{-}]$$

gdzie:

n – współczynnik kształtu zlewni przyjmowany w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

A zl. – rzeczywista powierzchnia zlewni, [m²],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

 $Fzr = \Psi \bullet A zl. \bullet 0,0001$ [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Dobór zlewni Dobór średnicy Wy	miary		
Metoda obliczeniowa: Graniczny	ych natężeń	•	Maksymalne natężenie deszczu
Typ zlewni	A. zl. [m²]	Współ.	Miandaina patatania daaraatu
Chodniki nie pokryte płytami	1000.0	0.500	q_{m-} 100 $\frac{dm^3}{sha}$
			Współczynnik typu zlewni n= 4
			Obliczono
			F _{zr} = 0.0500 ha
			Q _{max} - 15.00 dm ³ /s
Dodaj Usuń			
[Zapisz w szablon	ie	OK Anuluj

Rys. 98. Obliczenia przepływu metoda granicznych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Maksymalne natężenie deszczu q max" – pole służące do wpisania max natężenia deszczu dla metody granicznych natężeń. Użytkownik powinien przyjmować wartości w zakresie normy PN-92/B-01707 (150, 200, 300, 400 dm3/ s • ha) lub obliczyć z wzoru:

q max =
$$\frac{A}{t^{0,67}}$$
 dm3/ s • ha

gdzie:

A – współczynnik liczbowy charakteryzujący warunki hydrologiczne obszaru oraz przyjęty przez projektanta okres jednokrotnego przekraczania deszczu o danym natężeniu,

t – czas trwania deszczu miarodajnego, [min].

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Przycisk "Dodaj" służy do dodawania wierszy do tabeli obliczeniowej.

Usuń

Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr i miarodajnego natężenia deszczu qmax. Wartość podawana w dm3/ s.

Dobór zlewni Dobór średnicy N	Wymiary							
Metoda obliczeniowa: Stałyc	h natężeń	•	Maksymalne natężenie deszczu					
Typ zlewni	A. zl. [m²]	Współ.	q _{max} - <u>300</u> <u>dm³</u> sha					
Chodniki nie pokryte płytami	1000.0	0.500	qm- 100 dm ³ /stha					
			Współczynnik typu zlewni					
			n= 4					
			F _{zr} - 0.0500 ha					
			Q _{max} - 8.89 <u>dm³</u>					
Dodaj Usuń								
	Zapisz w szablonie							

Rys. 99. Obliczenia przepływu metoda stałych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Miarodajne natężenie deszczu qm" – pole służące do wpisania miarodajnego natężenia deszczu dla metody stałych natężeń. Użytkownik powinien przyjmować wartości w zależności od strefy klimatycznej. Program domyślnie ma ustawioną wartość 100 dm3/ s • ha.

Pole "Współczynnik typu zlewni n" – pole służące do wpisania współczynnika zlewni przyjmowanego w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj **Przycisk "Dodaj"** służy do dodawania wierszy do tabeli obliczeniowej.

Usuń **Przycisk "Usuń"** służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr, miarodajnego natężenia deszczu qmax i współczynnika opóźnienia odpływu. Wartość podawana w dm3/ s.

3.8.14.2 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 x Q}{\pi x V max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór zlewni D	bór średnicy Wymiary					
Typ sieci:	Kanalizacja ciśnieniowa 🔹					
Typoszereg rur:	AMRAT rury ciśnieniowe PE 80 SDR11 🔹					
🔽 Dobierz średni	cę wg przepływu:					
📝 edycja przep	ywu					
Q =	10.00 dm ³ /s					
Vmax =	5.0 m					
	Dobrane parametry-					
Spadek:	2.0 %					
Prędkość V =	5.1 <u>m</u>					
Średnica DN =	0.050 m					
·						
	Zapisz w szablonie 💌 OK Anuluj					

Rys. 100. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór zlewni C	obór średnicy Wymiary	
Typ sieci:	Kanalizacja ciśnieniowa 🔻	
Typoszereg rur:	GAMRAT rury ciśnieniowe PE 80 SDR11	•
Dobierz średn	icę wg przepływu:	
Średnica wylotu:	0.2 v m	
Spadek:	2.00 %	
	Zapisz w szablonie	OK Anuluj

Rys. 101. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.14.3 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3.7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

oosa	zereg rur:	Rury karr	ionkowe k	ielichowe				•
Dol	bierz średnic	ę wg prz	epływu:					
р.	Średnic	i[%]	V[m/s]	Napełnienie[%]		edycja przepł	ywu	
	0.200	0.7	0.9	37.1		Q =	10.00	dm ³
	0.200	0.4	0.8	43.3	Ε	Dobran	ne paramet	ry —
	0.200	0.9	1.0	34.7		Spadek:	2.0	2
	0.200	15.0	2.8	16.9				m
	0.200	12.0	2.6	17.9		Prędkość V =	1.4	s
	0.200	0.5	0.8	40.7		Średnica DN =	0.200	m
	0.200	9.0	2.3	19.3				
1	0.200	4.5	1.8	22.9				
	0.200	6.0	2.0	21.3				
n	0.500	10	11	22.7				

Rys. 102. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór zlewni	Dobór średnicy Wymiary
Typ sieci:	Kanalizacja grawitacyjna 🔻
Typoszereg r	ur: Rury kamionkowe kielichowe
📃 Dobierz śr	rednicę wg przepływu:
Średnica wy	lotu: 0.2 🗸 m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 103. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.14.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór zlewni Dobór średnicy	Wymiary	
Parametry wyso	kościowe	🔲 Dodaj kosz osadnikowy
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wymiary
Rzędna terenu istniejącego:	100.00 m n.p.m.	Wysokość wpustu:
Rzędna góma wpustu:	100.00 m n.p.m.	Hwp = 0.250 Wysokość podstawy:
Rzędna dna kanału wylotowego:	98.20 m n.p.m.	Hp = 0.150 m Grubość ścianki:
Rzędna dna wpustu:	97.51 m n.p.m.	S = 0.080 m
		Wcięcie podstawy:
		G = 0.080 m
	Zapisz w szablonie	OK Anuluj

Rys. 104. Wymiary dla elementu 'Wpust deszczowy osadnikowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna wpustu" – pole służące do podglądu górnej rzędnej wpustu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wp. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna wpustu" – pole służące do podglądu wartości rzędnej dna wpustu podanej w m npm.

Pole "Dodaj kosz osadnikowy" − pole służące do dodawania do zestawienia materiałów kosza osadnikowego.

Pole "Wysokość wpustu" – pole służące do podglądu wysokości wpustu Hwp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisania lub podglądu grubości ścian wpustu S pobranej z bazy programu na podstawie dobranych parametrów. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisania lub podglądu wcięcia podstawy wpustu G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość min Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a kręgiem betonowym obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

3.8.15 Wpust osadnikowy tworzywowy

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt wpust osadnikowy

tworzywowy ma za zadanie odprowadzić nadmiar wody deszczowej z powierzchni ulic, chodników i dachów. Do tego obiektu możemy dołączyć tylko wybrane typoszeregi rurociągów uzależnione od wybranego typu wpustu i producenta. Wpust może być tylko węzłem źródłowym i połączeniowym. Oznacza to, że można podłączyć n wlotów i jeden

wylot. Obiekt ten można wstawić tylko w kanalizacji deszczowej i ogólnospławnej. Obiekt do obliczeń przepływu rury wylotowej sumuje wszystkie wloty i dodaje wartość wyliczoną w obliczeniach zlewni, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Wpusty te są wyposażone w osadnik, którego pojemność zależy od wybranego typu. Obiekty te wykonane są z tworzywa sztucznego z zakresem średnic od 0.315 do 1.0 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Żródło'.

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Pole "Ø" – pole służące do doboru średnicy wpustu uzależnionej od wybranego producenta i podłączonej do obiektu rury.

Pole "V" – pole służące do doboru objętości osadnika, wyświetlane wartości uzależnione są od wybranego producenta, podłączonej rury wlotowej i dobranej średnicy wpustu. na podstawie tego pola program automatycznie zawęża listę dostępnych typów zwieńczeń wpustu. Wartość podawana w dm³ (litrach).

Właściwości elementu: Obiekt łączący *						
Zarządzanie elementem						
ld elementu 0						
Parametry						
Wygląd						
Pisaki 🔻 Czcionki 💌 Powierzchnie 💌						
Grupa elementów: Wpust o	sadnikowy tw	orzywowy				
Producent: Normow	Parama		▼			
Symbol: Wp - 1 Węzel: Źródło • • = 0.315 • m V 70.00 • dr Typ zwieńczenia: Teleskop Typ wpustu: Wpust deszczowy żeliwny kl. B125 Klasa obciążenia: B125 • Dobór zlewni Dobór średnicy Wymiał Metoda obliczeniowa: Granicznych	n ³	• • •	Rz.t. Rz.wp. I Rz.d.k.wy. Rz.d.k.wy. Rz.d.k.wp. Rz.d.k.wp. Maksymalne natężenie deszczu			
Typ zlewni	A zl [m²]	Współ	. q _{max} - <u>300</u> <u>am</u> ² s·ha			
Chodniki pokryte płytami Dodaj Usuń	1000.0	0.600	Miarodajne natężenie deszczu qm- 100 sha Współczynnik typu zlewni n= 4 Obliczono Fzr- 0.0600 ha Q _{max} - 18.00 dm ² /s			
Zapisz w szablonie						

Rys. 105. Okno dialogowe dla elementu 'Wpust osadnikowy tworzywowy"

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia wpustu. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład wpustu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów wpustu (redukcje, teleskopy, pierścienie odciążające, adaptery, itp.)

Pole "Typ wpustu" – pole pozwalające na szczegółowy wybór typu wpustu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia wpustu" – pole służące do wyboru z listy klasy obciążenia włazu, uzależnione od wybranego typu wpustu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.15.1 Zakładka dobór zlewni

Obiekt ten umożliwia użytkownikowi na wybór jednego z dwóch sposobów zdefiniowania przepływu obliczeniowego. Pierwszy to wpisanie ręcznie interesującej nas wartości Q w zakładce dobór średnicy

Drugi to przejęcie z podłączonego wlotu wartości Q(ustawiony automatycznie w przypadku nie wypełnienia tabelki obliczeń zlewni) i dodatkowe obliczenie przepływu na podstawie typu i powierzchni zlewni. Obliczenia wykonywane są jednym z dwóch sposobów:

Granicznych natężeń deszczu wyliczanym z wzoru:

 $Q = qmax \cdot Fzr \ [dm^3/s]$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qmax – miarodajne natężenie deszczu, liczone jako zmienne dla każdego przekroju węzłowego i jednocześnie maksymalne, które daje największy przepływ obliczeniowy przy założeniu, że największe natężenie przepływu daje deszcz o czasie trwania równym czasowi dopływu ścieków do rozpatrywanego węzła, licząc od początku układu kanalizacyjnego, [dm³/ s • ha],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

$$Fzr = \Psi \bullet A zl. \bullet 0,0001$$
 [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Stałych natężeń deszczu wyliczanym z wzoru:

$$Q = qm \cdot Fzr \cdot \varphi \quad [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qm – natężenie deszczu miarodajnego, będące stałą klimatyczną, którą w warunkach polskich należy przyjmować jako natężenie deszczu o czasie trwania równym 10 min, [dm³/ s • ha],

 φ - współczynnik opóźnienia dopływu, wartość bezwymiarowa wyliczana z wzoru:

$$\varphi = \frac{1}{\sqrt[n]{A_{zl \cdot 0,0001}}} [-]$$

gdzie:

n – współczynnik kształtu zlewni przyjmowany w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

A zl. – rzeczywista powierzchnia zlewni, [m²],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

 $Fzr = \Psi \bullet A zl. \bullet 0,0001$ [ha]

gdzie:

 $\Psi-$ współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni w
g tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Dobór zlewni Dobór średnie	cy Wymiary					
Metoda obliczeniowa:	iranicznych natężeń	•	Maksymalne natężenie deszczu			
Typ zlewni	A. zl. [m²]	Współ.	Miaradaine pateiterie destatu			
Chodniki nie pokryte płytam	ii 1000.0	0.500	$\begin{array}{c} q_{m-} & 100 & dm^{2} \\ g_{m-} & 100 & sha \\ Współczynnik typu zlewni \\ n= & 4 \\ Obliczono \\ F_{zr-} & 0.0500 & ha \\ Q_{mzc-} & 15.00 & dm^{3} \\ \end{array}$			
Dodaj Usuń						
Zapisz w szablonie						

Rys. 106. Obliczenia przepływu metoda granicznych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Maksymalne natężenie deszczu q max" – pole służące do wpisania max natężenia deszczu dla metody granicznych natężeń. Użytkownik powinien przyjmować wartości w zakresie normy PN-92/B-01707 (150, 200, 300, 400 dm3/ s • ha) lub obliczyć z wzoru:

q max =
$$\frac{A}{t^{0,67}}$$
 dm3/ s • ha

gdzie:

A – współczynnik liczbowy charakteryzujący warunki hydrologiczne obszaru oraz przyjęty przez projektanta okres jednokrotnego przekraczania deszczu o danym natężeniu,

t – czas trwania deszczu miarodajnego, [min].

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj **Przycisk "Dodaj"** służy do dodawania wierszy do tabeli obliczeniowej.

Usuń

Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr i miarodajnego natężenia deszczu gmax. Wartość podawana w dm3/s.

Dobór zlewni Dobór śrec	dnicy Wymian	1		
Metoda obliczeniowa:	Stałych natęż	eń	•	Maksymalne natężenie deszczu
Typ zlewni		A. zl. [m²]	Współ.	Miamdaina patatania desparu
Chodniki nie pokryte płyt	ami	1000.0	0.500	$q_{m-100} \frac{dm^3}{sha}$
				Współczynnik typu zlewni n= 4
				Obliczono
				F _{zr} = 0.0500 ha
				Q _{max} - 8.89 <u>dm³</u>
Dodaj Usuń				
	Zapi	sz w szablon	ie	OK Anuluj

Rys. 107. Obliczenia przepływu metoda stałych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Miarodajne natężenie deszczu qm" – pole służące do wpisania miarodajnego natężenia deszczu dla metody stałych natężeń. Użytkownik powinien przyjmować wartości w zależności od strefy klimatycznej. Program domyślnie ma ustawioną wartość 100 dm3/ s • ha.

Pole "Współczynnik typu zlewni n" – pole służące do wpisania współczynnika zlewni przyjmowanego w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj

Przycisk "Dodaj" służy do dodawania wierszy do tabeli obliczeniowej.

Usuń Przycisk "Usuń" służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr, miarodajnego natężenia deszczu qmax i współczynnika opóźnienia odpływu. Wartość podawana w dm3/ s.

3.8.15.2 Zakładka dobór średnicy wylotowej.

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3.7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pozwala na wybór: 'Grawitacyjny'

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

oosz	zereg rur:	Rury kan	nionkowe k	ielichowe				•
Dol	bierz średnic	ę wg prz	epływu:					
р.	Średnic	i[%]	V[m/s]	Napełnienie[%]		🔽 edycja przep	lywu	
	0.200	0.7	0.9	37.1	- 1	Q =	10.00	dm ³
2	0.200	0.4	0.8	43.3	Ε	Dobrar	ne paramet	s iry
}	0.200	0.9	1.0	34.7		Spadek:	20	ן א וי
Ļ	0.200	15.0	2.8	16.9				
5	0.200	12.0	2.6	17.9		Prędkość V =	1.4	s
5	0.200	0.5	0.8	40.7		Średnica DN =	0.200	m
7	0.200	9.0	2.3	19.3				
8	0.200	4.5	1.8	22.9				
)	0.200	6.0	2.0	21.3				
n	0.500	10	11	22.7				

Rys. 108. Wybór metody analitycznej doboru średnicy

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór zlewni	bór średnicy Wymiary				
Typ sieci:	Kanalizacja grawitacyjna 🔻				
Typoszereg rur: Rury kamionkowe kielichowe					
Dobierz średnicę wg przepływu:					
Średnica wylotu	0.2 v m				
Spadek:	2.00 %				
	Zapisz w szablonie				

Rys. 109. Wybór metody ręcznej doboru średnicy

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.15.3 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór zlewni Dobór średnicy	Wymiary				
Parametry wyso	kościowe	🔲 Dodaj kosz osadnikowy			
Rzędna terenu projektowanego:	100.00 m n.p.m.	Wymiary			
Rzędna terenu istniejącego:	100.00 m n.p.m.	Wysokość wpustu: Hwp = 0.045			
Rzędna górna wpustu:	100.00 m n.p.m.	Whenlastic and there is			
Rzędna dna kanału wylotowego:	98.20 m n.p.m.	Hp = 0.150 m			
Rzędna dna wpustu:	97.30 m n.p.m.	Wysokość prześwitu:			
		Hmin = 0.150 m			
	Zapisz w szablonie	OK Anuluj			

Rys. 110. Zakładka wymiary dla obiektu 'Wpust osadnikowy tworzywowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna wpustu" – pole służące do podglądu górnej rzędnej wpustu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna wpustu" – pole służące do podglądu wartości rzędnej dna wpustu podanej w m npm.

Pole "Dodaj kosz osadnikowy" – pole służące do dodawania do zestawienia materiałów kosza osadnikowego.

Pole "Wysokość wpustu" – pole służące do podglądu wysokości wpustu Hwp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.
Dobór zlewni Dobór średnicy Wymiary	
Parametry wysokościowe	Dodaj kosz osadnikowy
Rzędna terenu projektowanego: 100.00 m n.p.m.	Wymiary
Rzędna terenu istniejącego: 100.00 m n.p.m.	Wysokość wpustu: Hwp = 0.045
Rzędna góma wpustu: 100.00 m n.p.m.	Wyraka ść podstawy
Rzędna dna kanału włotowego: 98.25 m n.p.m.	Hp = 0.150 m
Rzędna dna kanału wyłotowego: 98.25 m n.p.m.	Wysokość prześwitu:
Rzędna dna kinety wpustu: 97.59 m n.p.m.	Hmin = 0.150 m
Różnica włot/wyłot: 0.00 m	
	OK Anuluj

Rys. 111. Wymiary dla węzła połączeniowy

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna wpustu" – pole służące do podglądu górnej rzędnej wpustu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do podglądu rzędnej dna kanału wylotowego z obiektu. Wartość wyliczana jest na podstawie Różnicy wlot/wylot wg wzoru Rz.d.k.wyl = Rz.d.k.wl – Różnica wlot/wylot. Dodatkowo uwzględniany jest tu warunek, że wartość wyliczona z wzoru nie może być mniejsza od Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna wpustu" – pole służące do podglądu wartości rzędnej dna wpustu podanej w m npm.

Pole "Różnica wlot/wylot" – pole służące do wpisania wartości różnicy między rzędna dna kanału wlotowego, a rzedną dna kanału wylotowego. na podstawie tej wartości wyliczana jest rzędna dna kanału wylotowego.

Pole "Dodaj kosz osadnikowy" – pole służące do dodawania do zestawienia materiałów kosza osadnikowego.

Pole "Wysokość wpustu" – pole służące do podglądu wysokości wpustu Hwp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

3.8.16 Wpust przepływowy tworzywowy

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt wpust przepływowy

tworzywowy ma za zadanie odprowadzić nadmiar wody deszczowej z powierzchni ulic, chodników i dachów. Do tego obiektu możemy dołączyć tylko wybrane typoszeregi rurociągów uzależnione od wybranego typu wpustu i producenta. Wpust może być tylko węzłem źródłowym i połączeniowym. Oznacza to, że można podłączyć n wlotów i jeden

wylot. Obiekt ten można wstawić tylko w kanalizacji deszczowej i ogólnospławnej. Obiekt do obliczeń przepływu rury wylotowej sumuje wszystkie wloty i dodaje wartość wyliczoną w obliczeniach zlewni, użytkownik może wpisać własną wartość, która zostanie przekazana dalej. Obiekty te wykonane są z tworzywa sztucznego z zakresem średnic od 0.315 do 1.0 m.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Żródło'.

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Pole "Ø" – pole służące do doboru średnicy wpustu uzależnionej od wybranego producenta i podłączonej do obiektu rury.

Właściwości elementu: Obieł	kt łączący *		×
	Zarządzanie e	elementem	
ld elementu 0			
	Param	etry	
I	Wyg	ląd —	
Pisaki	ki 🔹 Powierzchnie	•	
Grupa elementów:	Woust przepływowy ty		
Producent:	Normowe	1012/11011/	
	Parame	try	
	stożek odc. towy bez zawiasu 0,5 x 0 0400 y Dobór kinety Wymi ranicznych natężeń	•),3 m •)	PN Hz.d.wp. I.R.z.d.wp.
Tradauri	0 -1 5-7		q _{max} - 300 dm ³ /s-ha
Chodniki pokryte plytami Dodaj Usuń	1000.0	0.600	Miarodajne natężenie deszczu qm- 100 dm ³ Współczynnik typu zlewni n= 4 Obliczono Fzr- 0.0600 ha Q _{max} - 18.00 dm ³ s
	Zapisz w szabloni	ie 💌	OK Anuluj

Rys. 112. Okno dialogowe dla elementu 'Wpust przepływowy tworzywowy'

Pole "Typ zwieńczenia" – pole pozwalające na szczegółowy wybór typu zwieńczenia wpustu. Użytkownik wybierając jedną z opcji automatycznie generuje listę elementów wchodzącą w skład wpustu. Pod pojęciem zwieńczeń rozumiane są kombinacje górnych elementów wpustu (redukcje, teleskopy, pierścienie odciążające, adaptery, itp.)

Pole "Typ wpustu" – pole pozwalające na szczegółowy wybór typu wpustu z bazy programu dla wybranego typu zwieńczenia i producenta.

Pole "Klasa obciążenia wpustu" – pole służące do wyboru z listy klasy obciążenia wpustu, uzależnione od wybranego typu wpustu z bazy programu. Użytkownik ma do wyboru cztery typy A15, B125, C250, D400.

3.8.16.1 Zakładka dobór zlewni

Obiekt ten umożliwia użytkownikowi na wybór jednego z dwóch sposobów zdefiniowania przepływu obliczeniowego. Pierwszy to wpisanie ręcznie interesującej nas wartości Q w zakładce dobór średnicy Drugi to przejęcie z podłączonego wlotu wartości Q(ustawiony automatycznie w przypadku nie wypełnienia tabelki obliczeń zlewni) i dodatkowe obliczenie przepływu na podstawie typu i powierzchni zlewni. Obliczenia wykonywane są jednym z dwóch sposobów:

Granicznych natężeń deszczu wyliczanym z wzoru:

$$Q = qmax \cdot Fzr \ [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qmax – miarodajne natężenie deszczu, liczone jako zmienne dla każdego przekroju węzłowego i jednocześnie maksymalne, które daje największy przepływ obliczeniowy przy założeniu, że największe natężenie przepływu daje deszcz o czasie trwania równym czasowi dopływu ścieków do rozpatrywanego węzła, licząc od początku układu kanalizacyjnego, [dm³/ s • ha],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

 $Fzr = \Psi \bullet A zl. \bullet 0,0001$ [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Stałych natężeń deszczu wyliczanym z wzoru:

$$Q = qm \cdot Fzr \cdot \varphi \quad [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

qm – natężenie deszczu miarodajnego, będące stałą klimatyczną, którą w warunkach polskich należy przyjmować jako natężenie deszczu o czasie trwania równym 10 min, [dm³/ s • ha],

 φ - współczynnik opóźnienia dopływu, wartość bezwymiarowa wyliczana z wzoru:

$$\varphi = \frac{1}{\sqrt[n]{A_{zl \cdot 0,0001}}} \left[- \right]$$

gdzie:

n – współczynnik kształtu zlewni przyjmowany w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

A zl. – rzeczywista powierzchnia zlewni, [m²],

Fzr – zredukowana powierzchnia zlewni wyliczana z wzoru:

$$Fzr = \Psi \bullet A zl. \bullet 0,0001$$
 [ha]

gdzie:

 Ψ – współczynnik spływu, wartość bezwymiarowa zależna od rodzaju powierzchni wg tabeli z normy PN-92/B-01707,

A zl. – rzeczywista powierzchnia zlewni, [m²],

Dobór zlewni Dobór śrec	dnicy Dobór l	kinety Wymi	ary	
Metoda obliczeniowa:	Granicznych	natężeń	-	Maksymalne natężenie deszczu
Typ zlewni		A. zl. [m²]	Współ.	Siha Miaradaina patatonia destaru
Chodniki pokryte płytami		1000.0	0.600	$\begin{array}{c c} q_{m} & 100 & \frac{dm^2}{s \ln a} \\ Współczynnik typu zlewni \\ n = & 4 \\ Obliczono \\ F_{zr} & 0.0600 \\ ha \\ Q_{max} & 18.00 & \frac{dm^2}{s} \end{array}$
Dodaj Usuń] Zap	isz w szablon	ie	OK Anuluj

Rys. 113. Obliczenia przepływu metoda granicznych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Maksymalne natężenie deszczu q max" – pole służące do wpisania max natężenia deszczu dla metody granicznych natężeń. Użytkownik powinien przyjmować wartości w zakresie normy PN-92/B-01707 (150, 200, 300, 400 dm3/ s • ha) lub obliczyć z wzoru:

q max =
$$\frac{A}{t^{0,67}}$$
 dm3/ s • ha

gdzie:

A – współczynnik liczbowy charakteryzujący warunki hydrologiczne obszaru oraz przyjęty przez projektanta okres jednokrotnego przekraczania deszczu o danym natężeniu,

t – czas trwania deszczu miarodajnego, [min].

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj **Przycisk "Dodaj"** służy do dodawania wierszy do tabeli obliczeniowej.

Usuń **Przycisk "Usuń"** służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr i miarodajnego natężenia deszczu qmax. Wartość podawana w dm3/ s.

Dobór zlewni Dobór śred	Inicy Dobór kir	nety Wymi	ary		_
Metoda obliczeniowa:	Stałych natęże	ń	•	Maksymalne natężenie deszca	zu
Typ zlewni Chodniki pokryte płytami		A. zl. [m ⁴] 1000.0	Współ. 0.600	$\begin{array}{c c} q_{max} & 300 & \frac{dm^3}{sha} \\ \mbox{Miarodajne natężenie deszczu} \\ q_m & 100 & \frac{dm^3}{sha} \\ \mbox{Współczynnik typu zlewni} \\ n & 4 \\ \mbox{Obliczono} \\ \mbox{F}_{zr} & 0.0600 & ha \\ \mbox{Q}_{max} & 10.67 & \frac{dm^3}{s} \\ \end{array}$	
	Zapis	z w szabloni	ie 💌	OK Anulu	j

Rys. 114. Obliczenia przepływu metoda stałych natężeń

Pole "Metoda obliczeniowa" – pole służące do wyboru jednej z dwóch metod obliczania zlewni (granicznych natężeń, stałych natężeń).

Pole "Miarodajne natężenie deszczu qm" – pole służące do wpisania miarodajnego natężenia deszczu dla metody stałych natężeń. Użytkownik powinien przyjmować wartości w zależności od strefy klimatycznej. Program domyślnie ma ustawioną wartość 100 dm3/ s • ha.

Pole "Współczynnik typu zlewni n" – pole służące do wpisania współczynnika zlewni przyjmowanego w granicach 4-8. Dla zlewni wąskich i dużych spadków n=4, dla terenu płaskiego i równomiernych zlewni cząstkowych n=8.

Pole "Tabela obliczeń zlewni" – w tabeli tej zawarte są obliczenia zlewni, w których użytkownik definiuje typ i powierzchnie wybranego obszaru zlewni. Tabela składa się z trzech kolumn.

Kolumna "Typ zlewni" użytkownik definiuje w niej typ zlewni wg normy PN-92/B-01707 i wybranej literatury.

Kolumna "A zl [m2]" użytkownik definiuje w niej powierzchnię wybranej zlewni, podając wartości w [m²].

Kolumna "Współ." pole służące do podglądu współczynnika spływu wg wybranego typu zlewni (Kolumna).

Dodaj **Przycisk "Dodaj"** służy do dodawania wierszy do tabeli obliczeniowej.

Usuń **Przycisk "Usuń"** służy do usuwania wierszy z tabeli obliczeniowej.

Pole "Fzr" – pole służące do podglądu obliczonej powierzchni zredukowanej zlewni wg tabeli obliczenia zlewni. Obliczona wartość podawana jest w [ha].

Pole "Qmax" – pole służące do podglądu obliczonego przepływu na podstawie wzorów na Q wg danych z Fzr, miarodajnego natężenia deszczu qmax i współczynnika opóźnienia odpływu. Wartość podawana w dm3/ s.

3.8.16.2 Zakładka dobór średnicy wylotowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik *Manninga* wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3.7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

oosa	zereg rur:	Rury karr	ionkowe k	ielichowe				•
Dol	bierz średnic	ę wg prz	epływu:					
р.	Średnic	i[%]	V[m/s]	Napełnienie[%]		edycja przepł	ywu	
	0.200	0.7	0.9	37.1		Q =	10.00	dm ³
	0.200	0.4	0.8	43.3	Ε	Dobran	ne paramet	ry —
	0.200	0.9	1.0	34.7		Spadek:	2.0	2
	0.200	15.0	2.8	16.9				m
	0.200	12.0	2.6	17.9		Prędkość V =	1.4	s
	0.200	0.5	0.8	40.7		Średnica DN =	0.200	m
	0.200	9.0	2.3	19.3				
1	0.200	4.5	1.8	22.9				
	0.200	6.0	2.0	21.3				
n	0.500	10	11	22.7				

Rys. 115. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór zlewni Dobór średnicy Wymiary	
Typ sieci: Kanalizacja grawitacyjna 🔻	
Typoszereg rur: Rury kamionkowe kielichowe	
Dobierz średnicę wg przepływu:	
Średnica wylotu: 0.2 🔻 m	
Spadek: 2.00 %	
Zapisz w szablonie 🗸 OK Anuluj]

Rys. 116. Wybór metody ręcznej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.16.3 Zakładka dobór kinety

Zakładka ta służy użytkownikowi do doboru typu kinety. Wpusty przepływowe mają kilka typów kinet do, których można podłączyć 1, 2 i 3 wloty pod kątem od 30° do 90 °.

Dobór zlewni Dobór średnicy Dobór kine	ety V	Vymiary				
Typ kinety Zbiorcza	•]				
	Nr	Średnica	а	wej	-	
22 23	D1	0.160	0.0	wlot		
	D2	0.160	90.0	wlot		
	D3	0.160	90.0	wlot		
	D	0.160	0.0	wylot		
Zapisz	w sza	blonie 💌		ОК	Anuluj	

Rys. 117. Zakładka doboru kinety

Pole "Typ kinety" – pole służące do wyboru jednego z kilku typów kinet, które zdefiniują nam ile można podłączyć dodatkowych wlotów i pod jakim kątem. Maksymalna ilość wlotów do kinety to trzy. Do każdego typu kinety podłączony jest rysunek, który pozwoli na zapoznanie się z wyborem.

Tabela "Parametry kinety" – tabela ta pozwala na podgląd wybranego typu kinety, składa się z czterech kolumn, w których kolejno podane są informacje o nazwie wlotu i wylotu, dobranej średnicy, kącie i typie włączenia rurociągu (wlotowy, wylotowy)

3.8.16.4 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór zlewni Dobór średnicy	Dobór kinety Wymiary		
Parametry wyso	kościowe	📃 Dodaj kosz osa	adnikowy
Rzędna terenu projektowanego:	100.00 m n.p.m.	V	Wymiary
Rzędna terenu istniejącego:	100.00 m n.p.m.	Wysokość wpustu	0.160
Rzędna góma wpustu:	100.00 m n.p.m.	Timp -	0.100
Rzędna dna kanału wylotowego:	100.00 m n.p.m.	Wysokość podsta Hp =	wy: 0.150 m
Rzędna dna wpustu:	99.95 m n.p.m.	Wysokość prześw	itu:
		Hmin =	0.150 m
	Zapisz w szablonie	ОК	Anuluj

Rys. 118. Wymiary dla elementu: 'Wpust przepływowy tworzywowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna wpustu" – pole służące do podglądu górnej rzędnej wpustu, która przyjmuje wartość domyślną przy każdej zmianie wartości w polu Rz. terenu Rz.g.wł. = Rz.t.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna wpustu" – pole służące do podglądu wartości rzędnej dna wpustu podanej w m npm.

Pole "Dodaj kosz osadnikowy" − pole służące do dodawania do zestawienia materiałów kosza osadnikowego.

Pole "Wysokość wpustu" – pole służące do podglądu wysokości wpustu Hwp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość pobierana jest z bazy programu na podstawie wybranych wcześniej typów zwieńczenia i wpustu, producenta.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy studzienki Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość prześwitu Hmin" – pole służące do wpisywania wartości prześwitu między stożkiem odciążającym, a rurą wznosząca obiektu. Wartość ta aktywna jest tylko wówczas gdy elementem zwieńczającym jest stożek lub pierścień odciążający.

3.8.17 Wpust rynnowy

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt wpust rynnowy służy do odprowadzania wody deszczowej z powierzchni dachu do kanalizacji. Obiekt ten występuje tylko dla kanalizacji deszczowej i ogólnospławnej. Do wpustu rynnowego możemy dołączyć wszystkie typoszeregi rurociągów i średnic kanalizacji grawitacyjnej.

Obiekt może być tylko węzłem źródłowym oznacza to, że możemy podłączyć tylko jeden wylot.

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Żródło'.

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

Pole "Nazwa wpustu" – pole pozwalające na nadanie nazwy, która będzie wyświetlana w zestawieniu materiałów.

	Zarządzanie elementem
Id elementu 0	
	Parametry
	Wyolad
Pisaki 🔻 Czcionk	
	Flement
Grupa elementów:	Woust mnnowy
Producent:	Brak producenta
	Parametry
àymbol: Wrd -	1
Vęzeł: Źródło	
Vazwa wpustu:	
Wpust rynnowy	
	Rz.d.p.
Dobór rury spustowej Dobór	ir średnicy Wymiary
Dobór rury spustowej Dobór Powierzchnia dachu w rzu	ir średnicy Wymiary
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodaine nateżenie des	ir średnicy (Wymiary) ucie A= 100 m² szczu J= 300.0 dm²
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des	ir średnicy (Wymiary) ucie A= 100 m² szczu J= 300.0 dm² Doch o schod strate
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° •
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dobu: Współczynnik spływu Ψ=	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² sha Dach o nachylenieu powyżej 15° ▼ = 0.9
Dobór rury spustowej Dobór Powierzchnia dachu w rzv. Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ= Q = AJΨ 10000 =	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm²/s +
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ= Q = <u>A-J Ψ</u> 100000 =	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm²/s -
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ= Q = <u>A-J Ψ</u> 100000 =	ir árednicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm² s Dobór rury spustowej
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ = Q = $\frac{A \cdot J \Psi}{10000}$ = Producent:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm² s — Dobór nury spustowej Normowe ▼
Dobór rury spustowej Dobó Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczymnik spływu Ψ = Q = $\frac{A \cdot J \Psi}{10000}$ = Producent: Stopień wypełnienia f=	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm² s - Dobór rury spustowej Normowe ▼ 0.20 ▼
Dobór rury spustowej Dobó Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ = $Q = \frac{A \cdot J \Psi}{10000} =$ Producent: Stopień wypełnienia f= Obliczona średnica:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° ▼ = 0.9 2.70 dm² s - Dobór nuy spustowej Normowe ▼ 0.20 ▼ 0.99 m
Dobór rury spustowej Dobór Powierzchnia dachu w rz. Miarodajne natężenie des Charakter dachu: Współczymnik spływu Ψ = Q = $\frac{A \cdot J \Psi}{10000}$ = Producent: Stopień wypełnienia f= Obliczona średnica:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° • = 0.9 2.70 dm² s Dobór rury spustowej Normowe • 0.20 • 0.090 m
Dobór rury spustowej Dobór Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ = Q = $\frac{A \cdot J\Psi}{10000}$ = Producent: Stopień wypełnienia f= Obliczona średnica:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° • = 0.9 2.70 dm² s Dobór rury spustowej Normowe • 0.20 • 0.090 m
Dobór rury spustowej Dobó Powierzchnia dachu w rzu Miarodajne natężenie des Charakter dachu: Współczynnik spływu Ψ= Q = <u>A-10</u> Producent: Stopień wypełnienia f= Obliczona średnica:	ir średnicy Wymiary ucie A= 100 m² szczu J= 300.0 dm² Dach o nachylenieu powyżej 15° • = 0.9 2.70 dm² s Dobór rury spustowej Nomowe • 0.20 • 0.090 m

Rys. 119. Okno dialogowe elementu 'Wpust rynnowy'

3.8.17.1 Zakładka dobór rury spustowej

Pole "Powierzchnia dachu w rzucie A" – pole pozwalające użytkownikowi na wpisanie powierzchnia dachu z jakiego ma być odprowadzona woda deszczowa do wpustu rynnowego. Wartość podawana jest w m².

Pole "Miarodajne natężenie deszczu J" – pole pozwalające użytkownikowi na wpisanie miarodajnego natężenia deszczu. Zalecane natężenie deszczu wg PN-92/B-01707 powinno być równe 150, 200, 300, 400 dm³/(s * ha). Dla Polski zaleca się przyjmować wartości nie mniejsze niż J=300 dm³/(s * ha). Wg wytycznych branżowych wartość ta powinna wynosić 130 dm³/(s * ha), a wg Prawa Budowlanego 150 dm³/(s * ha). Wartość w tym polu należy podawać w dm³/(s * ha).

Dobór rury spustowej Dobór średnicy	Wymiary
Powierzchnia dachu w rzucie A=	100 m ²
Miarodajne natężenie deszczu J=	300.0 dm ³ /sha
Charakter dachu:	Dach o nachylenieu powyżej 15° 🔹
Współczynnik spływu Ψ=	0.9
$Q = \frac{A \cdot J \cdot \Psi}{10000} =$	2.70 dm ³ /s
	Dobár nav soustowei
Producent:	Nomowe -
Stopień wypełnienia f=	0.20 -
Obliczona średnica:	0.090 m
Z	apisz w szablonie

Rys. 120. Dobór rury spustowej

Pole "Charakter dachu" – pole służące do wyboru typu dach z jakiego odprowadzana jest woda deszczowa. Użytkownik ma do wyboru listę typów dachów, która jest podłączona do odpowiedniego współczynnika spływu wg poniższej tabeli:

L.p.	Nazwa typu dachu	Współ. Ψ
1	Dach o nachyleniu powyżej 15°	1,0
2	Dach o nachyleniu poniżej 15°	0,8
3	Dachy żwirowe	0,5
4	Ogrody dachowe	0,3
5	Dachy kryte blachą lub łupkiem	0,95
6	Dachy kryte papą lub dachówką	0,9

Pole "Współczynnik spływu" – pole służące do podglądu i edycji wybranego współczynnika spływu.

Pole "Q" – pole służące do podglądu wyniku obliczeń przepływu obliczeniowego wg wzoru:

$$Q = \Psi \cdot \frac{A \cdot J}{10000} \ [dm^3/s]$$

gdzie:

Q – przepływ obliczeniowy, [dm³/s],

Ψ – współczynnik spływu, [-],

A – powierzchnia dachu w rzucie, [m²],

J – miarodajne natężenie deszczu, [dm³/(s * ha)].

Pole "Producent" – pole służące do wyboru producenta rynien, na podstawie których zostanie dobrana rura spustowa wg dostępnych średnic. Użytkownik ma do wyboru: Wavin, Normowe, Kaczmarek, Profil, Gamrat.

Pole "Stopień wypełnienia f" – pole służące do wyboru jednej z dwóch wartości stopnia wypełnienia pionu spustowego f. Zdefiniowane jako względna część przekroju poprzecznego wypełnionego wodą. Wartości w tym polu przyjmują wielkość 0,2 i 0,33. Dla warunków Polskich zalecana wartość f wg normy PN-92\B-01707 powinna wynosić 0,2.

Pole "Dobrana średnica spustu" – pole służące do podglądu wyników doboru średnicy rury spustowej wykonanych wg przekształconego wzoru Wyly'ego-Eatona:

$$Q_{RWP} = 2,5 \cdot 10^{-4} \cdot k_{b}^{-0,167} \cdot d_{i}^{2,667} \cdot f^{1,667} [dm^{3}/s]$$

gdzie:

Q_{RWP} – przepustowość rury spustowej, [dm³/s],

k_b – chropowatość bezwzględna przewodu, do obli. przyjęto 0,25 mm, [mm],

di – wewnętrzna średnica rury spustowej, [mm],

f - stopień wypełnienia pionu spustowego, [-],

Na podstawie wyliczonego przepływu obliczeniowego Q, dobranego producenta (typów średnic), stopnia napełnienia f program automatycznie dobiera odpowiednią średnicę rury spustowej. Do zakładki dobór średnicy zostanie przekazana informacja o przepływie obliczeniowym i średnicy rury spustowej. na tej podstawie program dobierz średnicę wylotową z spustu.

3.8.17.2 Zakładka dobór średnicy wylotowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik Manninga wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

- K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],
- g- stała grawitacji, [m/s²],
- D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

pos	zereg rur:	KACZM/	REK rury li	te PVC-U klasy S SN	8			•
Do	bierz średni	cę wg prz	epływu:			_		
Lp.	Średnic	. i[%]	V[m/s]	Napełnienie[%]	*	🔽 edycja przep	ywu	
1	0.110	7.0	2.3	47.0		Q =	10.00	dm ³
2	0.110	2.5	1.5	64.9		Dobrar	ne parametr	y —
3	0.110	3.5	1.8	58.0		Spadek:	2 00	%
4	0.110	10.0	2.6	42.5				m
5	0.110	12.0	2.8	40.3		Prędkość V =	1.4	s
6	0.110	13.0	2.9	39.4		Średnica DN =	0.160	m
7	0.110	5.0	2.0	51.9				
8	0.110	4.0	1.8	55.6				
9	0.110	14.0	2.9	38.6				
10	0.110	15.0	3.0	37.9	-			

Rys. 121. Dobór średnicy wylotowej

✓ Pole "edycja przepływu" – pole to służy do wyboru sposobu wpisywania przepływu do obliczeń. Jeśli pole jest odznaczone wówczas wartość przekazywana jest z zakładki "Dobór rury spustowej" (na podstawie wyliczonych wartości z pola Q). Zaznaczenie pola powoduje włączenie możliwości edycji co pozwoli użytkownikowi na wpisanie dowolnej wartości nie połączonej z poprzednią zakładką.

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia (pole uzależnione od wyboru w polu **☑ "edycja przepływu"**)

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Użytkownik ma możliwość modyfikacji wartości spadku. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Dodatkowo wyświetlana lista średnic uzależniona jest od wybranej średnicy rury spustowej wg warunku że pokazywane są tylko wartości większe bądź równe tej wartości. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór rury spusto	wej Dobór średnicy Wymiary
Typ sieci:	Kanalizacja grawitacyjna 🔹
Typoszereg rur:	KACZMAREK runy lite PVC-U klasy S SN8
Dobierz średni	icę wg przepływu:
Średnica wylotu:	0.16 v m
Spadek:	2.0 %
I	
	Zapisz w szablonie

Rys. 122. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.17.3 Zakładka wymiary

Dobór rury spustowej Dobór średnicy	Wymiary					
	-Wymiary wy	sokościowe				
Rzędna terenu projektowanego:	100.00	m n.p.m.				
Rzędna terenu istniejącego:	100.00	m n.p.m.				
Rzędna dna kanału:	100.00	m n.p.m.				
Min. zagłębienie zmin:	0.000	m				
Zapisz w szablonie 💌 OK Anuluj						

Rys. 123. Wymiary

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna dna kanału" – pole służące do podglądu wyliczonej rzędnej dna kanału z wzoru: Rz.d.kanału = Rz.t – zmin. Wartości podawane w jednostce m npm.

Pole "Min. zagłębienie sieci" – pole służące do wpisywania wartości minimalnego zagłębienia kanału. Program domyślnie wstawia wartość ustawiona w opcjach programu. Wartość podawać w metrach.

3.8.18 Zaślepka

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt zaślepka służy do zakończenia przyłącza. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy zaślepki. Wg zasady, że każdy producent ma swoje typoszeregi kształtek i rurociągów. Zaślepkę może być tylko węzłem końcowym co oznacza, że możemy do niej podłączyć tylko rurę wlotową.

Właściwości elementu: Obiekt łączący *
Zarządzanie elementem
ld elementu 0
Parametry
Pisaki 🔻 Czcionki 🔻 Powierzchnie 👻
Bement
Grupa elementów: Zaślepka 🗸
Producent: KACZMAREK -
Parametry-
Wezel: Końcowa -
Wymiary DN
Typoszereg kształtek:
Kształtki kanalizacyjne zew. PVC-U klasy S SN8 🔹
Typ zaślepki:
Zašlepka PVC-U
Średnica D:
D = 0.110 m
Długość L:
L = 0.038 m
Uobrany element: Zaślepka AWADUKI
Inr. Katalogowy. 17/160-002 Cena: 4.50 zr Masa: 0 kg
Zapisz w szablonie 💌 OK Anuluj

Rys. 124. Okno dialogowe dla elementu 'Zaślepka'

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Końcowy'.

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.18.1 Zakładka wymiary

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ zaślepki" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica D:" – pole definiujące średnicę wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów końcowych wartość ta zawsze równa jest średnicy rurociągu).

Wymiary Typoszereg kształtek:
Kształtki kanalizacyjne zew. PVC-U klasy S SN8 🔹
Typ zaślepki:
Zaślepka PVC-U 🔹
Średnica D: D = 0.110 m Długość L: L = 0.038 m
Dobrany element: Zaślepka AWADUKT
Nr. katalogowy: 177160-002 Cena: 4.50 zł Masa: 0 kg
Zapisz w szablonie V OK Anuluj

Rys. 125. Wymiary dla elementu 'Zaślepka'

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.19 Zbiornik

```
W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt zbiornik służy do
magazynowania ścieków . Do tego obiektu możemy dołączyć wszystkie typoszeregi
rurociągów i średnic. Zbiornik może być węzłem źródłowym, połączeniowym i końcowym
co oznacza, że możemy podłączyć n wlotów i jeden wylot.
```

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole Węzeł" – służy do wyboru jednego z trzech typów węzła:

<u>Węzeł źródłowy</u> – obiekt początkowy przyłącza, od którego wychodzi tylko jedna rura wylotowa, (dla każdego obiegu może być dowolna ilość źródeł)

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

<u>Węzeł końcowy</u> – obiekt końcowy przyłącza, do którego może być dołączonych n- wlotów (dla każdego obiegu może być tylko jeden koniec)

Pole "Pojemność zbiornika" – pole służące do wpisywania pojemności zbiornika. na tej podstawie wyliczana będzie rzędna dna zbiornika. Wartość należy wpisywać w dm³(litrach).

	_	Zan	adzanie elementem		
ld eleme	ntu	1			
_			Remeder		
2			rarametry		
			Wygląd		
Pisaki	- J C	zcionki 🔻 Powie	erzchnie 🔻		
			Element		
Grupa elem	ientów:	Zbiomik			•
roducent:		Brak produce	inta		
			-Parametry		
Symbol:	Zb ·	1	1000		IRz.d.t.
Vęzeł:	Źródło	•	and the second		
ojemność	zbiomika:		+	RZ.	l.g.p.
/zb =	500.00 dr	n ³		IDN	51
				IRzd k.wl	
					Rz.I.w.
			100	G	
			and the second sec	-	
				A COLUMN TWO IS NOT	and the second s
				Contra and	Stores 1
Dobór śre	dnicy wylotow	vej Wymiary			
Dobór śre	dnicy wylotow Parametry	vej Wymiary wysokościowe		Wymiary	and a
Dobór śre Rzędna te	dnicy wylotow Parametry renu projektor	vej Wymiary wysokościowe wanego:			San Charles
Dobór śre Rzędna te Rz. t. p. =	ednicy wylotow Parametry renu projektor 100	vej Wymiary wysokościowe wanego: 0.00 m n.p.m.		Wymlary 1.00 m	. An and a
Dobór śre Rzędna te Rz. t. p. = Rzędna te	dnicy wylotow Parametry renu projektow 100 renu istniejące	vej Wymiary wysokościowe wanego: 0.00 m.n.p.m. ego:		Wymiary -	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. =	ednicy wyłotow Parametry renu projektor 100 renu istniejąca 100	vej Wymiary wysokościowe wanego: 0.00 m n.p.m. ego: 0.00 m n.p.m.		Wymiary 1.00 m 0.50 m	the state
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go	dnicy wylotov Parametry renu projektor 100 renu istniejące 100 śma:	vej Wymiary wysokościowe wanego: 1.00 m n.p.m. ego: 1.00 m n.p.m.	W - A -	Wymlary 1.00 m 0.50 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. =	dnicy wylotow Parametry renu projektor 100 renu istniejące 100 Sima:	vej Wymiary wysokościowe wanego: 1.00 m n.p.m. ego: 1.00 m n.p.m.	W = A = S =	Wymiary 1.00 m 0.50 m 0.12 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu	ednicy wylotow Parametry renu projektor 100 renu istniejąc 100 śma: 100 stra wody:	vej Wymiany wysokościowe wanego: 0.00 m n.p.m. ego: 0.00 m n.p.m.	W = A = S =	Wymiary 1.00 m 0.50 m 0.12 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. I. wod	ednicy wylotow Parametry renu projektor 100 renu istniejąc 100 śma: 100 śtra wody: y = 100.0	vej Wymiary wysokościowe wanego: 0.00 m n.p.m. ego: 0.00 m n.p.m. 0.00 m n.p.m.	W = A = S = Hp =	Wymiary 1.00 m 0.50 m 0.12 m 0.30 m	
Dobór śre Rzędna te Rz, t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. I. wodł Rzędna dr	dnicy wylotow Parametry renu projektor renu istniejąc forma: 100 śma: 100 100 100 100 100 100 100 100 100 10	vej Wymiary wysokościowe 2000 m n.p.m. ego: 0.00 m n.p.m. 0.00 m n.p.m. 00 m n.p.m. 00 m n.p.m. 00 m n.p.m.	W = A = S = Hp =	Wymiary 1.00 m 0.50 m 0.12 m 0.30 m	
Dobór śre Rzędna te Rz, t. p. = Rzędna te Rz, t. i. = Rzędna go Rz, g. = Rzędna lu Rz, I. wodł Rzędna dr Rz, d. k. w	dnicy wylotow Parametry renu projektor 100 ma: 100 5ma: 100 100 100 100 100 100 100 100 100 10	vej Wymiary wysokościowe warego: 1.00 m n.p.m. 500 m n.p.m. 1.00 m n.p.m. 1.00 m n.p.m. 0 m n.p.m. 1.00 m n.p.m. 1.00 m n.p.m.	W = A = S = Hp = G =	Wymłary 1.00 m 0.50 m 0.12 m 0.30 m 0.13 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. I. wod Rz. d. k. w Rzędna dr	dnicy wylotow Parametry renu projektor renu istniejące ino stra wody: y = 100.0 na kanału wyl rył. = 100.0 na kanału wyl rył. = 100.0	vej Wymiary wrysokościowe wanego: 0.00 m n.p.m. 0.00 m n.p.m. 00 m n.p.m. 00 m n.p.m. 000 m n.p.m.	W = A = S = Hp = G =	Wymay 1.00 m 0.50 m 0.12 m 0.30 m 0.13 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. I. wod Rz. d. k. w Rzędna dr Rz. d. k. w	dnicy wylotow Parametry renu projektor noc renu istniejąc inoc sma: 1000 stra wody: y = 1000.0 na kanału wyl ryl. = 1000 na: 99.00	wei Wymiary wysokościowe wanego: 1.00 m n.p.m. ego: 1.00 m n.p.m. 0.00 m n.p.m. 0 m n.p.m. 100 m n.p.m. 100 m n.p.m.	W = A = S = Hp = G =	Wymary 1.00 m 0.50 m 0.12 m 0.30 m 0.13 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. l. wody Rzędna dr Rz. d. k. w Rzędna dr Rz. d. =	ednicy wylotow Paremetry renu projektor 1000 śma: 1000 1000 1000 1000 1000 1000 1000 10	weig Wymiary wysokościowe wanego: 200 m n.p.m. ego: 200 m n.p.m. 0 m n.p.m. 00 m n.p.m. 0 m n.p.m.	W = A = S = Hp = G =	Wymay 1.00 m 0.50 m 0.12 m 0.30 m 0.13 m	
Dobór śre Rzędna te Rz. t. p. = Rzędna te Rz. t. i. = Rzędna go Rz. g. = Rzędna lu Rz. l. wody Rzędna dr Rz. d. k. w Rzędna dr Rz. d. =	dnicy wylotow Parametry 100 renu istniejącu 100 śma: 100 stra wody: y = 100.0 na kanału wyl ył. = 100 na : 99.00	wei Wymiary wysokościowe wanego: 0.00 m n.p.m. go: 0.00 m n.p.m. 0.00 m n.p.m. 0.00 m n.p.m. 0.00 m n.p.m. 0.00 m n.p.m. 0.00 m n.p.m.	W = A = S = Hp = G =	Wymary 1.00 m 0.50 m 0.12 m 0.30 m 0.13 m	

Rys. 126. Okno dialogowe dla elementu 'Zbiornik'

3.8.19.1 Zakładka dobór średnicy wylotowej metoda dla kanalizacji ciśnieniowej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej na podstawie natężenia przepływu Q i zadanej prędkości Vmax program sam dobiera średnice na podstawie przekształcony wzorów:

$$DN = \sqrt{\frac{4 \times Q}{\pi \times V \max}} [m]$$

gdzie:

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

V_{max}- maksymalna prędkość w kanale, [m/s],

$$V = \frac{4 x Q}{\pi x D N^2} [\text{m/s}]$$

gdzie:

V- rzeczywista prędkość w kanale dla dobranej średnicy, [m/s],

DN- średnica dobieranego rurociągu wylotowego, [m],

Q- natężenie przepływu ścieków, [dm³/s],

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji ciśnieniowej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji ciśnieniowej").

Dobór średnicy w	ylotowej V	Vymiary
Typ sieci:	Kanalizacja	a ciśnieniowa 🔻
Typoszereg rur:	WAVIN rur	y ciśnieniowe w zwojach klasy SDR17 PE80 🔹
Dobierz średni	cę wg przep	ρίγωμ:
Q =	10.00	dm ² s
Vmax =	5.0	<u>m</u> s
		Dobrane parametry
Spadek:	2.0	%
Prędkość V =	5.1	<u>m</u> s
Średnica DN =	0.050	m
		Zapisz w szablonie

Rys. 127. Wybór metody analitycznej dla kanalizacji ciśnieniowej

Pole "Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Vmax" – pole służące do zadawania granicznej prędkości w kanale wg której wykonywane będą obliczenia.

Pole "Prędkość V" – pole służące do podglądu wyliczonej rzeczywistej wartości prędkości w kanale na podstawie dobranej średnicy.

Pole "Średnica DN" – pole służące do podglądu dobranej średnicy z wybranego typoszeregu na podstawie przepływu Q i prędkości Vmax.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

Dobór średnicy w	ylotowej Wymiary
Typ sieci:	Kanalizacja ciśnieniowa 🔻
Typoszereg rur:	WAVIN rury ciśnieniowe w zwojach klasy SDR17 PE80 👻
Dobierz średn	icę wg przepływu:
Średnica wylotu:	0.05 v m
Spadek:	2.00 %
	Zapisz w szablonie

Rys. 128. Wybór metody ręcznej dla kanalizacji ciśnieniowej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

3.8.19.2 Zakładka dobór średnicy wylotowej dla sieci grawitacyjnej

Zakładka ta służy do analitycznego lub ręcznego doboru spadków i średnic. W metodzie ręcznej użytkownik wybiera jedną z dostępnych średnic dla wybranego producenta i typoszeregu, a następnie wpisuje wartość spadku. W metodzie analitycznej średnica i spadek dobierany jest na podstawie przekształconego wzoru *Manninga*:

$$v = K \bullet R_h^{2/3} \bullet i^{1/2} [m/s]$$

gdzie:

v- średnia prędkość strumienia w przekroju poprzecznym przewodu, [m/s],

K- współczynnik Manninga, [m^{1/3}• s⁻¹],

R_h- promień hydrauliczny, [m],

i- spadek hydrauliczny [-].

Współczynnik Manninga wg normy PN-EN 752-4:2001 wyliczany jest z wzoru:

$$\mathsf{K}=4 \bullet \sqrt{g} \cdot \left(\frac{32}{D}\right)^{\frac{1}{6}} \cdot \log\left(\frac{3,7 \cdot D}{k}\right) [\mathsf{m}^{1/3} \bullet \mathsf{s}^{-1}],$$

gdzie:

K- współczynnik *Manninga*, [m^{1/3}• s⁻¹],

g- stała grawitacji, [m/s²],

D- wewnętrzna średnica przewodu, [m],

k- współczynnik chropowatości bezwzględnej przewodu, [m]

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

Pole "Typoszereg rur" – pole pozwalające użytkownikowi dobrać odpowiedni typoszereg rur wylotowych z obiektu. Lista dostępnych typoszeregów uzależniona jest od typu obiektu.

✓ Pole "Dobierz średnicę wg przepływu" – zaznaczenie pola "Dobierz średnicę wg przepływu" daje użytkownikowi możliwość doboru średnicy i spadku metodami analitycznymi (patrz rys." Wybór metody analitycznej dla kanalizacji grawitacyjnej"). Odznaczając pole użytkownik może wybrać ręcznie średnicę wylotu (poprzez pole "Średnica wylotowa") i spadek (poprzez pole "Spadek") (patrz rys. "Wybór metody ręcznej dla kanalizacji grawitacyjnej").

/p sie	eci:	Kanalizad	cja grawita	cyjna 🔻				
pos	zereg rur:	Rury karr	nionkowe k	tielichowe				•
Do	bierz średni	cę wg prz	epływu:					
Lp.	Średnic	. i[%]	V[m/s]	Napełnienie[%]	-	Q =	10.00	dm ³ s
1	0.150	2.0	1.4	42.1	7	Dobran	e parametr	y
2	0.150	9.0	2.4	28.2		Spadek:	2.0	%
3	0.150	8.0	2.3	29.1		Predkość V =	14	<u>m</u>
4	0.150	4.0	1.8	34.9		A		S
5	0.150	4.5	1.9	33.8		Srednica DN =	0.150	m
6	0.150	7.0	2.2	30.2				
7	0.150	2.5	1.5	39.6				
8	0.150	14.0	2.8	25.2				
^	0.450	10.0	2.0	05.0				

Rys. 129. Wybór metody analitycznej dla kanalizacji grawitacyjnej

Pole "Przepływ Q" – pole służące do podglądu lub wpisywania wartości przepływu wg którego zostaną przeprowadzone obliczenia.

Pole "Spadek" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Wybrana wartość spadku jest automatycznie przekazywana do rurociągu wylotowego i na jej podstawie wyliczane są rzędne następnego obiektu.

Pole "Prędkość V" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o rzeczywistej prędkości w kanale dla wybranego napełnienia, średnicy i przepływu. Użytkownik nie ma możliwość edycji.

Pole "Średnica DN" – pole to służy do podglądu wybranego przypadku w tabeli obliczeniowej. Zawarta jest w nim informacja o dobranej średnicy kanału wylotowego z obiektu. Użytkownik nie ma możliwość edycji.

Pole "Tabela obliczeń hydraulicznych" – w tabeli tej zawarte są obliczenia hydrauliczne wg dobranej wcześniej średnicy wylotowej i typu kanalizacji (Kanalizacja ogólnospławna h/d=1.0, Kanalizacja deszczowa h/d=0.7, Kanalizacja sanitarna h/d=0,5). Dodatkowo lista dostępnych spadków uzależniona jest od wybranego w opcjach zakresu spadków max i min, a także warunku min prędkości samooczyszczenia w kanale równej 0,7 m/s. Tabela składa się z pięciu kolumn.

Kolumna "Lp" mówi nam o kolejnym numerze porządkowym przypisanym do danego obliczenia, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Średnica" pokazuje wartość średnicy kanału wykorzystaną do obliczeń w metrach, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "i[%]" pokazuje spadek dla którego wykonywane są obliczenia. Wartość spadku podawana jest w %, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "**V**[**m**/**s**]" pokazuje rzeczywista prędkość w kanale dla zadanego spadku i średnicy, kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Kolumna "Napełnienie[%]" pokazuje wyliczone napełnienie dla zadanych wartości spadku, średnicy i prędkości. kliknięcie na nazwę kolumny powoduje automatyczne sortowanie tabeli albo wg wartości malejących albo rosnących,

Dobór średnicy w	ylotowej Wymiary
Typ sieci: Typoszereg rur:	Kanalizacja grawitacyjna
Dobierz średni Średnica wylotu: Spadek:	icę wg przepływu: 0.15 ▼ m 2.00 %
	Zapisz w szablonie

Rys. 130. Wybór metody ręcznej dla kanalizacji grawitacyjnej

Pole "Średnica wylotu" – pole służące do ręcznego wyboru średnicy z wybranego typoszeregu rurociągu.

Pole "Spadek" – pole służące do ręcznego wpisania spadku z jakim będzie rysowana rura wylotowa w projekcie.

UWAGA:

Algorytm obliczeń hydraulicznych został wykonany na podstawie "Wodociągi i kanalizacja cz.2" Politechnika Białostocka, "Instalacje Kanalizacyjne" J. Chudzicki, S. Sosnonowski, PN-EN 12889:2003, PN-EN 752, PN/B-10710, PN-92/B 01707.

3.8.19.3 Zakładka wymiary

Zakładka ta służy do wprowadzania danych geometrycznych i wysokościowych obiektu. Informacje te pozwolą na automatyczne wygenerowanie odwzorowania graficznego obiektu na profilu i rzucie płaskim.

Dobór średnicy v	vylotowej	Wymiary			,		
Par	ametry wys	okościowe —		Wymiary			
Rzędna terenu pr	ojektowane	ego:					
Rz. t. p. =	100.00	m n.p.m.	W =	1.00 m			
Rzędna terenu istniejącego:							
Rz.t.i. =	100.00	m n.p.m.	A =	0.50 m			
Rzędna góma:							
Rz.g. =	100.00	m n.p.m.	S =	0.12 m			
Rzędna lustra wo	dy:		1				
Rz. I. wody =	98.00	m n.p.m.	Hp =	0.30 m			
Rzędna dna kana	ału wylotow	vego:					
Rz.d.k.wyl.=	98.00	m n.p.m.	G =	0.13 m			
Rzędna dna:							
Rz. d. =	97.00	m n.p.m.					
			1				
Zapisz w szablonie							

Rys. 131. Wymiary dla węzła: 'Źródłowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy zbiornika, domyślnie ustawiona jest wartość równa rzędnej terenu.

Pole "Rzędna lustra wody" – pole służące do podglądu wartości rzędnej górnej lustra ścieku w zbiorniku. Rzędna ta przyjmuje zawsze wartość równą rzędnej dna kanału wylotowego. Wartość wyświetlana jest w jednostce m npm.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym po każdej zmianie Rz.t. wstawiana jest wartość z wzoru: Rz.t. – zmin (min zagłębienie pobierane z opcji projektu), równocześnie program ma wstawiony warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzorem.

Pole "Rzędna dna" – pole służące do podglądu wartości dna zbiornika wyliczonej z wzoru Rz.d.zb.= Rz.d.k.wyl – $\frac{Vzb}{A \times W \times 1000}$. Wartość wyświetlana jest w jednostce m npm.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Dobór średnicy v	vylotowej	Wymiary						
Par	ametry wys	okościowe	1	Wymiary				
Rzędna terenu pr	rojektowan	ego:	1					
Rz.t.p. =	100.00	m n.p.m.	W =	1.00 m				
Rzędna terenu is	Rzędna terenu istniejącego:							
Rz.t.i. =	100.00	m n.p.m.	A =	0.50 m				
Rzędna góma:								
Rz.g. =	100.00	m n.p.m.	S =	0.12 m				
Rzędna lustra wo	dy:							
Rz. I. wody =	97.07	m n.p.m.	Hp =	0.30 m				
Rzędna dna kana	ału włotow	ego:						
Rz. d. k. wl. =	97.07	m n.p.m.	G =	0.13 m				
Rzędna dna kana	ału wylotow	vego:						
Rz.d.k.wyl.=	97.07	m n.p.m.						
Rzędna dna:								
Rz. d. =	96.07	m n.p.m.						
L								
	Zapisz w szablonie 🗨 OK Anuluj							

Rys. 132. Wymiary dla węzła: 'Połączeniowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy zbiornika, domyślnie ustawiona jest wartość równa rzędnej terenu.

Pole "Rzędna lustra wody" – pole służące do podglądu wartości rzędnej górnej lustra ścieku w zbiorniku. Rzędna ta przyjmuje zawsze wartość równą rzędnej dna kanału wylotowego. Wartość wyświetlana jest w jednostce m npm.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna kanału wylotowego" – pole służące do wpisania rzędnej dna kanału wylotowego z obiektu. Domyślnie w polu tym ustawiony jest warunek, że wartość wpisana przez użytkownika w tym polu nie może być mniejsza od wartości wyliczonej wzoru Rz.d.k.wyl = Rz.d.k.wl – DN wlotu.

Pole "Rzędna dna" – pole służące do podglądu wartości dna zbiornika wyliczonej z wzoru Rz.d.zb.= Rz.d.k.wyl – $\frac{Vzb}{A \times W \times 1000}$. Wartość wyświetlana jest w jednostce m npm.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Wymiary								
Para	ametry wys	okościowe —		V	Nymiary			
Rzędna terenu pr	ojektowani	ego:						
Rz.t.p. =	100.00	m n.p.m.	W =	1.00	m			
Rzędna terenu ist	Rzędna terenu istniejącego:							
Rz. t. i. =	100.00	m n.p.m.	A =	0.50	m			
Rzędna góma:								
Rz.g. =	100.00	m n.p.m.	S =	0.12	m			
Rzędna lustra wo	dy:							
Rz. I. wody =	96.17	mn.p.m.	Hp =	0.30	m			
Rzędna dna kana	ału wlotow	ego:						
Rz. d. k. wl. =	96.28	m n.p.m.	G =	0.13	m			
Rzędna dna:								
Rz. d. =	95.17	m n.p.m.						
		Zapisz w szablo	nie 💌		ОК	Anului		

Rys. 133. Wymiary dla węzła: 'Końcowy'

Pole "Rzędna terenu" – pole służące do ręcznego wpisania rzędnej terenu projektowanego. Wartości podawane w tym polu powinny być podawane w jednostce m npm.

Pole "Rzędna górna" – pole służące do podglądu górnej rzędnej pokrywy zbiornika, domyślnie ustawiona jest wartość równa rzędnej terenu.

Pole "Rzędna lustra wody" – pole służące do podglądu wartości rzędnej górnej lustra ścieku w zbiorniku. Rzędna ta przyjmuje zawsze wartość równą rzędnej dna kanału wlotowego. Wartość wyświetlana jest w jednostce m npm.

Pole "Rzędna dna kanału wlotowego" – pole służące do podglądu podłączonego do obiektu kanału wlotowego Rz.d.k.wl.

Pole "Rzędna dna" – pole służące do podglądu wartości dna zbiornika wyliczonej z wzoru Rz.d.zb.= Rz.d.k.wl – $\frac{Vzb}{A \, x \, W \, x \, 1000}$. Wartość wyświetlana jest w jednostce m npm.

Pole "Szerokość wewnętrzna" – pole służące do wpisywania wewnętrznej szerokości komory W. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Długość wewnętrzna" – pole służące do wpisywania wewnętrznej długości komory A. Wg tej informacji zostanie odrysowany obiekt na rzucie i profilu. Wartość podawać w metrach.

Pole "Grubość ścianki" – pole służące do wpisywania grubości ścian komory S. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wysokość podstawy" – pole służące do wpisywania wysokości podstawy komory Hp. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

Pole "Wcięcie podstawy" – pole służące do wpisywania wcięcia podstawy komory G. Wg tej informacji zostanie odrysowany obiekt na profilu. Wartość podawać w metrach.

3.8.20 Złączka

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt złączka służy do łączenia rurociągów, które na wlocie i wylocie mają ten sam typ podłączenia. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy złączek. Wg zasady, że każdy producent ma swoje typoszeregi kształtek i rurociągów. Złączka może być tylko węzłem połączeniowym co oznacza, że możemy do niej podłączyć jedną rurę wlotową i wylotową.

Właściwości elemente	u: Obiekt łączący	x
2	Zarządzanie elementem	
ld elementu	0	
	Parametry	
Pisaki 🔻	Czcionki	
	Element	
Grupa elementów:	Złaczka	
Producent:	KACZMAREK 🗸	
	Parametry	
Symbol: Zł	- 1	
Węzeł: Połączeni	owy	
Typ sieci: Kanalizaci	a grawitacvina	
Wymiary		
Typoszereg kształtek	n	
Kształtki kanalizacyji	 ne zew PVC-IIklasv S SN8	_
Typ złączki:		
Mufa łączeniowa PV	/C-U	-
Średnica D1 =	0.11 • m	
Długość I. –	0.123 m	
Diagose E -	0.123	
Dobrany element:	Muta raczeniowa PVC-U	
Nr. katalogowy:	852051300 Cena: 5. /U zł Masa:	Ukg
	Zapisz w szablonie V OK A	nuluj
1		

Rys. 134. Okno dialogowe dla elementu 'Złączka'

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Połączeniowy'.

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.20.1 Zakładka wymiary (Rys. 134.)

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ złączki" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica D1:" – pole definiujące średnicę wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik ma możliwość edycji danych.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.8.21 Złączka przejściowa

W programie ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE obiekt złączka przejściowa służy do zmiany materiału/typoszeregu projektowanego rurociągu. Do każdego typoszeregu rurociągów pasują tylko odpowiednie typy złączek przejściowych. Wg zasady, że każdy producent ma swoje typoszeregi kształtek i rurociągów. Złączka przejściowa może być tylko węzłem połączeniowym co oznacza, że możemy do niej podłączyć jedną rurę wlotową i wylotową.

	Zarządzanie elementem
ld elementu	0
	Parametry
	WyglądWygląd
Pisaki 🔻	Czcionki 💌 Powierzchnie 💌
	Element
Grupa elementów:	Złączka przejściowa 🔻
Producent:	KACZMAREK -
	Parametry
Symbol: Ł	· 1
Połączer	
Typ sieci: Kanalizad	cja grawitacyjna 🔻
	<u> </u>
	1 I
Wymiary	- DN
Typoszereg kształte	k:
Kształtki kanalizacy	/jne zew. PVC-U klasy S SN8 🔹
Typ złączki:	
Złączka PVC-U kie	ich/żeliwo ▼
Średnica D1 =	0.11 m
Średnica D1 =	Dane rury wyjściowej:
Średnica D1 =	0.11 m Dane rury wyśściowej:
Średnica D1 = Typoszereg rur: Materiał:	0.11 v m Dane rury wyśściowej: Rury żeliwne kielichowe Zeliwo
Średnica D1 = Typoszereg rur: Materiał: Średnica D2 =	0.11 v m Dane rury wyśściowej: Rury żeliwne kielichowe Zeliwo 0.100 m
Średnica D1 = Typoszereg rur: Materiał: Średnica D2 =	0.11 m Dane rury wyśściowej:
Średnica D1 = Typoszereg rur: Materiał: Średnica D2 = Długość L =	0.11 m Dane rury wyściowej:
Średnica D1 = Typoszereg rur: Materiał: Średnica D2 = Długość L = Dobrany element:	0.11 m Dane rury wyjściowej:
Średnica D1 = Typoszereg rur: Materiał: Średnica D2 = Długość L = Dobrany element: Nr. katalogowy:	0.11 ▼ m Dane rury wyjściowej: Rury żeliwne kielichowe ▼ Żeliwo 0.100 m 0.132 m Żlączka PVC-U kielich/żeliwo 480021301 Cena: 11.00 zł Masa: 0 kg
Srednica D1 = Typoszereg rur: Material: Srednica D2 = Dlugość L = Dobrany element: Nr. katalogowy:	0.11 m m Dane rury wyjściowej:
Srednica D1 = Typoszereg rur: Materia1: Srednica D2 = Długość L = Dobrany element: Nr. katalogowy:	0.11 m m Dane rury wyjściowej:
Srednica D1 = Typoszereg rur: Materia1: Srednica D2 = Długość L = Dobrany element: Nr. katalogowy:	0.11 m Dane rury wyjściowej:

Rys. 135. Okno dialogowe dla elementu 'Złączka przejściowa'

Pole "Grupa elementów" – w polu tym użytkownik dokonuje wyboru elementu jaki ma być wstawiony na początku lub końcu rurociągu. Lista dostępnych obiektów uzależniona jest od używanego typoszeregu rurociągu.

Pole "Producent" – lista dostępnych producentów uzależniona jest od podłączonego typoszeregu rury i wybranego obiektu. Tyczy się to tylko obiektów, które posiadają swoją bazę danych.

Pole "Symbol" – w pierwszej części pola użytkownik może wpisać własny przedrostek danego typu obiektu (program domyślnie generuje przedrostki wg wybranego typu obiektu). Druga część służy do szczegółowej numeracji obiektów tego samego typu (program automatycznie wstawia wartość o jeden większą niż najwyższa występująca w projekcie).

Pole "Węzeł" – pozwala na wybór 'Połączeniowy'.

<u>Węzeł połączeniowy</u> – obiekt łączący poszczególne rurociągi, do którego może być podłączonych n- wlotów i tylko jeden wylot,

Pole "Typ sieci" – pole pozwalające na określenie przez użytkownika jaki typ sieci będzie wychodził z obiektu (grawitacyjny, ciśnieniowy). W przypadku gdy obiekt wstawiany jest na rurociąg z wybranym typoszeregiem to ma przypisaną wartość typu sieci z tego rurociągu.

3.8.21.1 Zakładka wymiary (Rys. 135.)

Pole "Typoszereg kształtek" – pole pozwalające użytkownikowi na szczegółowy wybór typoszeregu kształtek z bazy dla wybranego producenta (wartość w tym polu odpowiada typoszeregowi rurociągu). Jeśli jest to element wstawiony na końcu rurociągu to wartość przypisywana jest automatycznie wg bazy programu.

Pole "Typ złączki" – pole pozwalające użytkownikowi na dokładne zdefiniowanie typu obiektu jaki ma być wstawiony do projektu, wg wybranego producenta i typoszeregu kształtek.

Pole "Średnica D1:" – pole definiujące średnicę wlotową wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu).

Pole "Typoszereg rur" – pole służące do wyboru typoszeregu rur wylotowej wg zdefiniowanej wcześniej typu kształtki odwołujące się do bazy rurociągów programu.

Pole "Materiał" – pole służące do podglądu informacji o wybranym materiale zmienianego rurociągu wylotowego.

Pole "Średnica D2:" – pole definiujące średnicę wylotową wybranego typu obiektu, wg bazy programu i podłączonego rurociągu.(w przypadku węzłów połączeniowych wartość ta zawsze równa jest średnicy rurociągu). Program automatycznie przypisuje średnicę dla nowego typu rurociągu wiedząc o tym, że np. rura kominkowa 0,15m odpowiada rura PVC 0,16m.

Pole "Długość L" – pole wstawiające domyślnie wartość długości obiektu z bazy programu na podstawie dobranego typu i średnicy. Użytkownik ma możliwość edycji danych.

Pole "Dobrany element" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada nazwie katalogowej elementu wg wybranego producenta. Użytkownik ma możliwość edycji danych.

Pole "Nr katalogowy" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada numerowi katalogowemu z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Cena" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada cenie z katalogu producenta. Użytkownik ma możliwość edycji danych.

Pole "Masa" – wartość w tym polu generowana jest automatycznie z bazy programu w zależności od wybranego typu i średnicy obiektu i odpowiada masie z katalogu producenta. Użytkownik ma możliwość edycji danych.

3.9 Wstawianie skrzyżowań i uzbrojenia

3.9.1 Rodzaje skrzyżowań i ich wybór.

W ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pod pojęciem kolizji rozumiemy wszystkie skrzyżowania projektowanej trasy sieci kanalizacyjnej z innymi sieciami pokazanymi na mapie. Uzbrojeniem nazywamy elementy małej architektury (zagospodarowania terenu), z którymi przecina się trasa projektowanej kanalizacji.

Wstawianie kolizji/uzbrojenia aktywujemy ikoną ^{III}. Automatycznie uruchamia się pasek akcji (rys. poniżej), w którym możemy dokonać wyboru typu uzbrojenia i kolizji wybierając ikonę ^{IIII} lub anulować funkcje wybierając ^{IIII}. (wybrany typ kolizji/uzbrojenia będzie wstawiany domyślnie dla każdego elementu)

W oknie właściwości kolizji możemy zdefiniować szczegółowo informacje o uzbrojeniu.

Właściwości elen	nentu: Skrzyżowanie *
	Zarządzanie elementem
ld elementu	0
	Parametry
	Wygląd
Pisaki 🔻	
	Parametry
Grupa obiektów:	Uzbrojenie podziemne 🔻
Obiekt:	Wodociąg 🗸
Nazwa:	Wodociąg
Średnica:	0.100 m
Symbol:	W - 1
Zagłębienie:	1.100 m
Rzędna dna:	98.90 m n.p.m.
	Zapisz w szablonie

Rys. 136. Właściwości skrzyżowania (uzbrojenie podziemne)

Pole "Grupa obiektów" – użytkownik w tym polu wybiera czy wstawiony element ma być obiektem naziemnym czy podziemnym, na podstawie tej informacji wyświetlane są pozostałe parametry.

Pole "Obiekt" – pole to służy do wyboru jednego z kilkudziesięciu typów kolizji znajdujących się w bazie programu wg poniższej tabeli. Każdy typ ma przypisane domyślne wartości nazwy, symbolu, średnicy, zagłębienia, koloru i odwzorowania graficznego na profilu.

Tabela Baza uzbrojenia podziemnego

Nazwa	Sym.	Zagłębienie dna [m]	Ozn. graficzne	Średnica domyślna	Kolor
Wodociąg	W	1,8	1	0.11 m	
Wodociąg ogólny	Wo	1,8	1	0.11 m	
Wodociąg lokalny	WI	1,8	1	0.11 m	
Kanalizacja	К	2,4	1	0.11 m	
Kan. ogólnospławna	Ко	2,4	1	0.11 m	
Kan. sanitarna	Ks	2,4	1	0.11 m	
Kan. deszczowa	Kd	1,8	1	0.11 m	
Kan. przemysłowa	Кр	2,4	1	0.11 m	
Kan. lokalna	КІ	2,4	1	0.11 m	
Gaz	G	1,1	1	0.075 m	
Gaz wysokoprężny	Gw	1,1	1	0.075 m	
Gaz średnioprężny	Gs	1,1	1	0.075 m	
Sieć cieplna kanałowa	С	1,0	2	0.04 m	
S.c. preizolowana	С	1,0	3	0.04 m	
S.c. wysokiego ciśnienia	Cw	1,0	2	0.04 m	
S.c. niskiego ciśnienia	Cn	1,0	2	0.04 m	
S.c. parowa	Ср	1,0	2	0.04 m	
Kabel elektro-energ. wysokiego napięcia	eWN	0,9	1	0.05 m	
Kabel elektro-energ. niskiego napięcia	eNN	0,9	1	0.05 m	
Kabel elektro-energ. średniego napięcia	eSN	0,9	1	0.05 m	

Kanalizacja telekomunikacyjna	tele.	0,7	4	0.05 m	
Telekomunikacja	tele.	0,7	1	0.05 m	
Telekomunikacja tranzytowa	TT	0,7	1	0.05 m	
Telekomunikacja miejscowa	TM	0,7	1	0.05 m	

Pole "Nazwa" – pole wypełniane automatycznie w zależności od wybranego typu kolizji, użytkownik może je dowolnie modyfikować. Informacja ta wyświetlana jest na wygenerowanym profilu przyłącza.

Pole "Średnica" – pole wypełniane automatycznie w zależności od wybranego typu kolizji, użytkownik może je dowolnie modyfikować. na podstawie tej informacji rysowane jest odwzorowanie graficzne na wygenerowanym profilu.

Pole "Symbol" – pole wypełniane automatycznie w zależności od wybranego typu kolizji i wpisanej wartości średnicy. Użytkownik może dowolnie modyfikować tekst. Informacja ta wyświetlana jest na wygenerowanym profilu przyłącza.

Pole "Zagłębienie" – pole wypełniane automatycznie w zależności od wybranego typu kolizji. Użytkownik może dowolnie modyfikować tekst. na podstawie tej informacji generowane są rzędne dna

kolizji pokazane na profilu przyłącza. Funkcja dostępna tylko w przypadku zaznaczenia 횓.

Pole "Rzędna dna" – pole pozwalające na szczegółowe zdefiniowanie rzędnej dna kolizji. na podstawie tej informacji generowane są rzędne dna kolizji pokazane na profilu przyłącza. Funkcja dostępna tylko w przypadku zaznaczenia ^O.

W oknie właściwości uzbrojenia nadziemnego możemy wybrać zdefiniowane elementy uzbrojenia.

Właściwości elen	nentu: Skrzyżowanie *
	Zarządzanie elementem
ld elementu	0
	Parametry
	Wygląd
Pisaki 🔻	
	Parametry-
Grupa obiektów:	Obiekty naziemne 🔻
Obiekt:	Ogrodzenie 👻
Nazwa:	Ogrodzenie Chodnik
	Droga
	Granica działki
	Zapisz w szablonie

Rys. 137. Właściwości skrzyżowania (uzbrojenie naziemne)

Pole "Grupa obiektów" – użytkownik w tym polu wybiera czy wstawiony element ma być obiektem naziemnym czy podziemnym, na podstawie tej informacji wyświetlane są pozostałe parametry.

Pole "Obiekt" – pole to służy do wyboru jednego z kilku typów obiektów naziemnych znajdujących się w bazie programu wg poniższej tabeli. Każdy typ ma przypisane domyślne wartości nazwy i odwzorowania graficznego na profilu.

W przypadku uzbrojenia nadziemnego do wyboru mamy:

- Ogrodzenie
- Chodnik
- Droga
- Ścianka
- Granica działki

Pole "Nazwa" – pole wypełniane automatycznie w zależności od wybranego typu uzbrojenia, użytkownik może je dowolnie modyfikować. Informacja ta wyświetlana jest na wygenerowanym profilu przyłącza.
Właściwości elen	nentu: Skrzyżowanie *
	Zarządzanie elementem
Id elementu	0
	Parametry
	Wygląd
Pisaki 🔻	
	Parametry
Grupa obiektów:	Obiekty naziemne 🔹
Obiekt:	Droga 🔹
Nazwa:	Droga
Szerokość:	6.000 m
	Zapisz w szablonie

Rys. 138. Właściwości skrzyżowania 'Droga' lub 'Chodnik'

Pole "Szerokość" – (tylko *'Chodnik'* i *'Droga'*) pole wypełniane wartościami domyślnymi. Użytkownik może wpisywać dowolne wartości liczbowe w metrach. na podstawie tej informacji rysowane jest odwzorowanie graficzne na wygenerowanym profilu.

	nentu: Skrzyżow	vanie *		×
	Z	Zarządzanie elementem	1	
ld elementu	0			
	_	Parametry		
		Wygląd		
Pisaki 🔻				
		Parametry		
Grupa obiektów:	Obiekty naziemn	e		•
Obiekt:	Ścianka			•
Nazwa:	Ścianka			
Szerokość:	0.500	m		
Rzędna góma:	162.30	m n.p.m.		
Rzędna dna:	160.10	m n.p.m.		
	Zapisz w szał	olonie 💌	ОК	Anuluj

Rys. 139. Właściwości skrzyżowania 'Ścianka'

Pole "Rzędna górna" – pole wypełniane wartościami domyślnymi, użytkownik podaje tu rzędna górną wstawianego uzbrojenia. na podstawie tej informacji rysowane jest odwzorowanie graficzne na wygenerowanym profilu.

Pole "Rzędna dna" – pole wypełniane wartościami domyślnymi, użytkownik podaje tu rzędna dna wstawianego uzbrojenia. na podstawie tej informacji rysowane jest odwzorowanie graficzne na wygenerowanym profilu.

Właściwości elen	nentu: Skrzyżowanie *		x
	Zarządzanie elementem		
ld elementu	0		
	Parametry		
Pisaki 🔻			
	Parametry		
Grupa obiektów:	Obiekty naziemne		-
Obiekt:	Granica działki		•
Ulica:	Sienkiewicza	Nr. posesji: -	
Nr. działki:	85/87		
	Zapisz w szablonie	OK Anulu	ij

Rys. 140. Właściwości skrzyżowania 'Granica działki'

Pole "Ulica" ("Nr posesji, Nr działki) – pola opisowe wypełniane przez użytkownika. na podstawie tej informacji opisy przenoszone na wygenerowany profil.

3.9.2 Wstawianie skrzyżowań i uzbrojenia na mapę.

Po wybraniu odpowiedniego typu kolizji jedyne co musi zrobić użytkownik to wybrać punkt wstawienia kolizji/uzbrojenia na trasie przyłącza (funkcja ta pozwala na ciągłe wstawianie wybranego typu). Jeśli jest już wygenerowany profil podłużny sieci to każda wstawiona kolizja/uzbrojenie jest automatycznie aktualizowana na nim.

Rys. 141. Wstawianie skrzyżowań /uzbrojenia

Rys. 142. Wygląd skrzyżowań /uzbrojenia na profilu przyłącza

3.10 Wstawiane punktów wysokościowych terenu

Funkcjonalność projektantowi wstawiania punktów wysokościowych daje możliwość wprowadzenia na ślad rurociągu na mapie dodatkowego punktu wysokościowego.

Funkcja uruchamiana jest z paska narzędzi poprzez wciśnięcie przycisku 🔼 .

Uruchamia się pasek akcji (widok jak w przypadku wstawiania skrzyżowań)

Wybierając w tym pasku ikonę 🏊 przechodzi się do okna dialogowego umożliwiającego edycję ustawień wysokościowych punktu terenowego.

Właściwości elementu: Skrzyżowanie
Zarządzanie elementem
ld elementu 0
Parametry
Wygląd
Pisaki 💌
Parametry
Grupa obiektów: Punkty wysokościowe
Teren projektowany Teren istniejacy
Rzędna punktu 1 99.500 m -połączonego z terenem od strony napływu ścieków
Rzędna punktu 2 99.500 m -połączonego z terenem od strony odpływu ścieków
ø podaj rzedną punktu 2
O podaj zagłębienie względem punktu 2.000 m
Opis na profilu do punktu 1
Opis na profilu do punktu 2
Zapisz w szablonie 💌 OK Anuluj

Rys. 143. Okno dialogowe edycji parametrów dla punktu wysokościowego "A"

Właściwości elementu: Skrzyżowanie *
Zarządzanie elementem
ld elementu 0
Parametry
Wygląd
Pisaki 💌
Parametry
Grupa obiektów: Punkty wysokościowe 🗸
Teren projektowany Teren istniejacy
Rzędna punktu 1 99.800 m -połączonego z terenem od strony napływu ścieków
I Rzędna punktu 2 99.600 m -połączonego z terenem od strony odpływu ścieków
o podaj rzedną punktu 2
opodaj zaglębienie względem punktu 2.000 m
Opis na profilu do punktu 1
Opis na profilu do punktu 2
Zapisz w szablonie V OK Anuluj

Rys. 144. Okno dialogowe edycji parametrów dla punktu wysokościowego "B"

W grupie kontrolek **Parametry** ustawia się punkty wysokościowe terenu. Dostępna jest edycja parametrów dla **Terenu projektowanego** oraz dla **Terenu istniejącego**. Możliwe jest ustawienie dwóch punktów wysokościowych (np. niższego i wyższego – uskok pionowy w terenie) w jednym miejscu na rurociągu.

Rzędna punktu 1 – wpisuje się rzędną od strony napływu ścieków, co daje możliwość uzyskania odpowiedniej wysokości terenu po stronie napływu ścieków

Rzędna punktu 2 – wpisuje się rzędną od strony odpływu ścieków, co daje możliwość uzyskania odpowiedniej wysokości terenu po stronie odpływu ścieków

W przypadku wpisania jednakowych wartości lub odznaczenie haczyka dla punktu 2 zostanie wprowadzone zagłębienie punktowe (na profilu będzie wyglądała jako szczytowe wygórowanie lub obniżenie terenu)

Rys. 145. Wstawienie na rzucie terenu punktu wysokościowego

Powyżej przykład wstawiania punktów wysokościowych dla którego zdefiniowano wartości rzędnych:

"A"

Dla terenu projektowanego i istniejącego (mogą być różne):

Rzędna punktu 1 – 99,50 m.n.p.m.

Rzędna punktu 2 – 99,50 m.n.p.m.

"B"

Dla terenu projektowanego i istniejącego (mogą być różne):

Rzędna punktu 1 – 99,80 m.n.p.m.

Rzędna punktu 2 – 99,60 m.n.p.m.

Dodatkowo istnieje możliwość wprowadzania opisów po odpowiednich stronach punktu wysokościowego.

Funkcjonalność ta daje możliwości poprzez wprowadzanie kilku punktów wysokościowych modelowania na przykład terenu dna rowów melioracyjnych, wzniesień lub uskoków terenu znajdujących się na trasie rurociągu kanalizacyjnego.

3.11 Generowanie profili podłużnych

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na wygenerowania profilu podłużnego zaprojektowanego przyłącza na podstawie trasy sieci. Program automatycznie dzieli profil na części. Użytkownik podaje tylko główną magistrale, program na tej podstawie (wg długości pozostałych odgałęzień) tworzy pozostałe profile.

Wyboru tej funkcji dokonujemy w Pasku akcji ikoną 🕮 wg założeń:

- 1) Gdy włączymy przycisk z zaznaczonym jednym obiektem lub rurą to profil wygeneruje się tylko dla tego obiegu,
- 2) Gdy będzie zaznaczony cały projekt lub przynajmniej po jednej rurze z każdego obiegu, to zostanie wywołane okno (Rys. 148.) gdzie użytkownik wybiera interesujący go obieg.

Rys. 147. Zaznaczenie trasy sieci do wygenerowania profilu

Wybierz sieć
Wybierz sieć której profil chcesz stworzyć:
Lista profili:
1). Kanalizacja sanitama o elemencie końcowym S-10
2). Kanalizacja sanitama o elemencie końcowym S-5
OK Anuluj

Rys. 148. Okno wyboru obiegu do wygenerowania profilu

Po wyborze interesującego nas obiegu wyświetlone zostanie okno w którym użytkownik wybierze magistrale główną (Rys. 149). Po lewej stronie okna w kolumnie wybierz profil mamy listę wszystkich możliwych dróg (tras między źródłem a końcem) jakie są w obiegu. W zależności od wybranego przypadku po prawej stronie wyświetlane są pozostałe profile które program podzielił sam. W dolnej części okna możemy jeszcze dobrać skalę profilu względem osi x i y.

Wybór głównej magistrali	— X—					
Wybierz profil:	'rofile pomocnicze:					
Lista profili:	Lista profili pomocniczych:					
1. S-5 -> S-1 2. S-5 -> S-6 3. S-5 -> S-7	S-2 -> S-6					
Skala X: 1:100 ▼ 1:1 1:2 1:5 1:10 1:20 1:50 1:100 1:250 1:500 1:1000	Skala Y: 1:100 V					

Rys. 149. Okno wyboru magistrali głównej

Po wciśnięciu przycisku OK użytkownik w głównym ekranie CAD-a wybiera miejsce lokalizacji profilu i przyciska lewy klawisz myszy. Automatycznie w miejscu tym tworzy się profil (Rys. 150). Podwójne kliknięcie lewym klawiszem myszy spowoduje wyświetlenie okna (Rys. 151), w którym możemy dokonać modyfikacji.

Rys. 150. Wygenerowany profil

Właściwości elementu: Profil uproszczony	Właściwości elementu: Profil uproszczony
Zarządzanie elementem	Zarządzanie elementem
ld elementu 0	Id elementu 0
Parametry	Parametry
Wygląd	Wygląd
Pisaki Czcionki	Pisaki 🔻 Czcionki 💌
Parametry profilu Dane adresowe tabelki rysunkowej	Parametry profilu Dane adresowe tabelki rysunkowej
Wido Skala Skala Nazwa	Dane adresowe
☑ 1:100 1:100 S-5> S-1	Nazwa i adres firmy: INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057
☑ 1:100 1:100 S-3> S-7	
☑ 1:100 1:100 S-2-> S-6	Nazwa i adres obiektu Budynek "Orion" 90-057 Łódź, ul. Sienkiewicza 85/87
	budowlanego, nr. ewindecyjny działki:
	Nazwa i adres inwestora: INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057
Skala:	Projektant: mgr inż. J. Kowalski
Przedmiot rysunku: Profil	Data: 22 🔻 : 10 💌 : 2012
	Współpraca autorska: mgr inż. J. Kowalczyk
Nr rysunku:	Data: 22 • : 10 • : 2012
	Sprawdzający: mgr inż. M. Mikołajczyk
	Data: 22 🔻 : 10 💌 : 2012
Zapisz w szablonie	Zapisz w szablonie

Rys. 151. Zakładki: 'Parametry profilu' i 'Dane adresowe tabelki rysunkowej'

Parametry profilu pozwalają włączanie/wyłączenie widoczności profilu (kolumna Widok), skalowanie poszczególnych profili względem osi x (kolumna skala x) i osi y (kolumna skala y), a także zmianę wyświetlanej nazwy nad profilem (kolumna Nazwa). W dolnej części okna użytkownik definiuje parametry zapisywane w tabelce (skale rysunku, nazwę rysunku, nr rysunku).

Dane adresowe pozwalają na szczegółowe wypełnienie tabeli rysunku podobnie jak w opcjach programu (patrz rozdział 3.4 Opcje programu).

Program na podstawie najmniejszej i największej rzędnej dobiera wielkość ramki z dostępnej bazy formatów papieru (A4, 297, A3, A2, A1, A0).

3.12 Generowanie rysunków szczegółowych elementów obiektów

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na wygenerowania szczegółowych rysunków wybranych elementów projektu. Funkcja ta jest aktywna dla wszystkich typów studzienek betonowych, studzienek inspekcyjnych tworzywowych, studzienek osadnikowych tworzywowych, wpustów osadnikowych tworzywowych, wpustów przepływowych tworzywowych. Wstawienie rysunku szczegółowego odbywa się poprzez wybór w pasku akcji ikony 1 (na interesującym nas elemencie). Następnie wybieramy punkt wstawienia na rysunek i klikamy lewy przycisk myszki. Wywołane zostanie okno parametrów szczegółowych rysunku (Rys. 152), w którym można zdefiniować skalę rysunku i informacje adresowe (patrz rozdział 3.5 Opcje programu). Program na podstawie wybranej skali dobiera wielkość ramki z dostępnej bazy formatów papieru (A4, A3, A2, A1, A0).

Właściwości elementu: F	Profil *	x								
	Zarządzanie elementem									
ld elementu	4									
	Parametry									
	Wygląd									
Pisaki 🔻 Czcio	nki 💌									
Bement										
	Dane adresowe	_								
Nazwa i adres firmy:	INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057									
Nazwa i adres obiektu budowlanego, nr. ewindecyjny działki:	Budynek "Orion" 90-057 Łódź, ul. Sienkiewicza 85/87									
Nazwa i adres inwestora:	INTERsoft sp. z o.o. ul.Sienkiewicza 85/87 Łódź 90-057									
Projektant:	mgr inż. J. Kowalski									
Data:	22 • : 10 • : 2012									
Współpraca autorska:	mgrinż. J. Kowalczyk									
Data:	22 - : 10 - : 2012									
Sprawdzający:	mgr inż. M. Mikołajczyk									
Data:	22 - : 10 - : 2012									
Skala:	1:10 👻									
Przedmiot rysunku:	Studnia w punkcie S12									
Nr rysunku:	014									
Za	ipisz w szablonie	uj								

Rys. 152. Okno parametrów rysunku szczegółowego elementów obiektu

W dolnej części okna użytkownik definiuje parametry zapisywane w tabelce (skale rysunku, nazwę rysunku, nr rysunku).

Rys. 153. Rysunek szczegółowy elementów studzienki betonowej

3.13 Generowanie zestawień

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na generowanie zestawień użytych w projekcie elementów albo dla całego projektu albo dla wybranych części i elementów. Program zapisuje zestawienie w formacie rtf, który można otworzyć dowolnym programem Word i Open Office.

Wyboru tej funkcji dokonujemy w Pasku akcji wg założeń:

- 3) Gdy włączymy przycisk z zaznaczonym jednym obiektem to zestawienie wygeneruje się tylko dla tego obiektu,
- 4) Gdy włączymy przysiek gdy zaznaczona jest tylko jedna rura to zestawienie wygeneruje się dla całego obiegu
- 5) Gdy będziemy mieli zaznaczony cały projekt lub przynajmniej po jednej rurze z każdego obiegu to wygenerowane będzie dla całości.

Zestawienie wykonywane jest oddzielnie dla kanalizacji deszczowej i sanitarnej i zawiera dodatkowy podział na zestawienie obiektów, rurociągów, studzienek/wpustów.

Po wciśnięciu ikony z Paska akcji pojawia się okno Zapisz raport/zestawienie (Rys. 154). Okno to służy do wyboru lokalizacji zapisu wygenerowanych zestawień na twardym dysku. W celu podglądu zapisanego pliku trzeba odnaleźć ścieżkę i otworzyć poprzez dwuklik klawisza myszy.

🕂 Zapisz raport				L	x
😔 🕘 🗢 📙 « IN	TERsoft ArCADia 4.1	PL 🕨 👻 🐓	Przeszukaj: A	rCADia 4.1 PL	٩
Organizuj 👻 No	owy folder				0
Nazwa	^	Data modyfikacji	Тур	Rozmiar	^
\rm AdkExt		2012-03-29 09	Folder plików		
퉬 ArCADia		2012-03-29 09	Folder plików		
퉬 Fonts		2012-03-29 09	Folder plików		=
퉬 Help		2012-03-29 09	Folder plików		
퉬 Ico		2012-03-29 09	Folder plików		
퉬 lang		2012-03-29 09	Folder plików		
퉬 Patterns		2012-03-29 09	Folder plików		
퉬 Print Styles		2012-03-29 09	Folder plików		-
•		m			Þ.
<u>N</u> azwa pliku:					•
Zapisz jako <u>t</u> yp:	Pliki obiektów (*.rtf)				-
🔿 Ukryj foldery			<u>O</u> twórz	Anuluj	

Rys. 154. C

Okno zapisu raportu/zestawienia

	Zest	awienie elementów kanalizacji	deszczov	vej					4	Rura teleskopowa Ø425 z uszczelką o długości 0.375 m	315/375	0.425	0.38	Normowe	-	0.00
lestar	wienie a	matury, kształtek i obiektów:		-	Dati		Ne	Come	5	Właz żeliwny do rury teleskopowej Ø 0.425 m kl. B125	425/540	1.500	0.07	Normowe		0.00
Lp.	Sym.	Nazwa	Sredmica IIošč Producent katalogow [zlišzt] Cella Calkowita cena obiektu							0.00						
	Zb-2	Zbiomik	1	.00 x	1	-			S-2	2, Studzienka tworzywowa osadnikowa, 0.	315, Norm	owe				
2	T-1	Trójnik redukcyjny 87 RAU-PV	/C 0	20/0.16	1	REHAU	175233-050	60.00	Lp	Nazwa elementu	Symbol	DN [m]	H [m]	Producent	Nr katalogowy	Cena [zł/szt
,	V 1	AWADUKI		0-20	1			-	1	Pokrywa/dno PP Ø 0.315 m kl. A15	315	0.315	1.00	Normowe	-	0.00
,	01.1	Admodulation in linear and Admodule		20 1 20	1				2	Studzienka osadnikowa bez syfonu	315/160	0.315	1.75	Normowe	-	0.00
•	01-1	Ouwoullielle filliowe Ouwoulli	1	00 *	1	-			3	Rura karbowana	315/1250	0.315	1.25	Normowe	-	0.00
5	Zb-1	Zbiomik	Ó	.50	1	-	-	-	4	Pokrywa/dno PP Ø 0.315 m kl. A15	315	0.315	1.00	Normowe	-	0.00
5	Wrd-1	Wpust rynnowy Wpust rynnow	y 0	.20	1	-	-		Ca	ikowita cena obiektu						0.00
7	Wrd-2	Wpustrynnowy Wpustrynnowy	y 0	.20	1	-	-	-	wp	p-1, wpust betonowy, 0.500, SIB ŁOWICz	5	-				0
3	Wrd-3	Wpustrynnowy Wpustrynnow	y 0	.20	1	-	-	-	Lp	Nazwa elementu	Symbol	[m]	H [m]	Producent	Nr katalogowy	[zł/szt
lestar	wienie r	irociagów:		-			-	0	1	Element denny Ø500x1500 z otworem pod rurę Ø200 i uszczelką LKS	-	1.00	1.50	SIB ŁOWICZ	3090	0.00
Lp.	Nazwa		/Typ	a Dhigo [m]	DSC P	roducent	Nr katalogowy	[zł/m]	2	Kregi betonowe Ø500x1000	-	0.50	1.00		3084	0.00
1	Rura R/ typu SN	AU-PVC AWADUKT ProEko [4	0.20	48.32	R	EHAU 2	296135-001	6.83	3	Pierścień odciążający Ø1120x150	-	1.12	0.15	SIB ŁOWICZ	3083	0.00
2	Rura R. typu SN	AU-PVC AWADUKT ProEko 14	0.11	70.72	R	EHAU 2	296055-001	2.67	4	Pierścień dystansowy Ø920x680/250	-	0.92	0.25	SIB ŁOWICZ	3082	0.00
3	Rura R/ typu SN	AU-PVC AWADUKT Kompakt 8	0.16	26.47	R	EHAU 2	200748-101	6.83	5	Podstawa betonowa 0920x150 pod wpust uliczny 0460	-	0.50	0.15	SIB ŁOWICZ	3081	0.00
4	Rura R/ typu SN	AU-PVC AWADUKT ProEko 4	0.16	27.71	R	EHAU	296095-001	4.42	6	Wpustuliczny typu 67 BK bez kołnierza	-	0.43x 0.62	0.20	SIB ŁOWICZ	-	0.00
esta	wienie e	ementów studzienek:							Ca	łkowita cena obiektu						0.00
5-1,	Studzier	ka tworzywowa osadnikowa, 0.4	25, Nom	lowe												
-p]	Nazwa e	ementu	Symbol	DN [m]	H[m]	Producent	Nr katalogowy	Cena [zł/szt.]								
1 F	Pokrywa	(dno PP Ø 0.425 m kl. A15	425	0.425	1.00	Normowe	-	0.00								
2 5	Studzien	ka osadnikowa bez syfonu	425/160	0.425	1.75	Normowe	-	0.00								
	Rura kar	bowana	425/200	0.425	2.00	Normowe	-	0.00								

Rys. 155. Podgląd wygenerowanego zestawienia materiałów

3.14 Generowanie raportów obliczeniowych

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na generowanie raportów obliczeniowych dla wstawionych do projektu obiektów. Program zapisuje raporty w formacie rtf, który można otworzyć dowolnym programem Word i Open Office.

Wyboru tej funkcji dokonujemy w Pasku akcji poprzez zaznaczenie obiektu i wciśnięcie ikony 📓.

Raport wykonywany jest oddzielnie dla każdego obiektu może się składać z:

- 1) Części obliczeniowej zlewni,
- 2) Część obliczeniowej przepływu,
- 3) Części doboru średnic (grawitacyjnej lub ciśnieniowej),
- 4) Części doboru urządzenia,

Raport można wygenerować dla obiektów: Budynek, Odwodnienie liniowe, Komora, Osadnik, Przepompownia, Studzienka betonowa, Studzienka osadnikowa tworzywowa, Studzienka inspekcyjna tworzywowa, Wpust osadnikowy betonowy, Wpust osadnikowy tworzywowy, Wpust przepływowy tworzywowy, Wpust rynnowy, Zbiornik.

Po wciśnięciu ikony **I** z Paska akcji wywołujemy okno Zapisz raport/zestawienie (Rys. 156). Okno to służy do wyboru lokalizacji zapisu wygenerowanych raportu na twardym dysku. W celu podglądu zapisanego pliku trzeba odnaleźć ścieżkę i otworzyć poprzez dwu klik.

🕂 Zapisz raport				l	x
😋 🕞 🗢 🚺 « IN	TERsoft 🔸 ArCADia 4.1	PL 🕨 👻 🔩	Przeszukaj: A	ArCADia 4.1 Pl	<mark>ہ</mark> ا
Organizuj 🔻 No	owy folder			:== -	•
Nazwa	^	Data modyfikacji	Тур	Rozmiar	^
📕 AdkExt		2012-03-29 09	Folder plików		
🌗 ArCADia		2012-03-29 09	Folder plików		
Fonts		2012-03-29 09	Folder plików		=
🌗 Help		2012-03-29 09	Folder plików		
ico 🐌		2012-03-29 09	Folder plików		
🌗 lang		2012-03-29 09	Folder plików		
Patterns		2012-03-29 09	Folder plików		
) Print Styles		2012-03-29 09	Folder plików		-
•		III			F.
Nazwa pliku:	zestawienie elementu				•
Zapisz jako typ:	Pliki obiektów (*.rtf)				•
) Ukryj foldery			Zapisz	Anuluj	

Rys. 156. Okno zapisu raportu/zestawienia

				2			
Raport oblic	zeniowy c	osadnika Os	e_1	Predkosc graniczna Vm = 0.05			
rtuport obio	2011/01/19	ooddining of		$hp = \frac{1}{Vm} \cdot D \cdot 1000 = \frac{1}{0.03} \cdot 2.00 \cdot 1000 = 0.200[m]$			
1)Dane wejściowe: Miszadzina zatekania dzenami zmany 200.001	dual/calual			9) Obliczenie wysokości części czynnej hcz=ho + ho = 0.021 + 0.200 = 0.221 [m]			
Stężenie zawiesiny ogólnej na włocie do osad	nika Z1 = 300	.00[mg/dm ³]		10) Obliczenie objętości czynnej			
Stężenie zawiesiny ogólnej na wylocie z osad Pozma wyrokajć opadów Hr = 600 000mm i	nika Z2 = 100. cold	.00[mg/dm ³]		$V_{CZ} = h_{CZ} \cdot A = 0.221 \cdot 1.88 = 0.414 [m^{2}]$			
2) Obliczenie zlewni i przepływów obliczen 2.1) Obliczenie zlewni zredukowanej	iowych			11) Deber ruty wylotowej z osadnika Os-1 Typ ruzociągu: grawitacyjny Producent DYKA			
	A			Typoszereg: DYKA rury z rdzeniem spienionym i uszczelka <u>PVC-U</u> ULTRA klasy SN2 SDR51 Srednicz: 0.16 [m]			
Typ zlewm	zlewni[m2]	Wspoł. w		Spadek: 0.40 [%]			
Ogrody	500.0	0.1		Przepływ obliczeniowy Q : 10.00 [dm²/s]			
Parkingi	600.0	0.8		kanale: $V = K \cdot Rh^{\frac{1}{2}} \cdot i^{\frac{1}{2}} = 0.8d[m/x]$			
Ulice klasy E w liniach rozgraniczających	100.0	0.4					
Zredukowana powierzchnia zlewni Fzr	0.0595	[ha]		Obliczone napełnienie w kanale h/d : 61.68%			
$\begin{array}{c} \frac{y_{1}}{z_{2}} = \frac{y_{2}y_{2}}{z_{3}} - \frac{y_{2}y_{2}}{z_{3}} - \frac{y_{2}y_{2}}{z_{3}} - \frac{y_{2}y_{2}}{z_{3}} \\ 0 Obscenia powierrcha is stadkate, perreptVpolszymia bergenezint wa. et al. 25Predicted optimization of the state of t$	¹ = 66.67 [96] pływie pozion vie poziomym osadnika o pr 00 kg <u>s.m.</u>] <u>-100.00 -600</u> 100000 - 2	nym rzepływie pozioz 2.00 - 1.1.0 = 0.03:	nym v[∞']				

Rys. 157. Podgląd wygenerowanego zestawienia materiałów

3.15 Generowanie raportów współrzędnych xy

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na generowanie raportów współrzędnych xy dla wstawionych do projektu obiektów. Program zapisuje raporty w formacie rtf, który można otworzyć dowolnym programem Word i Open Office.

Wyboru tej funkcji dokonujemy w Pasku akcji poprzez zaznaczenie obiektu i wciśnięcie ikony XY. Raport wykonywany jest oddzielnie dla każdego obiegu.

Po wciśnięciu ikony XY z Paska akcji pojawia się okno Zapisz xy (Rys. 158). Okno to służy do wyboru lokalizacji zapisu wygenerowanych raportu na twardym dysku. W celu podglądu zapisanego pliku trzeba odnaleźć ścieżkę i otworzyć poprzez dwu klik.

🕂 Zapisz raport								
G S V INTERsoft > ArCA	✓ ✓ Przeszukaj	: ArCADia 4.1 PL 🔎						
Organizuj 🔻 Nowy folder			:= - 🔞					
System (C:)	Nazwa	A	Data modyfikac 📤					
Brogram Files (x86)	퉬 AdkExt		2012-03-29 09					
INTERsoft	퉬 ArCADia		2012-03-29 09					
ArCADia 4.1 PL	퉬 Fonts		2012-03-29 09 =					
ArCADia 4.1 PL Add	퉬 Help		2012-03-29 09					
📕 ArCADia 4.1-7 PL A	퉬 Ico		2012-03-29 09					
\mu ArCADia-INTELLICA	퉬 lang		2012-03-29 09					
🎉 ArCADia-INTELLICA	퉬 Patterns		2012-03-29 09					
🐌 ArCADiasoft-Menac	퉬 Print Styles		2012-03-29 09 🔻					
🎴 ArCADia-TERMO 4.1 🏲	۰ II		+					
Nazwa pliku: współrzędne sieci			-					
Zapisz jako typ: Pliki obiektów (*.rtf)								
🔿 Ukryj foldery		Zapisz	Anuluj					

Rys. 158. Okno zapisu współrzędnych X, Y

					2
1			Zb-26	X=746.485	Y=556.759
	Wykaz	współrzędnych.	Zb-25	X=746.274	Y= 569.253
			Zb-24	X=755.871	Y= 572.814
ieg z elemente	m końcowym Zb-9				
9	X=695.662	Y=543.411			
8	X=662.226	Y= 530.105			
-7	X=615.770	Y=511.617			
6-6	X=569.313	Y=493.129			
b-5	X=522.857	Y=474.641			
5-4	X=476.401	Y=456.153			
è-3	X=429.944	Y=437.665			
b-2	X=383.488	Y=419.177			
<i>b</i> -1	X=337.031	Y=400.689			
b-11	X=497.450	Y=445.973			
b-10	X=542.462	Y-424.204			
b-12	X=495.939	Y=429.591			
b-17	X=498.941	Y=491.226			
-16	X=500.847	Y=491.808			
b-15	X=548.663	Y=506.425			
b-14	X=514.357	Y=510.984			
r-13	X=468.419	Y=498.282			
-18	X=549.893	Y=527.020			
b-19	X=681.599	Y=516.088			
-20	X=707.057	Y=515.437			
b-21	X=664.799	Y=553.195			
b-23	X=688.141	Y= 556.693			
b-22	X=679.577	Y= 566.712			
b-30	X-709.428	Y=538.760			
b-29	X=707.099	Y= 560.359			
-28	X=728.274	Y=545.960			
b. 27	X=728.698	Y= 574.758			

Rys. 159. Podgląd wygenerowanego pliku współrzędnych xy

3.16 Numeracja i opis obiektów

ArCADia-INSTALACJE KANALIZACYJNE ZEWNĘTRZNE pozwala na wstawianie opisów do obiektów i rurociągów. Dzięki zaawansowanej funkcji inteligentnych połączeń program automatycznie odświeża wyświetlane napisy(wg zmian jakie zaszły w projekcie). Funkcja włączana/wyłączana jest poprzez ikonę

na pasku akcji (gdy zaznaczymy jeden obiekt to wł/wył opisy tylko niego, gdy zaznaczymy wiele wówczas wł/wył opisy dla wybranych)

Opisy podzielone są na wie grupy:

 Opisy obiektów w których wyświetlana jest Rz.g.obiektu, Rz.d.obiektu i symbol i numer (Rys. 160). Opisy możemy dowolnie obracać lub robić odbicie lustrzane poprzez zaznaczenie i przesunięcie odpowiedniego punktu zaczepienia.

Rys. 160. Opis obiektu

 Opisy rurociągów w których wyświetlany jest materiał, średnica, długość, spadek, kierunek (w opcjach programu można wybrać wł/wył poszczególnych części opisu). Opisy możemy obracać i przesuwać poprzez przesuniecie ich punktów zaczepienia (Rys. 161)

Rys. 161. Opis obiektu