ArCADia-TERMO PORADNIK PROJEKTANTA KROK PO KROKU Certyfikat

1 SPIS TREŚCI

1 Spis i	treści	2
2 Pora	dnik – krok po kroku	5
2.1 K	rok 1 – Obliczenia cieplne	6
2.1.1	Wybór obliczeń	6
2.1.2	Dane projektu	7
2.1.3	Dane o budynku	7
2.1.4	Obliczenia współczynników U i R	8
2.1.5	Strefy cieplne	9
2.2 k	rok 2 – Ogrzewanie i wentylacja	11
2.2.1	Sprawność wytwarzania	12
2.2.2	Sprawność regulacji	13
2.2.3	Sprawność przesyłu	14
2.2.4	Sprawność akumulacji	16
2.2.5	Sprawność całkowita	17
2.2.6	Roczne zapotrzebowanie energii elektrycznej końcowej do	napędu
urządze	eń pomocniczych systemu ogrzewania i wentylacji	18
2.3 K	rok 3 – Cipła woda użytkowa	19
2.3.1	Roczne zapotrzebowanie ciepła użytkowego	20
2.3.2	Sprawność wytwarzania	23
2.3.3	Sprawność przesyłu	24
2.3.4	Sprawność akumulacji	27
2.3.5	Sprawność całkowita	
2.3.6	Roczne zapotrzebowanie energii elektrycznej końcowej do	napędu
urządze	eń pomocniczych systemu przygotowania ciepłej wody	29
2.4 K	rok 4 - Chłodzenie	31
2.4.1	Współczynnik efektywności energetycznej wytwarzania chłodu	32
2.4.2	Sprawność rozdziału chłodu	
2.4.3	Sprawność regulacji i wykorzystania chłodu	
2.4.4	Sprawność akumulacji.	
2.4.5	Sprawność całkowita	
2.5 K	rok 5 - Oświetlenie	
		3

2.5.1	Czas użytkowania oświetlenia.	39
2.5.2	Wpływ światła dziennego	40
2.5.3	Wpływ nieobecności pracowników w miejscu pracy	40
2.5.4	Wpływ obniżenia natężenia oświetlenia.	41
2.5.5	Parametry obliczeń jednostkowej mocy opraw oświetleniowych	42
2.5.6	Parametry do obliczeń średniej ważonej mocy jednostkowej	i
zapotrz	ebowania energii	44
2.6 K	Trok 6 – Dane uzupełniające	45
2.6.1	Dane uzupełniające	45
2.6.2	Roczne jednostkowe zapotrzebowanie na energię końcową	46
2.6.3	Zdjęcia/rysunek - podgląd	46
2.6.4	Zakładki	47
2.6.5	Charakterystyka techniczno-użytkowa	47
2.6.6	Instalacje	48
2.6.7	Uwagi	49
2.6.8	Dane do budynku referencyjnego	50
2.7 K	Trok 7 – Raporty	54
2.7.1	Raport uporszczony	54
2.7.2	Raport RTF	54

$2\ PORADNIK-KROK POKROKU$

2.1 KROK 1 – OBLICZENIA CIEPLNE

2.1.1 Wybór obliczeń

Aby wykonać Świadectwo energetyczne wg Rozporządzenia Ministra Infrastruktury z listopada 2008r należy wykonać obliczenia sezonowego zapotrzebowania na ciepło budynku wg normy PN EN 13790, metodą szczegółową. Straty ciepła od gruntu należy liczyć wg normy PN EN 12831. Następnie należy zaznaczyć opcję certyfikat. Jeżeli zostanie wybrany inny zestaw norm nie będzie możliwe wykonanie Świadectwa energetycznego.

🕂 ArCADia - TERMO 1.0 - Licencja o	lla: Licencja INTERsoft [L01] - Certyfikat - Lokal m	eszkalny	
Dane wejściowe	Wybór obliczeń		
Dane wejściowe Certyfikat - Lokał i skłary 2 Sodani oszywate Certyfikat - Lokał mieszkalny 2 Szabiony Dach z biołowi Scalan zew z bi Scalan zew z bi Sc	Wybór obliczeń Obliczeniowe zapotrzebowanie na ciepło p Norma: PH EH 2831 Strały ciepie od Mełoda: Uproszczona Zapotrzebowanie na ciepło budynku Norma: PH EH 13780 Mełoda: Szczegółowa Strały ciepie od grunha: PH EH 12831 Wybór obliczeń mostków ciepinych: Uproszczon	pomieszczeń Q gruhu: PH EH 12831 Norma: wg Rozp. z 28.02.2008 Certyfikat Mełcóda: Budynek mieszkałny Obliczenia: Pomieszczenie niechłodzone a D	Opis obliczeń Scrowce zapotrzebowanie na ciepło budynku BiCertyfikat
Obliczenia cieplne	Paport o bledach		•
Certyfikat	L.p. Typ	Opis	
Raporty			
[1/10] >			Zamknij

Rys 1. Okno wyboru obliczeń

2.1.2 Dane projektu

W oknie *Dane projektu* audytor musi zdefiniować danych adresowych itp. niezbędne w raporcie RTF do wypełnienia stron tytułowych, oraz ogólnych charakterystyk budynku. Konieczne jest kompletne wypełnienie danych aby spełnić wymagania formalne stawiane przez *rozporządzenie*

ne wejściowe	Dane projektu						
🖉 💾 📲 🖳 🗖 🐴	OPIS PROJEKTU				DANE JEDNOSTKI	OPRACOWUJĄCEJ	
🖳 💽 Ostatnio używane	Miniscourcéé	L ádá	Nr. projektu:	1	Logo:		
Projekt nr 1 - komp	miojacowose.	Louz	Wersja projek	tu: 1	IAIT	EDee	L4.
Domek jednorodzin	Outer					Enso	π
Szablony	opis.				Namera	WITED	
Przegrody					INGZ WOL	INTERSOIL	
🗀 Dach z betonu					NIP:	725-16-76-810	
Dach z betonu	Data	17 grudzień 2008 🔻			REGON:	472347809	
Dach z blachy (opracowania:				Adres:		
Ściana zew z h	DANE BUDYNKU				Adres:	ul. Sienkiewicza	
🛁 🚊 Ściana zew z b	DAIL DOD TINO				Nh.	95.97	
🔤 🦳 Ściana zew z b	Nazwa:	INTERsoft			rer.	03/01	
🖳 🦳 Ściana zew z b	Adres:				Miejscowość:	Łódź	
Ściana zew z b					Kodt	90-057	
Sciana zew z b	Adres:	ul. Sienkiewicza	Nr.:	85/87	Województwo	lódzkie	
Domek+bioma	Miejscowość:	Łódź	Kod:	90-057		Iouzare	
🗀 Domek+gaz+el	Województwo:	łódzkie			Leieton:	+48 42 6891111	
Szkoła+wczeł.	DANE BRIEGTOD				Fax	+48 42 6891100	
	DANE INWESTOR	•			Dane osobowe		
	Nazwa:	INTERsoft			Lista	projektantów	
	Adree				Lota	projontantori	
and to start and	Aurea.			1.	Sebastian Górka		22
Wybor obliczen	Adres:	ul. Sienkiewicza	Nr.:	85/87			-
Dane projektu	Mieiscowość:	Łódź	Kod	90-057			
Dane o budynku							4
Denne una i facilmura	Województwo:	łódzkie					
Dane wejsciowe	Telefon:	+48 42 6891111	Fax:	+48 42 6891100			
Obliczenia cieplne							
oblicitina crepine	-Banart a bladaab						
Audyt	Raport o biędach						
	L.p. Typ	Descent billes (less and an		Opis	da waƙata wasana datala a		
Raporty	1 Ostrzezenie	Parametr "Wspołczynnik pra	zenikania uc. w przegrodzie -	52.1, powinien znaji	dować się w przedziałe o dować się w przedziałe o	a 0,00 ao 0,25!	
	2 Ostrzezenie	Parametr Wsporczynnik pr	centivanta UC w przegródzie -	'OZ 1 , pownień znaj 'DZ 1", powisien znaj	dowoć się w przedziale i dowoć się w przedziale i	od 0,00 do 1,901	
	- Ostrzezenie	Parametri wsporczynnik pra	ceniikania Uc. w przegrodzie -	102 1 , powinien zha)	uowac się w przedziale i	10 0,00 00 1,901	

Rys 2. Okno dane projektu

2.1.3 Dane o budynku

W oknie *dane o budynku* konieczne jest zdefiniowanie podstawowych parametrów budynku takich jak: przeznaczenie, lokalizacji, strefa klimatyczna, rok budowy, osłonięcie od wiatru, itp. Dane te będą potrzebne do dalszych obliczeń zarówno strat w pomieszczeniach, sezonowego zapotrzebowania na ciepło jak i certyfikatu.

Rys 3. Okno dane o budynku

2.1.4 Obliczenia współczynników U i R

W oknie definicje przegród użytkownik musi zdefiniować wszystkie przegrody występujące w ocenianym budynku i wykonać obliczenia oporu R_c i współczynnika U przegród.

🕌 ArCADia - TERMO Pro 1.0 - L	icencja dla: Licencja dla: Witolda Kurczyńskiego i Sebastiana Górki [LO1] - Projekt nr 1 - kompleksow 🗐 💁 🖃 💷 🔲 💟
Obliczenia cieplne	Definicje przegród
Image: STW1 Image: STW1 Image: STW1	Waskiwości przegrody Typ: Ściana zewnętrzna Nazwa: Ściana zewnętrzna Symbol: SZ 1 Sposło dokczeń: Żdefniowane warstwy Opory cieplne Współczynnik mostków ciepłnych R _{st} r (+13 $\frac{m K}{W}$) R _s g 0.44 $\frac{m 2 K}{W}$ Warstwy przegrody Up. Mazeniał (m) U/m*k (m,K/W) 1 Maz cogły ceranicznej pałnel, 0,300 0,910 0,910 0,418 Wyniki obliczeń Cakowsky opór: R c=0.58 m 2 K Cakowsky opór: R c=0.58 m 2 K Cakowsky opór: R c=0.58 m 2 K
Definicje przegród Struktura budynku Strefy cieplne	
Dane wejściowe	Wykres temperatury i wykropiecia
	Raport o bledach
Audyt	L.p. Typ Opis
Raporty	I obstrześnie Paramet: "Współczymik przemkania Uć" w przegrodzie "52 t" j powrien znajdowski se w przedziała od 0,00 do 0,251 Ostrześnie Paramet: "Współczymik przemkania Uć" w przegrodzie "52 t", powrien znajdowski se w przedziała od 0,00 do 1,501 Ostrześnie Paramet: "Współczymik przemkania Uć" w przegrodzie "52 t", powrien znajdowski se w przedziała od 0,00 do 1,501 Ostrześnie Paramet: "Współczymik przemkania Uć" w przegrodzie "52 t", powrien znajdowski se w przedziała od 0,00 do 1,501 Ostrześnie Paramet: "Współczymik przemkania Uć" w przegrodzie "52 t", powrien znajdowski se w przedziała od 0,00 do 1,501
[4/14] >	

Rys 4. Okno definicji przegród

2.1.5 Strefy cieplne

Okno to służy do obliczeń sezonowego zapotrzebowania na ciepło budynku. Dane te potrzebne są do obliczeń świadectwa charakterystyki energetycznej budynku, audytu energetycznego oraz aby oszacować roczne zużycie ciepła przez budynek

zenia cieplne	Stref	y cieplne												
	Wła	ściwości strefy							W	vniki ob	liczeń			
	Naz	wa:	Strefa O1							-48.94	W	0 -46	2 02 MMb	
Strefa 01							-	di - 40,51	к	9-40	00,00 KVVII			
2 Kuchnia	Typ:		é					L	L = 31,15 W Q. = 7148.68 kWh					
3 Pokój dzienr	Temperatura			sream	a temperati	Ira			= dyzi - , - K					
9 Łazienka		θ _i =20,00°	C		t s=20,0	0°C			L	diu ⁼⁰ K	-	Q _h =528	52,11 kWh	
10 Przedpokoj	Ca	Hkowita powierzch	nia	Całkov	vita kubatur	a				=0_W	_			
11 WC		A =66,53	m ²		V =186	,29 m ³				si K				
1 Pokój	llo	ść osób		llość n	nieszkań				н	, =48,91	W			
L Nieogrzewane		N =0			M =0						w			
Nieprzypisane	Dz	iałanie wiatru		Osłoni	ecie przed v	wiatrem			H	v=31,67	К			
		-0.04	Tablica	4 -45	00		Tabli	-	н	=80.58	W			
	9	-0,01	Tubico	1 = 10,	00		Tubic				к			
				152	L.J.	L mi	0.00	0.0-1	[m+i		LVV/m+K	-0		
				[52	uj -	ſmj	fuid	60.4	[m+]		[vv/m+k	1 10	a	
	1	Ściana zewnętrzna		-	N	[m] 2,80	3,85	10,78	[m*]	0,00	0,23	-20,0	2,5	
	1 2	Ściana zewnętrzna Ściana zewnętrzna		-	N E	2,80 2,80	3,85 2,93	10,78 8,20	[m*] 10,78 6,50	0,00 0,00	0,23 0,23	-20,0 -20,0	2,5 1,5	
	1 2 3	Ściana zewnętrzna Ściana zewnętrzna L+ Okno zewnętrz	ne	1	N E E	[m] 2,80 2,80 1,41	3,85 2,93 1,21	10,78 8,20 1,71	[m*] 10,78 6,50 -	0,00 0,00 0,00	0,23 0,23 1,70	-20,0 -20,0 -20,0	2,5 1,5 2,9	H
	1 2 3 4	Ściana zewnętrzna Ściana zewnętrzna L→ Okno zewnętrzna Ściana wewnętrzna	ne	1	N E E N	[m] 2,80 2,80 1,41 2,80	3,85 2,93 1,21 0,38	10,78 8,20 1,71 1,06	[m+] 10,78 6,50 - 1,06	0,00 0,00 0,00 0,00	0,23 0,23 1,70 2,55	-20,0 -20,0 -20,0 20,0	2,5 1,5 2,9 2,7	H
4 III	1 2 3 4 5	Ściana zewnętrzna Ściana zewnętrzna L Okno zewnętrzna Ściana wewnętrzna Ściana wewnętrzna	ne	1	N E E N W	2,80 2,80 1,41 2,80 2,80	3,85 2,93 1,21 0,38 0,38	10,78 8,20 1,71 1,06 1,06	[m*] 10,78 6,50 - 1,06 1,06	0,00 0,00 0,00 0,00 0,00	0,23 0,23 1,70 2,55 2,55	-20,0 -20,0 -20,0 20,0 20,0	2,5 1,5 2,9 2,7 2,7	
III • • • • • • • • • • • • • • • • • •	1 2 3 4 5 6	Ściana zewnętrzna Ściana zewnętrzna L→ Okno zewnętrzna Ściana wewnętrzna Ściana wewnętrzna Ściana wewnętrzna	ne	1	N E E N W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38	10,78 8,20 1,71 1,06 1,06 1,06	[m+] 10,78 6,50 - 1,06 1,06 1,06	0,00 0,00 0,00 0,00 0,00 0,00	0,23 0,23 1,70 2,55 2,55 2,55	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0	2,5 1,5 2,9 2,7 2,7 2,7	
III Definicje przegród Strefy ciepine	1 2 3 4 5 6 7	Śdana zewnętrzna Śdana zewnętrzna L. Okno zewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna	ne		E E W W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80	(),385 2,93 1,21 0,38 0,38 0,38 0,64 0,64	10,78 8,20 1,71 1,06 1,06 1,06 1,79	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 2,7 4,6	
III > Definicje przegród Strefy cieplne	1 2 3 4 5 6 7 8 9	Śdana zewnętrzna Śdana zewnętrzna ↓→ Okno zewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna	ne		N E N W W W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38 0,64 0,62 5,11	10,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,06 1,79 1,74 14 31	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55 2,55	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 4,6 4,4	
III Definicje przegród Strefy ciepine Dane wejściowe	1 2 3 4 5 6 7 8 9 10	Śdana zewnętrzna Śdana zewnętrzna ↓→ Okno zewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana zewnętrzna Śdana zewnętrzna	ne		N E N W W W W W W W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38 0,64 0,62 5,11 5,46	10,78 8,20 1,71 1,06 1,06 1,06 1,06 1,79 1,74 14,31 15,29	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9,87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 20,0 20,0 20,0 20,0 20,0 20,	2,5 1,5 2,9 2,7 2,7 2,7 2,7 4,6 4,4 3,3 2,3	
III Definicje przegród Strefy ciepine Dane wojściowe Obliczenia ciepine	1 2 3 4 5 6 7 8 9 10 10	Śdana zewnętrzna Śdana zewnętrzna ↓ Okno zewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana zewnętrzna Śdana zewnętrzna	ne		N E E W W W W W W W W W W W W W W W W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,64 0,64 0,62 5,11 5.46	10,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31 15,29	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9,87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 4,6 4,4 3,3 2,3	
III > Definicje przegród Strefy ciepine Dane wejściowe Obliczenia ciepine	1 2 3 4 5 6 7 8 9 10 •	Sdana zewnętrzna Śdana zewnętrzna L. Okno zewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana wewnętrzna Śdana zewnętrzna Śdana zewnętrzna			N E E W W W W W N W W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38 0,64 0,62 5,11 5,46	10,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31 15.29	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9.87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 4,6 4,4 3,3 2.3	
III) Definicje przegród Strety ciejnie Dane wejściowe Obliczenia ciepine Certyfikat	1 2 3 4 5 6 7 8 9 10 10 Rapo	Sdana zewnętrzna Sdana zewnętrzna L- Okno zewnętrzna Sdana wewnętrzna Sdana wewnętrzna Sdana wewnętrzna Sdana wewnętrzna Sdana zewnętrzna Sdana zewnętrzna Sdana zewnętrzna	ne	[32 - - - - - - - - - - - - -	N E N W W W N N T	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38 0,64 0,62 5,11 5,46	[III-] 10,78 8,20 1,71 1,06 1,06 1,06 1,06 1,79 1,74 14,31 15.29	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9,87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23 0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 4,6 4,4 3,3 2.3	-
m) Definiciespine Strefy cieppine Dane wejściowe Obliczenia cieplne Certyfikat	1 2 3 4 5 6 7 8 9 0 10 Rapo L.p.	Sciana zewnętrzna Sciana zewnętrzna L+ Oliro zewnętrzna Sciana wewnętrzna Sciana wewnętrzna Sciana wewnętrzna Sciana wewnętrzna Sciana zewnętrzna Sciana zewnętrzna Sciana zewnętrzna Sciana zewnętrzna	ne		N E E N W W W W N N W	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,38 0,64 0,62 5,11 5.46	(m ⁻) 10,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31 15.29 Opis	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9,87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	(w/m*, 0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 20,0 20,0 20,0 20,0 20,0 20,	2,5 1,5 2,9 2,7 2,7 4,6 4,4 3,3 2,3	
III >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1 2 3 4 5 6 7 8 9 10 • 10 • • Rapo L.p.	Sidana zewnętrzna Sidana zewnętrzna L Ołko zewnętrzna Sidana wewnętrzna Sidana wewnętrzna Sidana wewnętrzna Sidana zewnętrzna Sidana ze	ne		N E E N W W W W N N T	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,64 0,62 5,11 5,46	0,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31 15,29 0pis	[m+] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9.87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	(w/m*, , 0,23 , 0,23 , 1,70 , 2,55 ,	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 -20,0 -20,0 -20,0	2,5 2,5 2,9 2,7 2,7 2,7 2,7 2,7 4,4 3,3 2.3 	
m beliniegrafid Strety clepine Dane wejściowe Certyfikat Raporty	1 2 3 4 5 6 7 8 9 10 • • Rapo L.p.	Sciana zewnętrzna Ściana zewnętrzna L→ Oliro zewnętrzna Ściana wewnętrzna Ściana wewnętrzna Ściana wewnętrzna Ściana zewnętrzna Ściana zewnętrzna Ściana zewnętrzna Ściana zewnętrzna	ne		N E E N W W W W W N N N	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,64 0,62 5,11 5,46	(III-) 10,78 8,20 1,71 1,06 1,06 1,06 1,06 1,79 1,74 14,31 15.29 Opis	[m-] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9,87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	(w/m*, 0,23 0,23 1,70 2,55 2,55 2,55 2,55 2,55 2,55 0,23 0,23	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 -20,0 -20,0 -20,0	2,5 1,5 2,9 2,7 2,7 2,7 2,7 4,6 4,4 3,3 2,3 2,3 	
m) Definiçe przegród Strefy ciepnie Dane wejściowe Obliczenia cieplne Certyfikat Raporty	1 2 3 4 5 6 7 8 9 10 ₹ Rapo L.p.	Sdana zewnętrzna Sdana zewnętrzna La Olno zewnętrzna Sdana wewnętrzna Sdana wewnętrzna Sdana wewnętrzna Sdana zewnętrzna Sdana zewnętrzna Sdana zewnętrzna Stana zewnętrzna	ne		N E E W W W W W N N T	[m] 2,80 2,80 1,41 2,80 2,80 2,80 2,80 2,80 2,80	3,85 2,93 1,21 0,38 0,38 0,64 0,62 5,11 5.46	0,78 8,20 1,71 1,06 1,06 1,06 1,79 1,74 14,31 15.29 0pis	[m-] 10,78 6,50 - 1,06 1,06 1,06 1,79 1,74 14,31 9.87	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	[w/m*, 0,23 1,70 2,55	-20,0 -20,0 -20,0 20,0 20,0 20,0 20,0 20	2,5 1,5 2,9 2,7 2,7 2,7 4,6 4,4 3,3 2,3 2,3 2,3 2,5 2,7 	

Rys 5. Okno stref cieplnych

PO WYKONANIU OBLICZEŃ CIEPLNYCH UŻYTKOWNIK ROZPOCZYNA PRACĘ Z MODUŁEM CERTYFIKAT

2.2 KROK 2 – OGRZEWANIE I WENTYLACJA

Pierwszym etapem w module Certyfikat zmierzającym do wykonania świadectwa charakterystyki energetycznej jest określenie sposobu zaopatrzenia oraz rozprowadzenia w budynku (lokalu) ciepła. Pozwoli to na określenie poszczególnych sprawności systemu grzewczego, koniecznych do wyliczenia rocznego zapotrzebowania energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji.

🕂 ArCADia - TERMO 1.0 - Licencja d	la: Licencja INTERsoft [L01] - Certyfikat - Lokal mieszkalny	
Certyfikat	Ogrzewanie i wentylacja	
Roczne zapotrzebowanie na enipierwotna systemu grzewczego wentylacii QP,H = $w_H \cdot Q_{K,H} + w_{el} \cdot E$	Wytwarzanie Rodzaj palwa: Ciepło z ciepłowni węglowej Tablice Rodzaj źróda cepła: Węzeł ciepłny kompaktowy z obudową do 100kW	Sprawność wytwarzania n _{Hg} =0,91
gdzie: współczynnik nakładu nieodnawialnej enerę pierwotnej na wytwar	Regulacja Rodzaj instalacji colonovymi lub płytowymi w przypadku regulacji centralnej	Sprawność regulacji n _{H.a} =0,80
 ^W_H - dostarczenie nosnika końcowej do ocenian budynku dotyczący er ogrzewanie, roczne zapotrzebowai Q_{K,H} - energię końcową syst 	Przesył C.o. wodne z źródłem w budynku, z Rodzaj nstałacji ogrzewczej załzołowanymi przewodami, armatura i urządzeniami w pom. nieogrzewanych	Sprawność przesylu Oblicz n _{H,d} =0,94
ogrzewania i wentyła współczynnik nakładu nieodnawialnej energ pierwotnej na wytwar dostarczenie nośnika końcowej do ocenian	Akumulacja ciepla Paramétry zasobnika Birak zasobnika buforowego Udrowego	Sprawność akumulacji Oblicz n _{irt.s} = 1,00
elektrycznej z systemc Ogrzewanie i wentylacia	Informacje uzupelniające Uwagi: Węzel cieplny zamontowany w latach 80-tych. Instalacja z rur	Sprawność całkowita ∩ _{HIO} = 0,68
Ciepła woda użytkowa Dane uzupełniające Dane wejściowe	Roczne zapotrzebowanie na energie użyteczną na Ω_{m_w} = 5252,11 $\frac{KWn}{8}$ Roczne ząpotrzebowanie onorgi eldtycznej kończwej do napębu urzątej pomociczych societwny ocznezajeji uwebłaći:	
Certyfikat	Raport o blędach L.p. Typ Opis	
Raporty (6/10)		Zamknij

Rys 6. Okno dialogowe Ogrzewanie i wentylacja.

Okno dialogowe *Ogrzewanie i wentylacja* składa się z grup: *Wytwarzanie, Regulacja, Przesył, Akumulacja ciepła*.

2.2.1 Sprawność wytwarzania

Wytwarzanie		
Rodzaj paliwa:	Ciepło z ciepłowni węglowej	Tablice
Rodzaj źródła ciepła:	Węzeł cieplny kompaktowy z obudową do 100kW	I

Rys 7. Okno doboru sprawności wytwarzania.

W grupie *Wytwarzanie* należy wybrać za pomocą listy rozwijalnej *Rodzaj paliwa* oraz wybrać występujący w budynku *Rodzaj źródła ciepła*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Na podstawie wybranych w grupie Wytwarzanie, informacji z list rozwijalnych w grupie *Sprawność wytwarzania* zostanie dobrana sprawność wytwarzania. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Spraw	ności wytwarzania ciepła (dla ogrzewania) w źródłach η H,g		\times
Lp.	Rodzaj źródła ciepła	η H,g (ε H,g)	^
1	Kotly węglowe wyprodukowane po 2000 r.	0,82	
2	Kotły węglowe wyprodukowane w latach 1980-2000	0,65-0,75	
3	Kotły węglowe wyprodukowane przed 1980 r.	0,50-0,65	
4	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy do 100 kW	0,63	
5	Kotły na biomasę (drewno: polana, brykiety, palety, zrębki) wrzutowe z obsługą ręczną o mocy do 100 kW	0,72	
6	Kotły na biomasę (słoma) wrzutowe z obsługą ręczną o mocy powyżej 100 kW	0,70	
7	Kotły na biomasę (słoma) automatyczne o mocy powyżej 100 kW do 600 kW	0,75	
8	Kotły na biomasę (drewno: polana, brykiety, palety, zrębki) automatyczne o mocy powyżej 100 kW do 600 kW	0,85	
9	Kotły na biomasę (słoma, drewno) automatyczne z mechanicznym podawaniem paliwa o mocy powyzej 500 kW	0,85	
10	Podgrzewacze elektryczne - przepływowe	0,94	
11	Podgrzewacze elektrotermiczne	1,00	
12	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe, promiennikowe i podłogowe kablowe	0,99	
13	Ogrzewanie podłogowe elektryczno-wodne	0,95	
14	Piece kaflowe	0,60-0,70	
15	Piece olejowe pomieszczeniowe	0,84	
16	Piece gazowe pomieszczeniowe	0,75	
17	Kotły na paliwo gazowe lub płynne z otwartą komorą spalania (palnikami atmosferycznymi) i dwustawną regulacją procesu spalania	0,86	
	Kotły niskotemperaturowe na paliwo gazowe lub płynne z zamkniętą komorą spalania i palnikiem modulowanym		
	- do 50 kW	0,87-0,91	
18	- 50-120 kW	0,91-0,97	
	- 120-1200 kW	0,94-0,98	
	Kotly gazowe kondensacyjne 1)		~

Audytor ma także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.2.2 Sprawność regulacji

Rys 8. Okno doboru sprawności regulacji.

W grupie *Regulacja* należy wybrać za pomocą listy rozwijalnej *Rodzaj instalacji*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Na podstawie wybranych w grupie Przesył, informacji z list rozwijalnych w grupie *Sprawność regulacji* zostanie dobrana sprawność regulacji. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Tabela sprawności regulacji i wykorzystania ciepła η Η, e 🛛 🛛 🔀							
Lp.	Rodzaj instalacji	η H,e					
1	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i promiennikowe	0,98					
2	Podłogowe: kablowe, elektryczno-wodne	0,95					
3	Elektryczne grzejniki akumulacyjne: konwektorowe i podłogowe kablowe	0,90					
4	Elektryczne ogrzewanie akumulacyjne bezpośrednie	0,91-0,97					
5	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej, bez regulacji miejscowej	0,75-0,85					
6	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji miejscowej	0,86-0,91					
7	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej adaptacyjnej i miejscowej	0,98-0,99					
8	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 1K)	0,97					
9	Centralne ogrzewanie z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 2K)	0,93					
10	Ogrzewanie podłogowe w przypadku regulacji centralnej, bez miejscowej	0,94-0,96					
11	Ogrzewanie podłogowe lub ścienne w przypadku regulacji centralnej i miejscowej	0,97-0,98					
12	Ogrzewanie miejscowe przy braku regulacji automatycznej w pomieszczeniu	0,80-0,85					

Audytor ma także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.2.3 Sprawność przesyłu

Rys 9. Okno doboru sprawności wykorzystania.

W grupie *Przesył* należy wybrać za pomocą listy rozwijalnej *Rodzaj instalacji ogrzewczej*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia.

Na podstawie wybranych w grupie wytwarzanie, informacji z list rozwijalnych w grupie *Sprawność przesyłu* zostanie dobrana sprawność przesyłu. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Tabela	sprawności regulacji i wykorzystania ciepła η Η,	e 🔀
Lp.	Rodzaj instalacji	η H,e
1	Elektryczne grzejniki bezpośrednie: konwektorowe, płaszczyznowe i promiennikowe	0,98
2	Podłogowe: kablowe, elektryczno-wodne	0,95
3	Elektryczne grzejniki akumulacyjne: konwektorowe i podłogowe kablowe	0,90
4	Elektryczne ogrzewanie akumulacyjne bezpośrednie	0,91-0,97
5	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej, bez regulacji miejscowej	0,75-0,85
6	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji miejscowej	0,86-0,91
7	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej adaptacyjnej i miejscowej	0,98-0,99
8	Ogrzewanie wodne z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 1K)	0,97
9	Centralne ogrzewanie z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej (zakres P – 2K)	0,93
10	Ogrzewanie podłogowe w przypadku regulacji centralnej, bez miejscowej	0,94-0,96
11	Ogrzewanie podłogowe lub ścienne w przypadku regulacji centralnej i miejscowej	0,97-0,98
12	Ogrzewanie miejscowe przy braku regulacji automatycznej w pomieszczeniu	0,80-0,85

Sprawność przesyłu X Parametry wody Typ izolacj DN L Lokalizacia al tsa ∆QH.d L.p. [m] przewodów [W/m] [h] [KVVh/rok] [mm] vVewnątrz osłony izolacyjnej budynku ••• grubość WT ... 5328 ... 4,00 ... 4,40 93,77 50 X Wewnątrz osłony ... grubość WT 612,72 ... 25,00 ... 4,60 ... 5328 25 2 1 izolacyjnej budynku Wewnątrz osłony 767,23 3 15 ... 10,00 ... nieizolowane ... 14,40 5328 izolacyjnej budynku ł ΣΔQ_{H,d}= **1473,72** <u>kWh</u> rok η_{H,d}= 0,95 Anuluj OK

Audytor ma możliwość podania własnej wartości bądź wyliczenia wartości sprawności naciskając przycisk *Oblicz*. Otworzy się wtedy okno

Rys 10. Sprawność przesyłu-okno pomocnicze.

Tabela ma możliwość dodawania nowych wierszy i usuwania istniejących. *Parametry wody*, użytkownik wybiera jeden z wariantów na podstawie, którego wstawiane będą wartości *ql* (jednostkowa strata ciepła przewodów) w tabeli. *DN* to średnica przewodów centralnego ogrzewania, *L* długość tych przewodów. *Lokalizacja przewodów* decyduje czy przewody są na zewnątrz czy wewnątrz osłony izolacyjnej budynku. t_{SG} – czas trwania sezonu grzewczego, to wartość pobierana domyślnie przez program na podstawie norm bądź wpisywana samodzielnie przez audytora. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

2.2.4 Sprawność akumulacji

buforowego: Brak zasobnika buforowego	Akumulacja ciepła Parametry zasobnika		Tablice
	buforowego:	Brak zasobnika buforowego	

Rys 11. Okno doboru sprawności akumulacji.

W grupie *Akumulacja ciepła* należy wybrać za pomocą listy rozwijalnej *Parametry zasobnika buforowego*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Na podstawie wybranych informacji z list rozwijalnych w grupie *Sprawność akumulacji* zostanie dobrana wartość sprawności. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Spraw	ności układu akumulacji ciepła w systemie ogrzew	czymη H,s 🔀
Lp.	Parametry zasobnika buforowego i jego usytuowanie	η H,s
1	Bufor w systemie grzewczym o parametrach 70/55°C wewnątrz osłony termicznej budynku	0,93-0,97
2	Bufor w systemie grzewczym o parametrach 70/55°C na zewnątrz osłony termicznej budynku	0,91-0,95
3	Bufor w systemie grzewczym o parametrach 55/45°C wewnątrz osłony termicznej budynku	0,95-0,99
4	Bufor w systemie grzewczym o parametrach 55/45°C na zewnątrz osłony termicznej budynku	0,93-0,97
5	Brak zasobnika buforowego	1,00

Rys 12. Sprawność układu akumulacji w systemie grzewczym.

Audytor ma także możliwość podania własnej wartości bądź wyliczenia wartości sprawności naciskając przycisk *Oblicz*. Otworzy się wtedy okno

L.p.	¥ [dm³]		qs [W/dm³]	ts [h	g 1]	∆Qhs [kWh/rok]	
1	200.000	1,700		5328,000		2717,280	

Rys 13. Sprawność akumulacji ciepła-okno pomocnicze

Tabela ma możliwość dodawania nowych wierszy i usuwania istniejących. W tabeli, w celu obliczenia wartości sprawności akumulacji ciepła, należy określić **V** pojemność zbiornika buforowego. Na podstawie, wcześniej wprowadzonych danych zostanie określona jednostkowa strata ciepła zbiornika buforowego *qs.* t_{SG} – czas trwania sezonu grzewczego, to wartość pobierana domyślnie przez program na podstawie norm bądź wpisywana samodzielnie przez audytora. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

2.2.5 Sprawność całkowita

Ostatnią sprawnością, którą odnajdziemy w module Certyfikat w Ogrzewaniu i wentylacji jest Sprawność całkowita. Sprawność tą otrzymymujemy na podstawie wcześniej wprowadzonych danych i składają się na nią określone już sprawności.

Jeśli użytkownik programu chce dodatkowo scharakteryzować system grzewczy może w tym celu uzupełnić pole *Informacje uzupełniające*.

- Informacje uzupełniające Uwagi: Węzeł cieplny zamontowany w latach 80-tych. Instalacja z rur

Rys 14. Informacje uzupełniające.

2.2.6 Roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu ogrzewania i wentylacji.

Roczne zapotrzebowanie na energię użyteczną na potrzeby ogrzewania:	Q _{H_{rd}} = 5252,11 kWh a	
Roczne zapotrzebowanie energii elektrycznej końcowej do napedu urzadzeń pomocniczych	E _{el,pomH} = 279,30 kWh	Oblicz
systemu ogrzewania i wentylacji:		

Rys 15. Okno do określenia rocznego zapotrzebowania energii elektrycznej.

Wartość *Eel,pomH* audytor może wpisać samodzielnie lub wyliczyć w oknie aktywowanym przyciskiem *Oblicz*.

L.p.	Rodzaj urządzenia pomocniczego	qel,H [W/m	IV [2]	Ilość [szt.]	tel [h/rok]	Af [m²]	Eel,pom,H [kWh/rok]	
1	Pompy obiegowe ogrzewania w budynku do A=250 m ² z grzejnikami członowymi lub płytowymi, granica ogrzewania 12 °C	 0,700		1	6000,000	 66,500	279,300	

Rys 16. Okno do określenia rocznego zapotrzebowania energii elektrycznej-okno pomocnicze.

RODZAJ URZĄDZENIA POMOCNICZEGO - użytkownik wybiera z listy jedną z pozycji i na tej podstawie wypełniane są pozostałe kolumny z wyjątkiem kolumny *ILOŚĆ*, którą użytkownik określa samodzielnie.

AF - powierzchnia pomieszczeń o regulowanej temperaturze uzupełniana jest przez program na podstawie danych z obliczeń cieplnych. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

Krok 3 – Cipła woda użytkowa

Kolejnym etapem w module Certyfikat zmierzającym do wykonania świadectwa charakterystyki energetycznej jest scharakteryzowanie sposobu zaopatrzenia oraz rozprowadzenia w budynku (lokalu) ciepłej wody

rtyfikat	Ciepła woda użytkowa		
oczne zapotrzebowanie na enr (stemu przygotowania ciepłei $Q_{P,W} = W_W \cdot Q_{K,W} + W_{el} \cdot$	Roczne zapotrzebowanie ciepla użytkowego Rodzaj budynku: Biok 4-piętrowy Temperatura cieplej wody: 55	Zapotrzebowanie ciepła	
dzie: współczynnik nakładu	Wodomierze mieszkaniowe do rozliczania opłat za ciepłą wodę Liczba jednostek odniesienia: 3,50 Oblicz	Q _{W,nd} = 2305,90 <u>kwn</u> a	
energii pierwotnej na w - dostarczenie nośnika	Jednostkowa dobowa ilość wody do podgrzania: 48,00 Tablice	Coroumoóó unituorzonia	
do ocenianego budyn energii na przygotowa	Rodzaj paliwa: Ciepło z ciepłowni węglowej Tablice	sprawnose wytwarzania	
roczne zapotrzebowai ĸ,w - końcową systemu prz	Rodzaj źródła ciepła: Węzeł ciepłny kompaktowy z obudową (ogrzewanie i ciepła woda)	n _{wg} =0,96	
ciepłej wody, współczynnik nakładu energii pierwotnej na	Przesył Centralne przygotowanie c.w.u., instalacja z Typ instalacji ciepłej wody: cyrkulacją i załżołowanymi przewodami bez Tablice	Sprawność przesyłu	
dostarczenie nośnika do ocenianego budyn energii elektrycznej z	Rodzaj instalacji ciepłej wody: Instalacje średnie, 30-100 punktów poboru ciepłej wody	n _{W,d} =0,50	Oblicz
pomocniczych, roczne zapotrzebow olaktowana koścow	Akumulacja ciepła: Parametry zasobnika: Zasobnik w systemie wg standardu z lat togz 4000	Sprawność akumulacji	Oblicz
,pom,W urządzeń pomocnic +	1317-1350	η _{W,s} =0,62	
Ogrzewanie i wentylacja Ciepła woda użytkowa	Informacje uzupełniające Uwagi:	Sprawność całkowita n _{W.M} = 0,30	
Dane wejściowe	Roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przypołowania ciejeje wody: Oblicz		
Obliczenia cieplne			
Certyfikat	Raport o blędach L.p. Typ Opis		
Raporty			

użytkowej. Pozwoli to na określenie poszczególnych sprawności systemu, koniecznych do wyliczenia rocznego zapotrzebowania energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody.

Rys 17. Okno dialogowe Ciepła woda użytkowa.

2.2.7 Roczne zapotrzebowanie ciepła użytkowego.

Rys 18. Okno do określenia Rocznego zapotrzebowania ciepła użytkowego.

RODZAJ BUDYNKU OKREŚLONY - jest w Danych wejściowych programu.

TEMPERATURY CIEPŁEJ WODY (temperatura wody na zaworze czerpalnym) - jest konieczne w celu wykonania obliczeń energii potrzebnej do przygotowania 1m³ ciepłej wody w systemie występującym w rozpatrywanym budynku lub lokalu mieszkalnym.

W przypadku gdy zaznaczymy w budynkach wielorodzinnych, że używane są *Wodomierze mieszkaniowe do rozliczania opłat za ciepłą wodę*, wskaźniki jednostkowej dobowej ilość wody ciepłej qcw (o temperaturze 60°C), używane w obliczeniach, zmniejszają się o 20%.

LICZBA JEDNOSTEK ODNIESIENIA – w zależności od tego z jakim budynkiem mamy do czynienia może to być: osoba, łóżko, miejsce noclegowe, uczeń, pracownik, pasażer, zwiedzający. Wartość wpisywana przez użytkownika lub obliczana przyciskiem *Oblicz*.

Licz	ba osób/jednostek odniesienia					×
L.p.	Rodzaj lokalu Przeznaczenie	Normowa liczba osób na lokal / powierzchnie	Liczba lokali	Af [m²]	Całkowita ilość osób	+
1	Mieszkanie 6 pokojowe	. 5,000	7,000		35,000	X
L _i =	35,00 <u>kWh</u> rok			Anuluj	ок	

Rys 19. Liczba jednostek odniesienia- okno pomocnicze

Tabela ma możliwość dodawania nowych wierszy i usuwania istniejących. Należy również wybrać za pomocą listy rozwijalnej:

RODZAJ LOKALU/PRZEZNACZENIE z jakim mamy do czynienia, a nie znając dokładnej liczby mieszkańców w budynkach mieszkalnych,

NORMOWĄ LICZBĘ OSÓB NA LOKAL/POWIERZCHNIĘ - możemy określić za pomocą podpowiedzi.

LICZBA LOKALI oraz *POWIERZCHNIĘ AF* podaje użytkownik. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych.

Lp.	Rodzaje budynków	Jednostka odniesienia [j.o.]	Jednostkowe dobowe zużycie ciepłej wody V CW o temperaturze 55°C [dm²/(j.o.)^doba]
	1. Budynk	(i mieszkalne:	
1.1.	Budynki jednorodzinne	[osoba]	35
1.2.	Budynki wielorodzinne 1)	[osoba] 2)	48
	2. Budynki zamie	szkania zbiorow	ego:
2.1.	Hotele z gastronomią	[miejsce noclegowe]	112
2.2.	Hotele pozostałe	[miejsce noclegowe]	75
2.3.	Schroniska, pensjonaty	[miejsce noclegowe]	50
2.4.	Budynki koszarowe, areszty śledcze, budynki zakwaterowania na terenie zakładu karnego	[łóżko]	70
	3. Inn	e budynki:	
3.1.	Szpitale	[łóżko]	325
3.2.	Szkoły	[uczeń]	8
3.3.	Budynki biurowe, produkcyjne i magazynowe	[pracownik]	7
3.4.	Budynki handlowe	[pracownik]	25
3.5.	Budynki gastronomii i uslug	[pracownik]	30
3.6.	Dworce kolejowe, lotniska, muzea, hale wystawiennicze	[pasażer/zwie dzający]	5
1) 2) Li	Obja W przypadku zastosowania w budynkach wielor opłat za ciepłą wodę, podane wskaźniki jednos czbę mieszkańców w zależności od rodzaju budy z projektem budynku, a dla budynków ist	iśnienia: odzinnych wodon tkowe ilości ciep mku lub lokału mi tniejących na pod	nierzy mieszkaniowych do rozliczania lej wody należy zmniejszyć o 20%. ieszkalnego należy przyjmować zgodnie stawie stanu rzeczywistego.

Rys 20. Jednostkowe dobowe zużycie ciepłej wody użytkowej dla różnych typów budynków.

JEDNOSTKOWA DOBOWA ILOŚĆ WODY DO PODGRZANIA

(jednostkowe dobowe zużycie ciepłej wody) - jest możliwa do określenia za pomocą przycisku Tablica, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Audytor będzie miał także możliwość podania własnej wartości.

ZAPOTRZEBOWANIE CIEPŁA - wyliczane jest na podstawie wprowadzonych danych w grupie Roczne zapotrzebowanie ciepła użytkowego na podstawie wzoru z rozporządzenia.

2.2.8 Sprawność wytwarzania

Wytwarzanie			Sprawność wytwarzania —	
Rodzaj paliwa:	Energia elektryczna - produkcja mieszana	Tablice		
Rodzaj źródła ciepła:	Elektryczny podgrzewacz akumulacyjny (z zasob strat)	nikiem bez	n _{Wg} = 0,98	a e Yosh

Rys 21. Okno doboru sprawności wytwarzania.

W grupie *Wytwarzanie* należy wybrać za pomocą listy rozwijalnej *Rodzaj paliwa* oraz wybrać występujący w budynku *Rodzaj źródła ciepła*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Na podstawie wybranych w grupie Wytwarzanie, informacji z list rozwijalnych w grupie *Sprawność wytwarzania* zostanie dobrana sprawność wytwarzania. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Spraw	ności wytwarzania ciepła (dla przygotowania ciepł	ej wody 🚺
Lp.	Rodzaj źródła ciepła	η W,g (ε W,g)
1	Przepływowy podgrzewacz gazowy z zapłonem elektrycznym	0,84-0,99
2	Przepływowy podgrzewacz gazowy z zapłonem płomieniem dyżurnym	0,16-0,74
3	Kotły stałotemperaturowe (tylko ciepła woda)	0,40-0,72
4	Kotły stałotemperaturowe dwufunkcyjne (ogrzewanie i ciepła woda)	0,65-0,77
5	Kotły niskotemperaturowe o mocy do 50 kW	0,83-0,90
6	Kotły niskotemperaturowe o mocy ponad 50 kW	0,88-0,92
7	Kotły gazowe kondensacyjne o mocy do 50 kW 1)	0,85-0,91
8	Kotły gazowe kondensacyjne o mocy ponad 50 kW	0,88-0,93
9	Elektryczny podgrzewacz akumulacyjny (z zasobnikiem bez strat)	0,96-0,99
10	Elektryczny podgrzewacz przepływowy	0,99-1,00
11	Pompy ciepła woda/woda	3,0-4,5 2)
12	Pompy ciepła glikol/woda	2,6-3,8
13	Pompy ciepła powietrze/woda	2,2-3,1
14	Węzeł cieplny kompaktowy z obudową	0,88-0,90
15	Węzeł cieplny kompaktowy bez obudowy	0,80-0,85
16	Węzeł cieplny kompaktowy z obudową (ogrzewanie i ciepła woda)	0,94-0,97
17	Węzeł cieplny kompaktowy bez obudowy (ogrzewanie i ciepła woda)	0,88-0,96
1 ur cale) sprawność odniesiona do wartości opalowej paliwa, 2) współczynnik wydajności grzejnej pompy ciepła (SI Waga: przyjęta sprawność dla rozpatrywanego przypadł względniać stan kotła i jego średniosezonowe obciążeni oroczny tryb pracy w układzie centralnego ogrzewania i r żytkowej w przypadku trudności ceny stanu faktyczne przyjmować wartość średnią z podanego zakresu spra	sezonowy PF) ku powinna e cieplne, siepłej wody go należy wności.

Rys 22. Sprawność wytwarzania ciepła.

Audytor ma możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.2.9 Sprawność przesyłu

Przesył			Sprawność przesyłu	
Typ instalacji ciepłej wody:	Centralne przygotowanie c.w.u., instalacja z	Tablice		
	oblegieni cyrkuacyhyni		η _{W,d} = 0,60	Oblicz
Rodzaj instalacji ciepłej wody:	Instalacje ciepłej wody w budynkach jednorodzi	innych		

Rys 23. Okno doboru sprawności przesyłu.

W grupie *Przesył* należy wybrać za pomocą listy rozwijalnej *Typ instalacji ciepłej wody* oraz wybrać *Rodzaj instalacji ciepłej wody*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora. Na podstawie wybranych w grupie Przesył, informacji z list rozwijalnych w grupie *Sprawność przesyłu* zostanie dobrana sprawność. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

Sprawność przesytu wody cieptej ŋ W,d	
Rodzaje instalacji cieplej wody	Sprawność przesyłu wod ciepłej n W,d
1. Miejscowe przygotowanie ciepłej wody, instalacje ciepłej wody bez obiegów cyrkulacyjnych	
Miejscowe przygotowanie ciepłej wody bezpośrednio przy punktach poboru wody ciepłej	1,0
Miejscowe przygotowanie ciepłej wody dla grupy punktów poboru wody ciepłej w jednym pomieszczeniu sanitarnym, bez obiegu cyrkulacyjnego	0,8
2. Mieszkaniowe węzły cieplne	
Kompaktowy węzeł cieplny dla pojedynczego lokalu mieszkalnego, bez obiegu cyrkulacyjnego	0,85
3. Centralne przygotowanie ciepłej wody, instalacja cieplej wody bez obiegów cyrkulacyjnych	
Instalacje ciepłej wody w budynkach jednorodzinnych	0,6
 Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi, piony instalacyjne nieizolowane, przewody rozprowadzające izolowane 	
Instalacje małe, do 30 punktów poboru ciepłej wody	0,6
Instalacje średnie, 30-100 punktów poboru cieplej wody	0,5
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,4
 Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi, piony instalacyjne i przewody rozprowadzające izolowane 1) 	
Instalacje male, do 30 punktów poboru ciepłej wody	0,7
Instalacje średnie, 30-100 punktów poboru cieplej wody	0,6
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,5
6. Centralne przygotowanie ciepłej wody, instalacje z obiegami cyrkulacyjnymi z ograniczeniem czasu pracy 2), piony instalacyjne i przewody rozprowadzające izolowane	
Instalacje małe, do 30 punktów poboru cieplej wody	0,8
Instalacje średnie, 30-100 punktów poboru cieplej wody	0,7
Instalacje duże, powyżej 100 punktów poboru ciepłej wody	0,6
Objaśnienia: 1) Przewody izolowane wykonane z rur stałowych lub miedzianych, lub przewody nieizolowane w z rur z tworzyw sztucznych. 2) Ograniczenie czasu pracy pompy cyrkulacyjnej do ciepłej wody w godzinach nocnych lub zasto pomp obiegowych ze sterowaniem za pomocą układów termostatycznych.	vykonane osowanie

Rys 24. Sprawność przesyłu wody ciepłej.

Audytor ma możliwość podania własnej wartości lub dokonania obliczeń, po naciśnięciu przycisku *Oblicz* otworzy się okno

						· ·	 			
p.	DN [mm]		L [m]	Lokalizacja przewodów		Typ izolacji	ql [W/n	n]	tow [h]	∆QIVV,d [KVVh/rok]
1 20	20	. 25	5,00	vVewnątrz osłony izolacyjnej budynku		grubość VVT	 4,60		5328	612,72
2 1	5.	. 10	0,00	vVewnątrz osłony izolacyjnej budynku		grubość WT	 4,10		5328	218,45
2 44				Wewnatrz osłony						
3 10	•	• 3,	,00	izolacyjnej budynku		nieizolowane	 24,90	••••	5328	398,00
3 10	U	• 3,	,00	izolacyjnej budynku	•••	nieizolowane	 24,90		5328 2wd= 1	398,00

Rys 25. Sprawność przesyłu-okno pomocnicze

Tabela ma możliwość dodawania nowych wierszy i usuwania istniejących. **PRZEWODY CIEPŁEJ WODY O TEMPERATURZE** ... - użytkownik wybiera jeden z wariantów na podstawie, którego wstawiane będą wartości **ql** (jednostkowa strata ciepła przewodów) w tabeli.

DN- to średnica przewodów ciepłej wody,

L - długość przewodów ciepłej wody.

LOKALIZACJA PRZEWODÓW - decyduje czy przewody są na zewnątrz czy wewnątrz osłony izolacyjnej budynku poza tym należy określić.

TYP IZOLACJI - grubość osłony izolacyjnej budynku,

 t_{CW} – czas trwania sezonu grzewczego, to wartość pobierana domyślnie przez program na podstawie norm bądź wpisywana samodzielnie przez audytora.

Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

2.2.10 Sprawność akumulacji

Akumulacja ciepła:			Sprawność akumulacji	
Parametry zasobnika:	Zasobnik w systemie wg standardu budynku piskoepergetycznego	Tablice		Oblicz
	200yma noroonorgoysznogo		η _{Ws} = 0,84	

Rys 26. Okno doboru sprawności akumulacji.

W grupie *Akumulacja ciepła* należy wybrać za pomocą listy rozwijalnej *PARAMETRY ZASOBNIKA*.- Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia.

Na podstawie wybranych informacji z list rozwijalnych w grupie *Sprawność akumulacji* zostanie dobrana wartość sprawności. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się odpowiednia tabela z Rozporządzenia.

Sprawności akumulacji ciepła w systemie ciepłej wody η W ,s 🛛 🛛 🔀				
Lp.	Parametry zasobnika ciepłej wody i jego usytuowanie	η W,s		
1	Zasobnik w systemie wg standardu z lat 1970-tych	0,30-0,59		
2	Zasobnik w systemie wg standardu z lat 1977-1995	0,55-0,69		
3	Zasobnik w systemie wg standardu z lat 1995-2000	0,60-0,74		
4	Zasobnik w systemie wg standardu budynku niskoenergetycznego	0,83-0,86		

Rys 27. Sprawność akumulacji ciepła w systemie ciepłej wody.

Qhs h/rok]
v

OK

Audytor ma możliwość podania własnej wartości bądź wyliczenia wartości sprawności naciskając przycisk *Oblicz*. Otworzy się wtedy okno

Rys 28. Sprawność akumulacji ciepła – okno pomocnicze

Tabela ma możliwość dodawania nowych wierszy i usuwania istniejących. W tabeli, w celu obliczenia wartości sprawności akumulacji ciepła, należy określić **V** pojemność zbiornika buforowego. Na podstawie, wcześniej wprowadzonych danych zostanie określona jednostkowa strata ciepła zbiornika buforowego **qs**. **t**_{sw} – czas trwania sezonu grzewczego, to wartość pobierana domyślnie przez program na podstawie norm bądź wpisywana samodzielnie przez audytora. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

2.2.11 Sprawność całkowita

Ostatnią sprawnością, którą odnajdziemy w module Certyfikat w Ciepłej wodzie użytkowej jest Sprawność całkowita. Sprawność tą otrzymymujemy na podstawie wcześniej wprowadzonych danych i składają się na nią określone już sprawności.

Jeśli użytkownik programu chce dodatkowo scharakteryzować system zaopatrzenia w ciepłą wodę może w tym celu uzupełnić pole *Informacje uzupełniające*.

2.2.12 Roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu przygotowania ciepłej wody.

Rys 29. Okno do określenia rocznego zapotrzebowania energii elektrycznej

Wartość $E_{el,pomW}$ audytor może wpisać samodzielnie lub wyliczyć w oknie aktywowanym przyciskiem *Oblicz*.

Roc	ne zapotrzebowanie energii elektrycznej końcowej								X
L.p.	Rodzaj urządzenia pomocniczego	qel,F [W/m	۱۷ 1 ²]	Ilość [szt.]	tel [h/rok]		Af [m²]	Eel,pom,W [kWh/rok]	+
1	Pompy obiegowe ogrzewania w budynku do A=250 m² z grzejnikami członowymi lub płytowymi, granica ogrzewania 12 °C	• 0,700		1	6000,000		345,000	1449,000	X
<u> </u>									
ΣE e	pom JW = 1449,00 <u>KVMn</u> rok					A	nuluj	ок	

Rys 30. Okno do określenia rocznego zapotrzebowania energii elektrycznej-okno pomocnicze

RODZAJ URZĄDZENIA POMOCNICZEGO - użytkownik wybiera z listy jedną z pozycji i na tej podstawie wypełniane są pozostałe kolumny z wyjątkiem kolumny **Ilość**, którą użytkownik określa samodzielnie.

Af - powierzchnia pomieszczeń o regulowanej temperaturze uzupełniana jest przez program na podstawie danych z obliczeń cieplnych. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

UWAGA!

KOLEJNE DWA ETAPY WYKONYWANIA ŚWIADECTWA CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU LUB ŚWIADECTWA CHARAKTERYSTYKI ENERGETYCZNEJ LOKALU DOTYCZĄCE DZIAŁU CHŁODZENIE ORAZ DZIAŁU OŚWIETLENIE NIE SĄ WYKONYWANE DLA WSZYSTKICH BUDYNKÓW BĄDŹ LOKALI.

CHŁODZENIE - WYKONYWANY JEST TYLKO W SYTUACJI GDY ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ DOTYCZY POMIESZCZEŃ CHŁODZONYCH (KLIMATYZOWANYCH).

OŚWIETLENIE - WYKONYWANY JEST TYLKO W SYTUACJI GDY ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ DOTYCZY BUDYNKU UŻYTECZNOŚCI PUBLICZNEJ.

2.3 KROK 4 - CHŁODZENIE

W module Certyfikat zmierzającym do wykonania świadectwa charakterystyki energetycznej polega na scharakteryzowaniu sposobu zaopatrzenia oraz rozprowadzenia w budynku (lokalu) chłodu. Pozwoli to na określenie poszczególnych sprawności systemu, koniecznych do wyliczenia rocznego zapotrzebowania energii elektrycznej końcowej do napędu urządzeń pomocniczych systemu chłodzenia.

Rys 31. Okno dialogowe Chłodzenie.

2.3.1 Współczynnik efektywności energetycznej wytwarzania chłodu

Rys 32. Okno doboru sprawności wytwarzania.

W grupie *Współczynnik efektywności energetycznej wytwarzania chłodu* należy wybrać za pomocą listy rozwijalnej

Typ systemu chłodzenia występujący w budynku Rodzaj systemu chłodzenia oraz *Typ instalacji/nośnika*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Na podstawie wybranych w informacji z list rozwijalnych w grupie tej zostanie dobrana odpowiednia sprawność. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Współ	czynniki efektywności energetycznej wytworzenia	chłodu ESEER	×
Lp.	Rodzaj źródła chłodu i systemu chłodzenia	ESEER	^
	System bezpośredni		
	Klimatyzator monoblokowy ze skraplaczem chłodzonym powietrzem:		
1	a) klimatyzacja komfortu	3,0-3,2	
	b) klimatyzacja precyzyjna	3,4-3,6	
	Klimatyzator monoblokowy ze skraplaczem chłodzonym wodą		
2	a) klimatyzacja komfortu	3,2-3,4	
	b) klimatyzacja precyzyjna	3,6-3,8	
	Klimatyzator rozdzielony (split) ze skraplaczem chłodzonym powietrzem		
3	a) klimatyzacja komfortu	2,8-3,0	
	b) klimatyzacja precyzyjna	3,2-3,4	
	Klimatyzator rozdzielony (split) ze skraplaczem chłodzonym wodą		
4	a) klimatyzacja komfortu	3,0-3,2	
	b) klimatyzacja precyzyjna	3,4-3,6	
5	Klimatyzator rozdzielony (duo-split) ze skraplaczem chłodzonym powietrzem	3,0	
6	Klimatyzator rozdzielony (duo-split) ze skraplaczem chłodzonym wodą	3,2	
7	System VRV	3,3	
	System pośredni		
	Sprężarkowa wytwornica wody lodowej – półhermetyczne sprężarki tłokowe, skraplacz chłodzony powietrzem:		
8	a) nośnik chłodu – woda	3,6-3,8	
	b) nośnik chłodu – wodny roztwór glikolu	3,4-3,6	
	c) nośnik chłodu – wodny roztwór glikolu z funkcją free cooling	5,1-5,4	
	Sprężarkowa wytwornica wody lodowej – półhermetyczne sprężarki tłokowe, skraplacz chłodzony wodą:		*

Audytor ma także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.3.2 Sprawność rozdziału chłodu

Rys 34. Okno doboru sprawności rozdziału.

W grupie *Sprawność rozdziału chłodu* należy wybrać za pomocą listy rozwijalnej *Typ systemu rozdziału* oraz *Rodzaj systemu rozdziału*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Na podstawie wybranych w grupie Sprawność rozdziału chłodu, informacji z list rozwijalnych zostanie dobrana sprawność. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Rys 35. Sprawność transportu energii- okno pomocnicze

Audytor będzie miał także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.3.3 Sprawność regulacji i wykorzystania chłodu

Rys 36. Okno doboru sprawności regulacji i wykorzystania.

W grupie *Sprawność regulacji i wykorzystania chłodu* należy wybrać za pomocą listy rozwijalnej *Rodzaj instalacji* i jej *Wyposażenie*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora.

Dodatkowo audytor ma możliwość podania *Informacji uzupełniających* które charakteryzują regulację chłodu w budynku.

Na podstawie wybranych w grupie Sprawność regulacji dostawy chłodu, informacji z list rozwijalnych zostanie dobrana sprawność. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Warto	Wartości sprawności regulacji i wykorzystania chłodu ŋ C ,e 🛛 🛛 🔀					
Lp.	Rodzaj instalacji i jej wyposażenie	η C,e				
	Instalacja wody lodowej z termostatycznymi zaworami przelotowymi przy odbiornikach:					
1	a) regulacja skokowa	0,92				
	b) regulacja ciągła	0,94				
	Instalacja wody lodowej z zaworami trójdrogowymi przy odbiornikach:					
2	a) regulacja skokowa	0,95				
	b) regulacja ciągła	0,97				

Rys 37. Sprawność regulacji i wykorzystania chłodu - okno pomocnicze

Audytor będzie miał także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności, audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.3.4 Sprawność akumulacji.

- Sprawność akumulacji ciepła			Sprawność akumulacji		
Parametry zasobnika buforowego:	Bufor w systemie chłodniczym o parametrach 15/18 °C na zewnątrz osłony termicznej budynku	Tablice	η _{C,ε} = 0,97		

Rys 38. Okno doboru sprawności rozdziału.

W grupie *Sprawność akumulacji chłodu* należy wybrać za pomocą listy rozwijalnej *Parametry zasobnika buforowego*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Istnieje także możliwość podania własnych wartości przez audytora. Na podstawie wybranych w grupie informacji z listy rozwijanej zostanie dobrana sprawność. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Rys 39. Wartości sprawności akumulacji chłodu.

Audytor będzie miał także możliwość podania własnej wartości. W przypadku gdy rozporządzenie przewiduje zakres sprawności audytor za pomocą suwaka będzie miał możliwość wybrania wartości sprawności.

2.3.5 Sprawność całkowita

Informacje uzupełniające	Sprawnose całkowita
Uwagi:	 η _{c,tet} = 3,23

Rys 40. Okno wynikowe sprawności całkowitej.

Jeśli użytkownik programu chce dodatkowo scharakteryzować system zaopatrzenia w ciepłą wodę może w tym celu uzupełnić pole *Informacje uzupełniające*.

Ostatnie dwa pola zakładki Chłodzenie służą do wpisnia przez użytkownika dwóch danych: piersza to *Ilość chłodu niezbędna do pokrycia potrzeb chłodzenia budynku (lokalu, strefy),* a druga to *Roczne zpotrzebowanie energii elektrycznej końcowej do napędu urządzeń pomocniczych.*

llość chłodu niezbędna na pokrycie potrzeb $Q_{C_{col}} = 250,00 \frac{kVMn}{a}$ chłodzenia budynku (tokału, strefy): Roczne zapotrzebowanie energii elektrycznej końcowej do napędu urządzeń $E_{elpon,C} = 68,40 \frac{kVMn}{a}$ Oblicz

Rys 41. Okno do określenia rocznego zapotrzebowania energii elektrycznej

Wartość $\mathbf{E}_{el,pomC}$ audytor może wpisać samodzielnie lub wyliczyć w oknie aktywowanym przyciskiem *Oblicz*.

Rys 42. Roczne zapotrzebowanie energii elektrycznej końcowej - okno pomocnicze

RODZAJ URZĄDZENIA POMOCNICZEGO - użytkownik wybiera z listy jedną z pozycji i na tej podstawie wypełniane są pozostałe kolumny z wyjątkiem kolumny **Ilość**, którą użytkownik określa samodzielnie.

Af powierzchnia pomieszczeń o regulowanej temperaturze uzupełniana jest przez program na podstawie danych z obliczeń cieplnych. Pozostałe wartości w tabeli są wyliczane na podstawie wprowadzonych danych przy pomocy wzorów podanych w rozporządzeniu.

2.4 KROK 5 - OŚWIETLENIE

W module Certyfikat zmierzającym do wykonania świadectwa charakterystyki energetycznej polega na scharakteryzowaniu sposobu oświetlenia budynku użyteczności publicznej. Pozwoli to wyliczyć roczne jrdnostkowe zapotrzebowanie na energię do oświetlenia.

Certyfikat	Oświetlenie	
Hiezgrupowane	Nazwa grupy. Illezgrupowane Czas użytkowania oświetlenia Podrał i kołedze – Utrawid Tablice	Czas użytkowania oświetlenia $t_n = 2000,00$ $t_n = 2000,00$
4 11 Pokój 6 Pokój 1 Salon 2 Kuchnia	Wpływ światła dziennego Or zgó Rodzaj regulacji: Ręczna	−Wpływ światła dziennego F _p = 1,00
4 Pokój 4 Pokój 9 Pokój 1 10 Pokój	Wpływ nieobecności pracowników w miejscu pracy Rodzaj regulacji: Ręczna Tablice	Wpływ nieobecności pracowników F _O = 1,00
9 Pokój 9 Pokój 17 Pokój	Informacje uzupelniające Uwsg: Wobsw obniżenia nateżenia oświetlenia	. Wenółczwnik obniżenia nateżenia oświtlenia
1 11 Pokój 6 Pokój 2 2 Pokój 1 6 Łazienka	Pryce dolužice na katyce na ostrete na Regulacja prowadzaca do utrzymania natężenia oświetlenia na poziomie wymaganym Wspóczynnik uwzględniający obniżenie natężenia oświetlenia: MF= 0,80	$F_{\rm C} = \frac{(1+MF)}{2} = 0.90$
-	Parametry obliczeń jednostkowej mocy opraw oświetleniowych Eksploatacyjne natężenie oświetlenia w pomieszczenia: E _m = 100,00 k. Tablice Skuteczność świetlna: n_= 104,00 k.W. Tablice	Moc jednostkowa opraw oświetleniowych $P_1 = 4.34 \frac{E_m}{H_2} = 4,13 \frac{W}{m^2}$
0grzewanie i wentyłacja	Parametry do obliczeń średniej ważonej mocy jednostkowej i zapotrzebowania energii	Średnia ważona moc jednostkowa
Ciepła woda użytkowa	Powierzchnia użytkowa grupy pomieszczeń: A _{rt} = 272,95 m ² Cakowita powierzchnia grupy pomieszczeń o regulowanej temperaturze: EA _{rt} = 177,80 m ²	$P_{N} = \frac{\Sigma(P_{1} \ast A_{T})}{\Sigma A_{T}} = 6,35 \ \frac{VV}{m^{2}}$
Dane uzupełniające	Roczne jednostkowe zapotrzebowanie na energię do oświetlenia pomieszczenia/Grupy –	Średnie ważone natężenie oświetlenia
💋 Dane wejściowe	$\mathbb{E}_{11} = F_0 * \frac{P_1 * A_T}{1000 * \Sigma A_T} * [(F_0 * F_0 * t_0) + (F_0 * t_N)] = 22,85 \frac{kN/h}{m^{2*rok}}$	$E_{1,0} = \frac{\Sigma(E_{1,1},A_{1})}{\Sigma A_{1}} = 35,08 \frac{kVH}{m^{2}mok}$
Dbliczenia cieplne	Raport o bledach	
Certyfikat	Lp. Typ Opts 1 Ostrzeżenie Parametr "Współczynnik przenkania UK" w przegrodzie "52 1", powinien znajć 2 Ostrzeżenie Parametr "Współczynnik przenkania UK" w przegrodzie "52 2", powinien znajć	lować się w przedziałe od 0,00 do 0,45! lować się w przedziałe od 0,00 do 0,45!
< [10/13] >		Zamknij

Rys 43. Okno dialogowe Oświetlenie

Okno to wyświetlane jest tylko w przypadku wybrania przeznaczenia budynku:

- Służby zdrowia,
- Szkolno-oświatowe,
- Użyteczności publicznej,
- Usługowe,
- Biurowe
- •

Po lewej stronie okna znajdują się zakładki wyboru okien dialogowych modułu Certyfikat oraz ,umieszczone ponad przyciskami okien dialogowych, pole, które może zawierać w zależności od włączonej opcji: wzór potrzebny do obliczenia rocznego zużycia energii na oświetlenie bądź okno umożliwiające zgrupowanie pomieszczeń.

Grupowanie wykonuje się w sytuacji gdy mamy wiele podobnych pomieszczeń w budynku o takiej samej charakterystyce oświetleniowej. Wtedy łączymy takie pomieszczenia w jedną grupę, pozostałe pomieszczenia łączymy w kolejne grupy bądź pozostawiamy niezgrupowane.

NAZWA GRUPY – w polu tym wyświetlana jest nazwa zaznaczonej w drzewku grupy, użytkownik może zmieniać nazwę, która automatycznie odświeży się w drzewku.

2.4.1 Czas użytkowania oświetlenia.

Czas użytkowania oświetlenia —	Czas użytkowania oświetlenia		
Rodzaj budynku: Urząd	Tablice	t _D = 2000,00	t _N = 2000,00

Rys 44. Czas użytkowania oświetlenia

W grupie *Czas użytkowania oświetlenia* na podstawie Danych wejściowych do programu dobrany jest *Rodzaj budynku*.

Na podstawie wybranego Rodzaju budynku uzupełniane jest okno *Czas użytkowania oświetlenia* z danymi:

t_{DO} – czas użytkowania oświetlenia w ciągu dnia;

t_{NO} – czas użytkowania oświetlenia w ciągu nocy;

Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Roczn	Roczne odniesieniowe czasy użytkowania oświetlenia w budynka 🔀						
Lp.	Typ budynku	Czas użytkowania oświetlenia w ciągu r [h/a]					
		tD	tN	t 0			
1	Biura	2250	250	2500			
2	Szkoły	1800	200	2000			
3	Szpitale	3000	2000	5000			
4	Budynki gastronomii i usług	1250	1250	2500			
5	Dworce kolejowe, lotniska, muzea, hale wystawiennicze	2000	2000	4000			
6	Budynki handlowe	3000	2000	5000			

Rys 45.

Czas użytkowania oświetlenia- okno pomocnicze

 t_{OO} – czas użytkowania oświetlenia będący sumą czasów t_{DO} i t_{NO}

2.4.2 Wpływ światła dziennego

Wpływ światła dziennego			Wpływ światła dziennego
Rodzaj regulacji:	Ręczna	Tablice	F _D =1,00

Rys 46. Wpływ światła dziennego.

W grupie Wpływ światła dziennego należy wybrać za pomocą listy rozwijalnej

RODZAJ REGULACJI - Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia.

Na podstawie wybranych informacji z listy rozwijalnej zostanie dobrany współczynnik uwzględniający wykorzystanie światła dziennego w oświetleniu F_{DO} . Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Uwzględnienie wpływu światła dziennego w budynkach. 🛛 🗙						
Lp.	Typ budynku	Rodzaj regulacji 1)	FD			
	Piura, dwaraa kalaiawa	Reczna	1,0			
1	lotniska, muzea, hale wystawiennicze	Regulacja światła z uwzględnieniem światła dziennego	0,9			
2	Budynki handlowe, budynki gastronomii i usług	Ręczna	1,0			
		Reczna	1,0			
3	Szkoły, szpitale	Regulacja światła z uwzględnieniem światła dziennego	0,8			
1)	- Założono, że co najmniej 60%	mocy instalowanej jest s	terowane			

Rys 47. Wpływ światła dziennego-okno pomocnicze

2.4.3 Wpływ nieobecności pracowników w miejscu pracy

 Wpływ nieobecności pracowników w miejscu pracy
 Wpływ nieobecności pracowników

 Rodzej regulacji:
 Ręczna

 Tablice
 F₀=1,00

Rys.38. Uwzględnienie wpływu nieobecności pracowników w miejscu pracy.

4	0

W grupie *Wpływ nieobecności pracowników w miejscu pracy* należy wybrać za pomocą listy rozwijalnej *Rodzaj regulacji*. Wartości możliwe do wyboru w listach rozwijalnych przedstawione są na podstawie rozporządzenia. Na podstawie wybranych informacji z listy rozwijalnej zostanie dobrany współczynnik uwzględniający wpływ nieobecności pracowników w miejscu pracy **F**₀₀. Doboru można dokonać również za pomocą przycisku *Tablica*, po naciśnięciu którego otworzy się tabela z Rozporządzenia.

Dodatkowo audytor ma możliwość podania **Informacji uzupelniających**, które charakteryzują oświetlenie.

2.4.4 Wpływ obniżenia natężenia oświetlenia.

Regulacja prowadząca do utrzymania natężenia oświetlenia na poziomie wymaganym P Wooderweek uwysłedniaje odczienie odczieni odczienie odczienie odczienie odczienie odczienie odczie	Wpływ obniżenia natężenia oświetlenia	Współczynnik obniżenia natężenia oświtlenia —
 vvspuložiji na krazgljena ljego ovlažene nargžena osvnetena. Mi = 0,00 	Regulacja prowadząca do utrzymania natężenia oświetlenia na poziomie wymaganym Współczynnik uwzględniający obriżenie natężenia oświetlenia: MF= 0,80	$F_{C} = \frac{(1+MF)}{2} = 0,90$

Rys 50. Wpływ obniżenia natężenia oświetlenia

W grupie **Wpływ obniżenia natężenia oświetlenia** należy określić czy w budynku jest regulacja prowadząca do utrzymania natężenia oświetlenia na poziomie wymaganym. Aby określić istnienie w budynku **regulacji prowadzącej do utrzymania natężenia oświetlenia na poziomie wymaganym** należy zaznaczyć okno:

Współczynnik utrzymania we wnętrzu MF ma bezpośredni wpływ na **Współczynnik obniżenia natężenia oświetlenia F**_C W przypadku braku regulacji prowadzącej do utrzymywania natężenia

oświetlenia na poziomie wymaganym wartość współczynnika Fc wynosi 1.

2.4.5 Parametry obliczeń jednostkowej mocy opraw oświetleniowych.

Parametry obliczen jednostkowej mocy opraw o	swietleniowych		Moc jednostkowa opraw oswietleniowych
Eksploatacyjne natężenie oświetlenia w pomieszczeniu	E _m = 100,00 lx	Tablice	D 40-En 442 W/
Skuteczność świetlna:	η _z = 104,00 ImAV	Tablice	$P_{j} = 4.3^{\circ} \frac{m}{n_{Z}} = 4_{0} 1.3 \frac{v_{V}}{m^{2}}$

Rys 51. Parametry obliczeń jednostkowej mocy opraw oświetleniowych

W grupie tej w miejscu **Eksploatacyjne natężenie oświetlenie w pomieszczeniu Em [lx]** oraz **Skuteczność świetlna** użytkownik wstawia własną wartość w zakropkowane pole lub wybiera z tablicy, która otwiera się po naciśnięciu przycisku **Tablica**.

Eksploa	ksploatacyjne natężenie oświetlenie w pomieszczeniu Em [1x] 💦 🚺					
Strefy k	omunikacyjne i obszary ogólnego przeznaczenia w budy	/nku				
L.p.	Rodzaj wnętrza	Em [lx]				
1.1	Strefy komunikacyjne					
1.1.1	Strefy komunikacji i korytarze	100				
1.1.2	Schody, ruchome schody i chodniki	150				
1.1.3	Rampy/zatoki załadunek	150				
1.2	Pokoje do odpoczynku, sanitarne i pierwszej pomocy					
1.2.1	Stołówki, spiżarnie	200				
1.2.2	Pokoje do odpoczynku	100				
1.2.3	Pokoje do ćwiczeń fizycznych	300				
1.2.4	Szatnie, umywalnie, łazienki, toalety	200				
1.2.5	Izba chorych	500				
1.2.6	Pokoje opieki medycznej	500				
1.3	Pomieszczenia sterowni (sterownie)					
1.3.1	Pomieszczenia z urządzeniami technicznymi, rozdzielczymi	200				
1.3.2	Pokój telexu, pokój pocztowy, tablice rozdzielcze	500				
1.4	Pomieszczenia magazynowe/chłodnie					
1.4.1	Składy i magazyny	100				
1.4.2	Strefy pakowania i wysyłania	300				
1.5	Strefy magazynowe z regałami					
1.5.1	Przejścia: bez obsługi	20				
1.5.2	Przejścia: z obsługą	150				
1.5.3	Stanowiska kontroli	150				

Rys 52. Eksploatacyjne natężenie oświetlenia

lub

Skuteczność świetlna η Z [lm/W]		
Hazwa	η Ζ [lm/W]	
Lampy rtęciowe	60	
Metalohalogenowe	120	
Sodowe	150	
Żarówka	10	
Żarówka halogenowa	24	
Świetlówka	104	
Świetlówka kompaktowa	88	

Rys 53. Skuteczność świetlna -okno pomocnicze

Po ustaleniu obu wartości otrzymujemy Moc jednostkową opraw oświetleniowych.

2.4.6 Parametry do obliczeń średniej ważonej mocy jednostkowej i zapotrzebowania energii.

Parametry do obliczeń średniej ważonej mocy je	dnostkowej i zapotrzebowania energii	Średnia ważona moc jednostk	owa
Powierzchnia użytkowa grupy pomieszczeń: Całkowita powierzchnia grupy pomieszczeń o regulowanej temperaturze:	A ₁ = 272,95 m ² ΣA ₁ = 177,80 m ²	$P_{N} = \frac{\Sigma(P_1 \bullet A_{T})}{\Sigma A_{T}} = 6, 35 \cdot \frac{W}{m^2}$	

Rys 54. Parametry do obliczeń średniej ważonej mocy jednostkowej i zapotrzebowania energii.

W grupie tej w miejscu **Powierzchnia użytkowa grupy pomieszczeń** $A_f [m^2]$ wyświetlana jest powierzchnia pomieszczenia/strefy (dana pobrana z OZC (w przypadku, kiedy mamy zgrupowane pomieszczenia wówczas w polu tym jest suma powierzchni poszczególnych pomieszczeń należących do grupy) **Całkowita powierzchnia pomieszczenia o regulowanej temperaturze** ΣA_f $[m^2]$ - jest przekazana z "Dane wejściowe" "Danych o budynku" pole "Powierzchnia o regulowanej temperaturze"

Po ustaleniu obu wartości otrzymujemy Średnią ważoną moc jednostkową.

Ostatnie dwa pola zakładki Oświetlenie służą do wpisnia przez użytkownika dwóch danych: piersza to **Roczne jednostkowe zapotrzebowanie na energię do oświetlania pomieszczenia/grupy,** druga to **Średnie ważone natężenie oświetlenia.**

Roczne jednostkowe zapotrzebowanie na energię do oświetlenia pomieszczenia/Grupy —	Średnie ważone natężenie oświetlenia
$E_{i,j} = F_{0} \cdot \frac{P_{1} \cdot A_{ij}}{1000^* \Sigma A_{ij}} \cdot [(F_{0} \cdot F_{0} \cdot A_{0}) + (F_{0} \cdot A_{ij})] = 22,85 \; \frac{k/^4 h}{m^2 \text{rok}}$	$E_{LO} = \frac{\Sigma(E_{L1} \bullet A_T)}{\Sigma A_T} = 35,08 \frac{kVM}{m^{2*}rok}$

Rys 55. Roczne jednostkowe zapotrzebowanie na energię do oświetlania pomieszczenia/grupy i średnie ważone natężenie oświetlenia.

Krok 6 – Dane uzupełniające

W module Certyfikat polega na uzupełnieniu danych, które nie zostały podane w etapach wcześniejszych, a są konieczne do pełnego wykonania

Certyfikat	Dane uzupełniające				
Wskaźnik rocznego zapotr budynku nowo budowaner	Świadectwo charakterystyki energetycznej dla budynku Roczne jednostkowe zapotrzebowanie na energię końcową [kWh'rok]	Zdjęcie/rysunek - podgląd			
Dla współczynnika A/V _e ≤	Lp. Rodzaj paliwa Ogrzewanie, Woda Chłodzen Oświetle Pomocnicze *				
$EP = 73 + EP_W + EP_L + \left(5 + \frac{1}{2}\right)$	1 Palwo - wegiel 35652 0 0 0 0 0				
Dla współczynnika 0,2 < A	2 Energia elektryczna - produkcja mieszana ···· 0 8105 77 6237 908				
$EP = 55 + 90 \cdot \frac{A}{V_{\theta}} + EP_W + EI$	Charakterystyka techniczno-użytkowa] Instalacje Uwagi Dane do budynku referencyjneg				
Dla współczynnika A/Ve >	Część/cełość budynku: Całość				
$EP = 149.5 + EP_W + EP_L + \left(: \right.$	Rok budowy instalacji 2008 Cel wykonania świadectwa: Illajem isprzedaż				
gdzie:	Liczba lokali mieszkalnych: 3				
dodatek na jedno: EP _W - nieodnawialną enc Ogrzewanie i wentylacja Ciania wodu ujuckema	Temperatury eksploatacyjne: zima tz = 20°C, lato tl = 21°C Postisi povierzzini użytkownić Liczba użytkowników: Colona budyniku: Opie, parametry termiczne				
Chłodzenie Oświetlenie Dane uzupełniające		• •			
📝 Dane wejściowe		• •			
Dbliczenia cieplne	Panert e bledach	•			
L Certyfikat	L.p. Typ Opis				
Raporty	Ostrzeżenie Parametr "Współczynnik przenikania Uc" w przegrodzie "52 1", powinien znaj Ostrzeżenie Parametr "Współczynnik przenikania Uc" w przegrodzie "52 2", powinien znaj	dować się w przedziałe od 0,00 do 0,45! dować się w przedziałe od 0,00 do 0,45!			
(11/13)		Zamknij			

Świadectwa charakterystyki energetycznej.

2.4.7 Dane uzupełniające

Rys 56. Okno dialogowe Dane uzupełniające.

Okno dialogowe Dane uzupelniające składa się z grup: Roczne jednostkowe zapotrzebowanie na energię końcową, Zdjęcia/rysunek-podgląd oraz zakładek: Charakterystyka techniczno-użytkowa, Instalacje, Uwagi, Dane do budynku referencyjnego.

Świadectwo charakterystyki energetycznej dla budynku -w polu tym wyświetlana jest zawsze nazwa wybranej metody obliczeń (Wariantu), pole to nie jest do edycji

2.4.8 Roczne jednostkowe zapotrzebowanie na energię końcową.

Poszne jednostkowe zapotrzebowanie pa epergie końcowa [kWb/rok]								
Koczne jednostkowe zabou zebowanie na energię koncową [kwintok]								
.p.	Rodzaj paliwa		Ogrzewanie, wentylacja	Ciepła woda użytkowa	Chłodzen ie	Oświetle nie	Pomocnicze	+ X
1	Paliwo - węgiel kamienny		35652	0	0	0	0	1
2	Energia elektryczna - produkcja mieszana		0	8105	77	6237	908	€
	р. 1 2	Rodzaj paliwa 1 Paliwo - węgiel kamienny 2 Energia elektryczna - produkcja mieszana	p. Rodzaj paliwa Paliwo - węgieł kamienny	Rodzaj paliwa Ogrzewanie, wentylacja 1 Paliwo - węgiel kamienny	Rodzaj paliwa Ogrzewanie, wentylacja Ciepła woda uzytkowa 1 Paliwo - węgiel kamienny ••• 35652 0 2 Energia elektryczna - produkcja mieszana ••• 0 8105	Rodzaj paliwa Ogrzewanie, wentylacja Ciepła woda Chłodzen 1 Paliwo - węgiel kamienny ••• 35652 0 0 2 Energia elektryczna - produkcja mieszana ••• 0 8105 77	Rodzaj paliwa Ogrzewanie, woda Cliepła woda Chłodzen Oświetle nie 1 Paliwo - węgiel kamienny	Rodzaj paliwa Ogrzewanie, wentylacja Ciepła woda uzytkowa Chłodzen ie Oświetle nie Pomocnicze 1 Paliwo - wegiel kamienny ••• 35652 0 0 0 0 2 Energia elektryczna - produkcja mieszana ••• 0 8105 77 6237 908

Rys 57. Okno do określenia procentowego udziału posczególnych nośników energii.

Należy określić w celu uzupełnienia świadectwa charakterystyki ekonomicznej zgodnie z Rozporządzeniem. W tym celu wybieramy w tabeli **Rodzaj paliwa**, z jakiego produkowana jest energia i w kolejnych oknach wykazujemy udział procentowy [%] w poszczególnych dziedzinach (ogrzewanie i wentylacja z chłodzeniem, produkcja ciepłej wody użytkowej, oświetlenie-przy czym należy pamiętać, że część oświetleniową wypełnia się tylko w przypadku budynków użyteczności publicznej).

W celu dodawania lub usuwania kolejnych rodzajów paliwa oraz zmiany ich kolejności w tabeli, korzystamy z przycisków znajdujących się w bocznej części tabeli

2.4.9 Zdjęcia/rysunek - podgląd

Rys 58. Dodawanie zdjęć i rysunków.

W grupie **Zdjęcia/rysunek – podgląd** audytor ma możliwość wczytania do programu fotografii dotyczących ocenianego budynku lub lokalu mieszkalnego. Wczytane fotografie będą wyświetlane w świadectwie charakterystyki energetycznej.

2.4.10 Zakładki

Do uzupełnienia pozostały zakładki charakteryzujące budynek i instalacje w budynku oraz umożliwiające zaprezentownie ewentualnych uwag dotyczących możliwości zmniejszenia zapotrzebowania na energię końcową.

2.4.11 Charakterystyka techniczno-użytkowa.

Charakterystyka techniczno-użytka	owa Instalacje Uwagi Dane do budyn ku referen cyjneg
Część/całość budynku:	Całość
Rok budowy instalacji:	2008
Cel wykonania świadectwa:	Najem/sprzedaż
Liczba lokali mieszkalnych:	3
Temperatury eksploatacyjne:	zima tz = 20°C, lato tl = 27°C
Podział powierzchni użytkowej:	
Liczba użytkowników:	6
Osłona budynku:	Opis, parametry termiczne

Rys 59. Zakładka – charakterystyka techniczno-użytkowa

Jest to zakładka, w której użytkownik uzupełnia dane niezbędne do kompleksowego i poprawnego wykonania świadectwa charakterystyki energetycznej budynku lub jego części.

2.4.12 Instalacje

Charakterystyka techniczno-uż	ytko Instalacje Uwagi Dane do budynku referencyjneg
Ogrzewania centralne, kocioł na paliwo :	stale - węgiel kamienny
Wentylacyjna naturalna-grawitacyjna	
Chłodzenia brak	
Przygotowania ciepłej wody centralne (elektryczny podg	/ grzewacz akumulacyjny)
Oświetlenia wbudowanego tak/nie, opis, parametry	
centralne (elektryczny podg Oświetlenia wbudowanego tak/nie, opis, parametry	grzewacz akumulacyjny)

Rys 60. Zakładka – Instalacje

Λ	o
4	c

Zakładka ta umożliwia użytkownikowi dokładne scharakteryzowanie wszystkich instalacji jakie występują w budynku bądź jego części. Istnieje możliwość wykonywania własnych opisów instalacji.

2.4.13 Uwagi

W zakładce Uwagi należy określić i opisać:

- Możliwe zmiany w zakresie osłony zewnętrznej budynku;
- Możliwe zmiany w zakresie techniki instalacji i źródeł ciepła;
- Możliwe zmiany w zakresie oświetlenia wbudowanego;
- Możliwe zmiany ograniczające zapotrzebowania na energię końcową w czasie eksploatacji;
- Możliwe zmiany ograniczające zapotrzebowanie na energię końcową związane z korzystaniem z ciepłej wody użytkowej;
- Inne uwagi osoby sporządzającej świadectwo charakterystyki energetycznej.

Wszyskie wskazane uwagi zostaną bezpośrednio pokazane w świadectwie chcarakterystyki energetycznej budynku.

2.4.14 Dane do budynku referencyjnego

Charakterystyka techniczno-użytko Instalacje	Uwagi Dane do budynku referencyjnego	
Suma pól przegród	Współczynnik kształtu	
1 A = 431,04 m ²	• $A/V_E = 0.84 \frac{1}{m}$	
Powierzchnia użytkowa	Powierzchnia ścian zewnętrznych	
A _{FC} = 177,80 m ²	A _{WE} = 303,43 m ²	
Dobowe zużycie ciepłej wody Bezwymiarowy czas użytkowania		
● V _{cw} = 5,00 dm ³ (j.o.)*24h Tablice	bt = 0,60 Tablice	
Powierzchnia w jednostce odniesienia Czas użytkowania oświetlenia		
() a ₁ = 15,00 (j.o.) Tablice	t _o = 2500,00 <u>h</u> Tablice	
Oodatki na jednostkowe zapotrzebowanie		
1 $\Delta EP_W = 24,55 \frac{K/M}{m^2 * rok}$ 1 $\Delta EP_L = 135,00 \frac{K/M}{m^2 * rok}$		
Moc elektryczna		
P _N = 20,00 W/m ³ Tablice		

Rys 62. Zakładka – dane do budynku referencyjnego

W zakładce tej użytkownik uzupełnia dane potrzebne do scharakteryzowania budynku referencyjnego odpowiadającego budynkowi ocenianemu.

SUMA PÓL PRZEGRÓD - domyślnie wstawiana wartość obliczona z sumy powierzchni wszystkich przegród mających za sąsiada środowisko zewnętrzne (dach, okno zew., drzwi zew., ściana zewn., ściana na gruncie, podłoga na gruncie, strop nad przejazdem) i przegród sąsiadujących z strefą nieogrzewaną (ściana wew., strop, okno wew., drzwi wew.). Istnieje możliwość edycji.

WSPÓŁCZYNNIK KSZTAŁTU- wartość wyliczana z wzoru A/Ve-i automatycznie wstawiana w pole.

POWIERZCHNIA UŻYTKOWA - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana sumą powierzchni stref ogrzewanych.

POWIERZCHNIA ŚCIAN ZEWNĘTRZNYCH - pole tekstowe do edycji przez użytkownika, domyślnie wstawiana wartość obliczona z sumy powierzchni wszystkich ścian zewnętrznych.

DOBOWE ZUŻYCIE CIEPŁEJ WODY- pole tekstowe do edycji przez użytkownika, dodatkowo użytkownik może wypełnić to pole wartością z podpowiedzi uruchamianej przyciskiem *Tablice*,

Dobow	Dobowe zużycie ciepłej wody użytkowej 🛛 🛛 🔀	
L.p.	Typ budynku	Dobowe zużycie cieplej wody użytkowej V CW [dm³/(j.o. doba)]
1	Biura, urzędy	5
2	Szkoły, bez natrysków	8
3	Hotele – część noclegowa	75
4	Hotele z gastronomią	112
5	Szpitale	325
6	Restauracje, gastronomia	50
7	Dworce kolejowe, autobusowe, lotnicze	5
8	Handlowo-usługowe	15

Rys 63. Dobowe zużycie ciepłej wody użytkowej-okno pomocnicze

domyślnie wstawiana jest wartość w zależności od wybranego typu użytkowania budynku (wartość wybierana w oknie dane wejściowe/Dane budynku).

BEZWYMIAROWY CZAS UŻYTKOWANIA - pole tekstowe do edycji przez użytkownika, dodatkowo użytkownik może wypełnić to pole wartością z podpowiedzi uruchamianej przyciskiem *Tablice*,

Bezwymiarowy czas użytkowania 🛛 🛛 🔀		
L.p.	Typ budynku	Bezwymiarowy czas użytkowania b t [dni/rok]
1	Biura, urzędy	0,60
2	Szkoły, bez natrysków	0,55
3	Hotele – część noclegowa	0,60
4	Hotele z gastronomią	0,65
5	Szpitale	0,90
6	Restauracje, gastronomia	0,80
7	Dworce kolejowe, autobusowe, lotnicze	0,80
8	Handlowo-usługowe	0,80

Rys 64. Bezwymiarowy czas użytkowania – okno pomocnicze

domyślnie wstawiana jest wartość w zależności od wybranego typu użytkowania budynku (wartość wybierana w oknie dane wejściowe/Dane budynku).

POWIERZCHNIA W JEDNOSTCE ODNIESIENIA - pole tekstowe do edycji przez użytkownika, dodatkowo użytkownik może wypełnić to pole wartością z podpowiedzi uruchamianej przyciskiem *Tablice*,

L.p.	Typ budynku	Udział powierzchn użytkowej na osobę a 1 [m²/(j.o.]
1	Biura, urzędy	15
2	Szkoły, bez natrysków	10
3	Hotele – część noclegowa	20
4	Hotele z gastronomią	25
5	Szpitale	20
6	Restauracje, gastronomia	10
7	Dworce kolejowe, autobusowe, lotnicze	25
8	Handlowo-usługowe	25

Rys 65. Udział powierzchni użytkowej na osobę – okno pomocnicze

domyślnie wstawiana jest wartość w zależności od wybranego typu użytkowania budynku (wartość wybierana w oknie dane wejściowe/Dane budynku).

CZAS UŻYTKOWANIA OŚWIETLENIA- pole tekstowe do edycji przez użytkownika, dodatkowo użytkownik może wypełnić to pole wartością z podpowiedzi uruchamianej przyciskiem *Tablice*,

Czas użytkowania oświetlenia 🛛 🛛 🔀		
L.p.	Typ budynku	Czas użytkowania oświetlenia t 0 [h/rok]
1	Biura, urzędy	2500
2	Szkoły	2000
3	Szpitale	5000
4	Restauracje, gastronomia	2500
5	Dworce kolejowe, autobusowe, lotnicze	4000
6	Handlowo-usługowe	5000
7	Sportowo-rekreacyjne	2500

Rys 66. Czas użytkowania oświetlenia – okno pomocnicze

domyślnie wstawiana jest wartość w zależności od wybranego typu użytkowania budynku (wartość wybierana w oknie dane wejściowe/Dane budynku).

DODATEK NA JEDNOSTKOWE ZAPOTRZEBOWANIE NA NIEODNAWIALNĄ ENERGIĘ PIERWOTNĄ DO PRZYGOTOWANIA CIEPŁEJ WODY UŻYTKOWEJ W CIĄGU ROKU EP_w oraz

DODATEK NA JEDNOSTKOWE ZAPOTRZEBOWANIE NA NIEODNAWIALNĄ ENERGIĘ PIERWOTNĄ DO OŚWIETLENIA

WBUDOWANEGO W CLĄGU ROKU EP_L - są to pola tekstowe automatycznie uzupełniane przez program po dokonaniu obliczeń na podstawie wcześniej wprowadzonych danych (możliwość edycji przez użytkownika).

MOC ELEKTRYCZNA pole tekstowe do edycji przez użytkownika, dodatkowo użytkownik może wypełnić to pole wartością z podpowiedzi uruchamianej przyciskiem *Tablice*,

Moc elektryczna referencyjna 🛛 🔀		
L.p.	Typ budynku	Moc elektryczna referencyjna PN [W/m²]
1	Biura, urzędy	20
2	Szkoły	20
3	Szpitale	25
4	Restauracje, gastronomia	25
5	Dworce kolejowe, autobusowe, lotnicze	20
6	Handlowo-usługowe	25
7	Sportowo-rekreacyjne	20

Rys 67. Moc elektryczna referencyjna – okno pomocnicze

domyślnie wstawiana jest wartość w zależności od wybranego typu użytkowania budynku (wartość wybierana w oknie dane wejściowe/Dane budynku).

2.5 KROK 7 – RAPORTY

Raporty	Certyfikat		
-	CERTYFIKAT		
~	EP - lokal oceniany		
	■ 228.8 kWh/(m²rok)		
	Parametry dla budynku ocenianego		
	Wskaźnik rocznego zapotrzebowania na energię pierwotną EP: 228.809 kWh/(m ² rok)		
	Wskaźnik rocznego zapotrzebowania na energię końcową EK: 125.175 kWh/(m ² rok) Wyniki obliczeń rocznego zapotrzebowania na energię pierwotną:		
	Roczne zapotrzebowanie na energię pierwotną Qp: 15223.413 kWh/rok		
	Postan zanatzahowanie na operaje njerwatna przez sustem grzewszy i wentylacyjny Q - 17270.028 kWh/rok		
	Roczne zapotrzebowanie na energię pierwotną przez system grzewczy i wentylacyjny O _{p,H} ; 73/0.038 kWh/rok Roczne zapotrzebowanie na energię pierwotną przez system do przygotowania cieplej wody O _{p,w} ; 7853.375		
-	kWh/rok		
Certyfikat	e Wyniki obliczeń rocznego zapotrzebowania na energie końcowa:		
Dane wejściowe	Roczne zapotrzebowanie na energię koncową przez system grzewczy i wentyłacyjny Q _{K,H} : 5958.507 kwn/rok		
Obliczenia cieplr	c		
_	Raport o błędach		
Certyfikat	L.p. Typ Opis		
Raporty			
F10/101			

2.5.1 Raport uporszczony

Rys 68. Okno raportu certyfikatu

W raporcie użytkownik programu ma możliwość przeanalizowania wyników przeprowadzonych analiz audytorskich.

2.5.2 Raport RTF

Po wykonaniu wszystkich obliczeń możliwe jest wygenerowanie raportu w formacie RTF i po ewentualnym jego sformatowaniu w edytorze tekstu, wykonanie wydruku.

Przyciski do generowania raportów RTF:

generowania raportu obliczeń start cieplnych w pomieszczeniach,

E

generowanie raportów obliczeń sezonowego zapotrzebowania na ciepło,

generowanie raportów świadectwa energetycznego i audytu energetycznego,

