Moduł Słup żelbetowy

Spis treści

230.	SŁUP ŻELBETOWY	
230	WIADOMOŚCI OGÓLNE	
2.	1.2. Opis programu	
2.	1.3. Założenia ogólne	3
2.	1.4. Założenia materiałowe	3
2.	1.5. Obliczenia	4
2.	1.6. Długości wyboczeniowe	4
2.	1.7. Uwzględnianie wpływu smukłości	4
2.	1.8. Sprawdzanie nośności	5
2.	1.9. Ŵymiarowanie	5
2.	1.10. Zakres programu	6
2.	1.11. Obciążenia	6
2.	1.12. Zbrojenie	6
2.	1.13. Układ współrzędnych	
230	WPROWADZENIE DANYCH	7
2.	2.2. Zakładka: Dane ogólne	7
2.	2.3. Zakładka: Wymiary i obciążenia	9
2.	2.4. Zakładka: Zamocowanie i podparcie	
2.	2.5. Zakładka: Zbrojenie	14
2.	2.6. Zakładka: Obw. M-N	
230	WIDOK 3D	
230	DRZEWO PROJEKTU	19
230	OBLICZENIA I KONFIGURACJA RAPORTÓW	19
230	WYNIKI	20
230	LITERATURA	20
230	PRZYKŁAD 1 – SPRAWDZANIE NOŚNOŚCI	
2.	8.1. Dane wejściowe	21
2.	.8.2. Wprowadzanie Projektu do Programu Konstruktor	
2.	9.8.3. Wyniki	

230. Słup żelbetowy

230.1. Wiadomości ogólne

230.1.2. Opis programu

Jest to program umożliwiający wykonanie pełnej analizy wytrzymałościowej słupów żelbetowych poddanych dwukierunkowemu mimośrodowemu ściskaniu. Wykonywane jest sprawdzanie nośności i wymiarowanie słupów w jedno i dwukierunkowym stanie obciążenia z uwzględnieniem wpływu smukłości. Uwzględnianie wpływu smukłości odbywa się poprzez odpowiednie zwiększanie obliczeniowych momentów zginających, działających w określonych przekrojach. Długość wyboczeniowa słupa wyznaczana jest wg metody normowej, z uwzględnieniem jego powiązania z sąsiednimi elementami konstrukcji. Dane geometryczne wizualizowane są na ekranie monitora w formie skalowanego widoku 3D.

230.1.3. Założenia ogólne

Założono, że podstawą analizy nośności słupa obciążonego ukośnie mimośrodowo będą obliczenia przeprowadzane niezależnie w dwóch prostopadłych kierunkach X i Y. Wykorzystano założenia norm PN-B-03264:1999 [1] i Eurokod 2 [2] dotyczące charakterystyk materiałowych i granicznych stanów odkształcenia. Współczynnik α , uwzględniający dwukierunkowość obciążenia pozostawiono w algorytmie jako wielkość zmienną, której wartość ustala użytkownik programu. Po stronie bezpiecznej jest przyjmowanie α =1 (jest to zgodne z NS 3473 E: 1992).

230.1.4. Założenia materiałowe

Naprężenia w betonie ściskanym wg PN-B-03264:2002 określone są wykresem paraboliczno – prostokątnym (rys. 1), linią ciągłą zaznaczono na rysunku wykres obliczeniowy, a przerywaną wykres ideowy. Współczynnik α_{cc} uwzględniający wpływ obciążenia długotrwałego na wytrzymałość betonu i niekorzystny wpływ sposobu przyłożenia obciążenia, przyjęto wg punktu 2.1.2 normy.

Rysunek 1 – Paraboliczno-prostokątny wykres σ - ϵ betonu

Wykres dotyczy obciążenia doraźnego, natomiast w obliczaniu słupów, ustalając wpływ smukłości, uwzględnia się pełzanie betonu. Końcowy współczynnik pełzania betonu $\phi_{\rm ell}, t_0$ przyjmuje się do celów projektowych zgodnie z załącznikiem A normy PN-B-03264:2002 wg tabeli A.1. Podczas ustalania współczynnika pełzania zakłada się, iż naprężenia $\sigma_c < 0.45 f_{cm}(t_0)$.

Przyjęto dwie wersje zależności σ_s - ϵ_s . W przypadku, gdy istnieją odpowiednie dane doświadczalne dotyczące ϵ_{uk} – wartości charakterystycznego odkształcenia stali odpowiadającego maksymalnej sile, do obliczeń przyjąć można wykres σ_s - ϵ_s z nachyloną gałęzią górną, jak na rys. 2. W przeciwnym wypadku zakłada się zależność uproszczoną ze stałą wartością $\sigma = f_{vd}$ dla $\epsilon \ge f_{vd}/E_s$.

Rysunek 2 – Wykres σ-ε stali zbrojeniowej

Moduł sprężystości stali Es przyjęto zgodnie z pkt. 3.1.3 normy PN-B-03264:2002 dla przedziału temperatury od -30°C do 200°C w wysokości: Es = $200 \cdot 10^3$ MPa.

230.1.5. Obliczenia

Założenia do obliczeń przyjęto zgodnie z pkt. 5.1.1 normy PN-B-03264:2002. Do obliczeń nośności przekroju zginanego w dowolnej płaszczyźnie przyjmuje się za wysokość przekroju h rzut na kierunek prostopadły do osi obojętnej odcinka łączącego najbardziej ściskany lub najmniej rozciągany punkt przekroju z punktem najbardziej rozciąganym lub najmniej ściskanym. Wysokość użyteczną d określa się odpowiednio jako rzut odcinka łączącego punkt najbardziej ściskany lub najmniej rozciągany przekroju z najbardziej rozciąganym lub najmniej ściskanym prętem zbrojenia.

230.1.6. Długości wyboczeniowe

Przyjęto dwa sposoby określania długości obliczeniowych. Pierwszy polega na bezpośrednim zadaniu tych wielkości przez użytkownika, drugi - na skorzystaniu z metody podanej w załączniku C normy PN-B-03264:2002.

Długości obliczeniowe l₀ słupów występujących w żelbetowych układach ramowych obliczane są wówczas według wzoru: l₀= $\beta \cdot l_{col}$

Wartość współczynnika β oblicza się na podstawie wzorów podanych w tablicy 1 normy PN-B-03264:2002.

230.1.7. Uwzględnianie wpływu smukłości

Nośność elementów ściskanych sprawdzana jest z uwzględnieniem ich smukłości i wpływu

obciążeń długotrwałych, jeżeli zachodzi warunek: $\frac{l_0}{h}$ > 7 lub $\frac{l_0}{i}$ > 25.

Nośność przekrojów przypodporowych występujących w układach o węzłach nieprzesuwnych sprawdzana jest bez uwzględniania wpływu smukłości.

Wpływ smukłości na nośność elementów żelbetowych uwzględniany jest zgodnie z pkt. 5.3.2 normy PN-B-03264:2002 przez zwiększenie mimośrodu początkowego e_0 do wartości e_{tot} wyznaczanej ze wzoru: $e_{tot}=\eta \cdot e_0$

230.1.8. Sprawdzanie nośności

Rozpatrywany przekrój został podzielony na wysokości na skończoną liczbę warstw. Zbrojenie jest traktowane jako odrębna warstwa o znanym położeniu i znanym polu przekroju. Sprawdzanie nośności sprowadza się do zbadania, czy siły wewnętrzne w przekroju, policzone z uwzględnieniem wpływu mimośrodu niezamierzonego i smukłości słupa, umieszczone na wykresie (M_z;N) i ewentualnie, w przypadku dwukierunkowego

mimośrodowego ściskania, na wykresach (M_x; N) oraz ($\frac{M_{Sdx}}{M_{Rdx}}$; $\frac{M_{Sdy}}{M_{Rdy}}$) znajdują się wewnątrz

obwiedni nośności przekroju.

Tok obliczeń jest następujący:

przyjęcie jako danego odkształcenia w jednym z włókien przekroju betonowego, tak by osiągnięty był jeden ze stanów granicznych odkształcenia:

 ε_{S} = - 0,0100 w zbrojeniu rozciąganym lub

 ϵ_{c} = 0,0035 w skrajnym ściskanym włóknie betonu lub

 ϵ_C = 0,0020 we włóknie betonu odległym o 3/7 h od krawędzi bardziej ściskanej, zaś ściskana była "góra" przekroju;

założenie krzywizny przekroju i określenie odkształceń poszczególnych warstw przekroju; obliczenie siły normalnej N_c i momentu zginającego M_c siły w betonie względem początku układu współrzędnych jako sumy sił normalnych i momentów zginających w poszczególnych warstwach;

obliczenie sił w zbrojeniu $N_{\rm s}$ i momentów zginających tych sił względem początku układu współrzędnych;

wyznaczenie N_{Rd} i M_{Rd} jako sumy odpowiednio sił i momentów tych sił w betonie i zbrojeniu;

powrót do punktu 2 i zmiana krzywizny przekroju, lub, jeśli sprawdzono cały zakres krzywizny dla założonego odkształcenia, powrót do punktu 1 i zmiana tego odkształcenia;

sprawdzenie, czy, dla tego stanu odkształcenia przekroju słupa, dla którego wartość $|_{N_{Sd}-N_{Rd}}|$

osiąga minimum, spełniony jest warunek: $M_{Sd} \le M_{Rd}$; (w.1)

powtórzenie kroków 1 ÷ 7 dla ściskanego "dołu" przekroju; warunek (1) przyjmuje wtedy postać: $M_{\text{sdx}} \ge M_{\text{Rdy}}$; (w.2)

w przypadku dwukierunkowego, mimośrodowego ściskania powtórzenie kroków 1 ÷ 8 dla

drugiego kierunku oraz sprawdzenie warunku: $\left(\frac{M_{Sax}}{M_{Rax}}\right)^{\alpha} + \left(\frac{M_{Sar}}{M_{Ray}}\right)^{\alpha} \le 1$; (w.3)

niespełnienie warunku (w.1) lub (w.2) oznacza, że nośność przekroju jest niewystarczająca ze względu na jednokierunkowe, zaś warunku (w.3) na dwukierunkowe mimośrodowe ściskanie.

230.1.9. Wymiarowanie

Zakłada się, że szukane zbrojenie rozmieszczone jest w postaci wkładek w pobliżu przeciwległych krawędzi przekroju. W celu jego obliczenia stosowany jest poniższy algorytm, przy czym wymiarując przekrój ukośnie mimośrodowo ściskany zbrojenie oblicza się osobno dla obu głównych kierunków, przy założonych dwukrotnie większych niż w rzeczywistości momentach zginających.

Tok obliczeń jest następujący:

przyjęcie jako danego odkształcenia skrajnego ściskanego włókna przekroju z przedziału $\Delta \epsilon$ do 0,0035, gdzie $\Delta \epsilon$ oznacza przyjęty skok odkształcenia;

założenie krzywizny przekroju i określenie odkształceń poszczególnych warstw przekroju;

obliczenie siły normalnej w betonie i momentu zginającego tej siły względem początku układu współrzędnych;

obliczenie przekroju zbrojenia As1 i As2 z równań równowagi sił w przekroju i obciążenia zewnętrznego: $\Sigma N=0$ oraz $\Sigma M=0$;

jeśli As1 i As2 > -0,05 cm2 (z uwagi na określoną dokładność obliczeń) obliczenie Σ As, jeśli As1 lub As2 ≤ -0,05 cm2 przejście do pkt. 6;

powrót do punktu 2 i zmiana krzywizny przekroju, lub, jeśli sprawdzono cały zakres krzywizny dla założonego odkształcenia skrajnego ściskanego włókna przekroju, powrót do punktu 1 i zmiana tego odkształcenia.

Jako wynik zapamiętane jest to zbrojenie A_{s1} i A_{s2} , dla którego $\sum A_s$ osiąga minimum.

230.1.10. Zakres programu

Program wykonuje obliczenia sprawdzania nośności w stanie dwukierunkowego obciążenia dla przekrojów żelbetowych prostokątnych, teowych, dwuteowych, zetowych, kątowych, ceowych, kołowych oraz rurowych. W trybie wymiarowania, w stanie jednokierunkowego ściskania ze zginaniem możliwe jest przeprowadzenie obliczeń dla przekrojów prostokątnych, teowych, dwuteowych, zetowych, kątowych oraz ceowych, zaś w stanie dwukierunkowego mimośrodowego ściskania ze zginaniem dla przekrojów prostokątnych. Program uwzględnia wpływ smukłości słupa poprzez zwiększenie działających momentów obliczeniowych.

230.1.11. Obciążenia

Definiując obciążenia działające na słup możemy zdecydować się na zadawanie sił wewnętrznych w przekroju lub definiowanie obciążeń przyłożonych do całego elementu . Wybranie drugiej z tych opcji pozwala na definiowanie dowolnych typów obciążeń. W zakresie warunków podparcia możliwe jest definiowanie dowolnych typów podparcia słupa, niezależnie w dwóch prostopadłych płaszczyznach.

230.1.12. Zbrojenie

Zbrojenie zadawane jest jako pola przekroju wkładek rozmieszczonych przy każdej krawędzi lub jako określona liczba prętów o założonym położeniu w przekroju i średnicy. W przypadku słupów okrągłych i rurowych rozmieszczenie prętów (w opcji sprawdzania nośności) następuje automatycznie (dla określonej liczby prętów na obwodzie), bądź poprzez podanie współrzędnych w układzie kartezjańskim lub biegunowym.

Sprawdzanie nośności w stanie dwukierunkowego obciążenia może odbywać się dla następujących przekrojów słupów: prostokątne, teowe, dwuteowe, zetowe, kątowe, okrągłe, rurowe. Wymiarowanie, czyli automatyczny dobór zbrojenia w czterech charakterystycznych punktach słupa (podpora dolna, podpora górna, maksymalny moment w płaszczyźnie xy, maksymalny moment w płaszczyźnie yz) odbywa się: dla dwukierunkowego stanu obciążenia – dla przekroju prostokątnego.

230.1.13. Układ współrzędnych

W programie założono dwa układy współrzędnych: globalny (w przypadku definiowania parametrów globalnych dla całego elementu) oraz lokalny (w przypadku definiowania parametrów przekroju). Podczas wprowadzania danych są umieszczane odpowiednie rysunki przedstawiające kierunki założonych osi. Zadawanie danych zgodnie z lokalnym układem

współrzędnych zostało zastosowane tylko w przypadku definiowania istniejącego zbrojenia w przekroju (sprawdzanie nośności), w celu ułatwienia wprowadzenia położenia prętów.

230.2. Wprowadzenie danych

Nawiasy klamrowe używane poniżej oznaczają, że parametr bądź wielkość w nich zawarta jest:

[...] jednostką w jakiej podawana jest poszczególna wielkość,

< > parametrem opcjonalnym, tj. takim, który w pewnych sytuacjach może nie występować,

{...} zakresem w jakim występuje dana wielkość.

Głównym oknem do wprowadzania danych w module słup żelbetowy jest okno dialogowe *Słup żelbetowy* składające się z szeregu zakładek: Parametry ogólne, Wymiary, Warunki Podparcia, Obciążenia , Warunki zamocowania, Zbrojenie, Obw. M-N.

Aby Włączyć/wyłączyć okno dialogowe *Słup żelbetowy* Naciśnij przycisk , lub z menu **Widok** wybierz polecenie **Okno elementy projektu.**

230.2.2. Zakładka: Dane ogólne

Słup żelbetowy	• • • INTERsoft
Dane ogólne Wymiary i obciążenia	Camocowanie i podparcie Zbrojenie Obw. M-N
Obliczenia: © Sprawdzanie nośności	C Wymiarowanie
Zagadnienia: Ściskanie :	z dwukierunkowym zginaniem
Element © Zewnętrzny	C Wewnętrzny
Typ przekroju:	OOELI
Materiał: Stał zbrojeniowa: Klasa: StoS ▼ Ε uk = 100 ‰	Beton: Klasa: B25 V Wiek betonu w chwili obciążenia: 28 dni V
Obciążenia C Siły wewnętrzne w przekroju.	Obciążenia przyłożone do słupa.

Umożliwia określenie Parametrów ogólnych projektu, takich jak: typ prowadzonych obliczeń, zagadnienia, typ przekroju słupa, materiał, rodzaj obciążeń działających na słup.

Zakładka Dane ogólne zawiera pola:

Obliczenia

Sprawdzanie nośności	[-]	Tryb sprawdzania nośności.
Wymiarowanie	[-]	Tryb wymiarowania.

[-]

Typ przekroju

Przekrój prostokątny.

T	[-]	Przekrój teowy.	
T	[-]	Przekrój dwuteowy.	
0	[-]	Przekrój kołowy.	
0	[-]	Przekrój rurowy.	
	[-]	Przekrój ceowy.	
6	[-]	Przekrój kątowy.	
TL.	[-]	Przekrój zetowy.	
Materiał			
Stal zbrojeniowa	[-]	Klasa stali zbrojeniowej	{St0S-b, St3SX-b, St3SY-b, St3S-b, PB240, St50B, 18G2-b, 20G2Y-b, 25G2S, 35G2Y, 34GS, RB400, 20G2VY-b, RB500, RB500W}
ϵ_{uk}	[‰]	Wartość charakterystyczna odkształcenia stali odpo- wiadająca maksymalnej sile zrywającej.	
Beton	[-]	Klasa betonu	{B15, B20, B25, B30, B37, B45, B50, B55, B60, B70}
Wiek betonu w chwili obciążenia	[dzień]		{7,14,28,90}
Obciążenia			
Siły wewnętrzne w przekroju	[-]	Obliczenia będą przeprowadzane dla konkretnych, zadanych wartości sił wewnętrznych. Zadawane sa wówczas	
Obciążenia przyłożone do słupa	[-]	dowolne obciążenia przyłożone do słupa. Przeprowadzana jest pełna analiza statyczna elementu.	

یر پیر آ انہو	beff beff beff beff beff beff beff beff h' =	40 c 40 c 0 c 0 c	rm h'f= rm hf= rm beff: rm beff1	0 0 = 0 = 0	cm cm cm	wysoko: Lcol = 0tulina: - a = <u>Nsdd</u> =	4.5 m 3 cm
	rodzaj	P1	P2	а	b	gr.ob	płasz.
1	siła pionowa	800.000	0.000	0.000	4.500	1	YoZ
2	równomierne	6.000	0.000	0.000	4.500	1	YoZ
Uwzględnij ciężar własny 🔽 Dodaj Usuń							

230.2.3. Zakładka: Wymiary i obciążenia

Zakładka wymiary służy do wprowadzania informacji o danych geometrycznych słupa.

Zakładka Wymiary i obciążenia zawiera pola:

230.2.3.1.Wymiary

Wymiary		
h	[cm]	Wysokość przekroju.
b _w	[cm]	Szerokość środnika.
		Całkowita szerokość półki górnej
b` _{eff}	[cm]	przekroju teowego lub szerokość
		przekroju prostokątnego.
b`	[cm]	Szerokość lewej części górnej półki
	[em]	wystającej poza środnik.
h`	[cm]	Srednica wewnętrzna przekroju
b `	[]	rurowego.
Π _f	[cm]	Wysokość dolnoj półki.
l I _f	[CIII]	Colkowite ozorokość półki dolpoj
h	[cm]	przekroju teowego lub szerokość
Deff	loui	przekroju prostokatnego
		Szerokość lewej cześci górnej półki
b _{eff1}	[cm]	wystającej pozą środnik.
		nyolającoj poza oroanna
Otulina		
		Otulina
а	[cm]	odległość od środka ciężkości zbrojenia
		do krawędzi przekroju.
Wysokość słupa		
		Wysokość
L _{col}	[m]	słupa odległość między punktami
		podparcia słupa.

Wpływ obciążeń długotrwałych

	•	-	•		
N/ N.			[_]	Stosunek obciążen długotrwałych do	[0 1]
NSdd/ NSd			[-]	obciążeń obliczeniowych	[01]

Pole obciążenia służy do wprowadzania informacji o obciążeniach działających na słup. W zależności od wybranej opcji "Siły wewnętrzne w przekroju" lub "Obciążenia przyłożone do słupa" w zakładce: "Dane ogólne" mamy dwa różne widoki tej samej zakładki.

230.2.3.2.Siły wewnętrzne w przekroju

Zakładka Obciążenia zawiera pola: Siła ściskająca				
N _{sd}	[kN]	Osiowa siła ściskająca.		
Momenty zginające				
MY	[kNm]	Moment zginający w płaszczyźnie yz.		
M _X	[kNm]	Moment zginający w płaszczyźnie xy.		

230.2.3.3.Obciążenia przyłożone do słupa

Zakładka zawiera pola:

Rodza	i
Itouru	J

równomierne	[kN/m]	Obciążenie równomiernie rozłożone działające na odcinku (b – a) o wartości P1. Obciażenie rozłożone trapezowe
trapezowe	[kN/m]	działające na odcinku (b – a) o wartości początkowej P1 i końcowej P2.
siła skupiona pionowa	[kN]	Osiowa siła ściskająca przyłożona w górnym węźle słupa.
siła skupiona pozioma	[kN]	Siła skupiona działająca w odległości b od początku układu (spodu słupa).
moment skupiony	[kNm]	Moment skupiony działający w odległości b od początku układu (spodu słupa).
P1		
P1	[kN] lub [kNm] lub [kN/m]	Wartość obciążenia, w przypadku obciążeń rozłożonych jest to początkowa wartość obciążenia.
P2		
<p2></p2>	[kN] lub [kNm] lub [kN/m]	W przypadku obciążeń rozłożonych jest to końcowa wartość obciążenia.
а		
<a>	[m]	Odległość początku przyłożenia obciążenia rozłożonego od początku układu (spodu słupa)

b			
В	[m]	Odległość przyłożenia obciążenia skupionego lub końca obciążenia rozłożonego od początku układu (spodu słupa).	
gr. ob.			
Gr. ob.	[-]	Grupa obciążeń umożliwia przypisanie danego typu obciążenia do odpowiedniej grupy obciążeń.	
płasz.			
płasz.	[-]	Płaszczyzna pozwala zdefiniować płaszczyznę działania obciążenia.	{YoZ, YoX}
Dodaj		Umożliwia zdefiniować kolejny typ obciążenia.	
Usuń		Umożliwia usunięcie poszczególnych typów obciążenia.	

Usuwanie danych:

Aby usunąć obciążenie należy:

- a) Zaznaczyć obciążenie klikając na przycisku 1 dla pierwszego obciążenia , 2 dla drugiego obciążenia itp.
- b) Kliknąć na przycisku Usuń
- C)
- d)

Wprowadzanie danych:

Aby dodać nowe obciążenie klikamy na przycisku Dodaj . Aby wybrać odpowiedni rodzaj obciążenia należy kliknąć na równomieme wówczas element ten zmieni się na rodzojami naciskając strzałkę z rozwijamy listę z doztonych i policitanja

z dostępnymi rodzajami obciążenia.

rodzaj			
siła pionowa 📃 💌			
równomierne			
trapezowe			
sita pionowa			
sita poziorna			
moment			

Wybieramy klikając na odpowiednim elemencie z listy.

Aby wprowadzić pozostałe elementy należy:

- e) Uaktywnić dany element przez kliknięcie myszką.
- f) Wprowadzić wartość.
- g) Zaakceptować wprowadzoną wartość naciskając klawisz Enter na klawiaturze.

Uwaga: Pola wypukłe **DODD** nie mogą być edytowane.

Słup żelbetowy • • • INTERsoft
Dane ogólne Wymiary i obciążenia Zamocowanie i podparcie Zbrojenie Obw. M-N
Długość wyboczeniowa: Zamocowania: Rodzaj słupa: C Dana długość wyboczeniowa C W stopie C Monolityczny O Dbliczana długość wyboczeniowa Inne Prefabrykowany
Płaszczyzna YoZ Płaszczyzna YoX Współczynnik wyboczenia w płaszcz. YoZ: 1 Płygle pociome Jrl (cm ⁴) Lcl (m) Jrp (cm ⁴) Lcp (m) na dole 1 1 1 1 1 na górze 1 1 1 1
Dane słupów Jcol [cm ⁴] Lcol[m] na dole 1 1 w górze 1 1

230.2.4. Zakładka: Zamocowanie i podparcie

230.2.4.1. Zamocowanie

W tych polach definiujemy dane dotyczące warunków zamocowania słupów, potrzebne do obliczenia długości wyboczeniowych słupów żelbetowych wg PN-B-03264:2004. Pole Zamocowanie jest aktywne tylko dla wybranej, w Zakładce: "Dane ogólne", opcji "Obciążenia przyłożone do słupa". W przypadku, gdy długości wyboczeniowe są znane lub w Zakładce: "Dane ogólne" zaznaczymy "Siły wewnętrzne w przekroju", w polu współczynnik wyboczenia wpisujemy jedynie wartości współczynników długości wyboczeniowych oraz wypełniamy aktywne pola.

Długość wyboczeniowa

Dana długość wyboczeniowa Obliczana długość wyboczeniowa	[-] [-]	Należy wówczas podać współczynnik wyboczeniowy słupa. Możliwość obliczenia długości wyboczeniowej wg PN.
<zamocowania></zamocowania>		
Zamocowanie w stopie	[-]	Rozpatrywany słup żelbetowy jest utwierdzony w żelbetowej stopie fundamentowei.
inne	[-]	Obliczanie sztywności węzła dolnego.
Typ słupa		
Słup monolityczny	[-]	Rozpatrywany słup jest wykonany jako monolityczny.
Słup prefabrykowany	[-]	Rozpatrywany słup prefabrykowany.
Nr kondygnacji od góry		
n	[-]	Numer kondygnacji, na której znajduje się rozpatrywany słup, licząc od góry.

Parametry zadawane oddzielnie dla płaszczyzny YoZ i YoX

<Współczynnik wyboczenia w płaszczyźnie>

YoZ/YoX [-] Współczynnik wyboczenia w płaszcz.

<Parametry dotyczące elementów dochodzących do węzła dolnego i górnego słupa>

Jrl na dole	[cm ⁴]	Moment bezwładności rygla dochodzącego do słupa z lewej strony dologo wozła
Jrl na górze	[cm ⁴]	Moment bezwładności rygla dochodzącego do słupa z lewej strony górnego wezła
Lcl na dole	[m]	Długość rygla dochodzącego do słupa z lewej strony dolnego węzła.
Lcl na górze	[m]	Długość rygla dochodzącego do słupa z lewej strony górnego węzła.
Jrp na dole	[cm ⁴]	Moment bezwładnosci rygla dochodzącego do słupa z prawej strony dolnego wezła.
Jrp na górze	[cm ⁴]	Moment bezwładności rygla dochodzącego do słupa z prawej strony górnego wezła.
Lcp na dole	[m]	Długość rygla dochodzącego do słupa z prawej strony dolnego węzła.
Lcp na górze	[m]	Długość rygla dochodzącego do słupa z prawej strony górnego węzła.
Jcol na dole	[cm ⁴]	Moment bezwładności słupa dochodzącego do dolnego węzła.
Jcol na górze	[cm ⁴]	Moment bezwładności słupa dochodzącego do górnego węzła.
Lcol na dole	[m]	Długość słupa dochodzącego do dolnego węzła.
Lcol na górze	[m]	Długość słupa dochodzącego do górnego węzła.
Przegub górą	[-]	Rozpatrywany słup posiada na górze przegub.
Węzły przesuwne	[-]	Rozpatrywana konstrukcja posiada węzły przesuwne.

230.2.4.2. Podparcie

Pole Podparcie umożliwia zdefiniowanie warunków podparcia słupa w osiach: YoZ, XoY. Pole Podparcie jest aktywne tylko dla wybranej, w Zakładce: "Dane ogólne", opcji "Obciążenia przyłożone do słupa". Istnieje wówczas możliwość zdefiniowania, dla dwóch prostopadłych kierunków warunków podparcia słupa. Obliczenia statyczne zostaną przeprowadzone osobno dla obydwu płaszczyzn.

Możliwe warunki Podparcia zdefiniowane w programie Konstruktor:

230.2.5. Zakładka: Zbrojenie

Słup :	żelbetowy	• • • INTE	Rsoft
Dane	ogólne Wymiary i obciążeni	a Zamocowanie i podparcie	Zbrojenie Obw. M-N
Roz	łożenie prętów	Układ współrzędn	ych
0	równomierne 💿 nierówno	nierne 💽 kartezjański	C biegunowy
Nr	Współrzędna R[cm]	Współrzędna S[cm]	Średnica [mm]
Krea	tor rozłożenia prętów Do	idaj Edytuj U	suń Usuń wszystkie

Zakładka Zbrojenie służy do wprowadzania informacji o zbrojeniu słupa. Jest ona aktywna tylko, gdy w zakładce Dane ogólne zaznaczymy pole Sprawdzanie nośności. Dla opcji Wymiarowanie, na zakładce pojawiają się informacje o dobranych automatycznie prętach, bez możliwości edycji.

Zakładka **Zbrojenie** zawiera pola:

[-]

<Rozłożenie prętów>

Równomierne

Opcja umożliwia równomierne rozłożenie

Nierównomierne	[-]	prętów w przekroju prostokątnym lub rurowym. Opcja umożliwia definiowanie położenia prętów podając współrzędne w układzie biegunowym lub kartezjańskim.
<układ td="" współrzędnych:<=""><td>></td><td></td></układ>	>	
Kartezjański	[-]	Definiowanie położenia prętów w lokalnym układzie kartezjańskim.
Biegunowy	[-]	Definiowanie położenia prętów w lokalnym układzie biegunowym.
<edycja położenia="" pręt<="" td=""><td>a w ukła</td><td>adzie kartezjańskim lub biegunowym></td></edycja>	a w ukła	adzie kartezjańskim lub biegunowym>
Nr	[-]	Oznacza numer definiowanych prętów. Współrzedna r środka definiowanego preta
Wsp.[r]	[cm]	w lokalným układzie współrzędnych. kartezjańskim zaczepionym w środku
Wsp.[s]	[cm]	Wysokości przekrojów. Współrzędna s środka definiowanego pręta w lokalnym układzie współrzędnych kartezjańskim zaczepionym w środku wysokości przekrojów.
[R]	[cm]	Oznacza odległość środka pręta od środka lokalnego układu współrzędnych zaczepionego w środku przekroju kołowego lub rurowego
Alfa Średnica Definiuj pręty	[deg] [mm]	Oznacza kąt pomiędzy osią x, a promieniem r. Definiowanie średnicy poszczególnych prętów. Pozwala zdefiniować pręty równomiernie
równomierne	[-]	rozłożone w przekroju kołowym lub rurowym.
Definiuj	[-]	Pozwala zdefiniować pręty nierownomiernie rozłożone w przekroju.
Edytuj	[-]	Pozwala edytować zdefiniowane pręty rozłożone nierównomiernie.
Usuń	[-]	Usuwa zdefiniowane pręty rozłożone nierównomiernie.
Usuń wszystkie	[-]	Usuwa wszystkie zadane pręty.

Uwaga: W programie pręty zbrojeniowe wprowadzane są w lokalnym układzie współrzędnych r,s, którego środek jest zaczepiony w środku wysokości przekroju.

230.2.5.1.Dodawanie nowego pręta.

Aby dodać nowy pręt klikamy na przycisku Dodaj . Pojawi się okno dialogowe "Edycja pręta", w którym wprowadzamy: Współrzędną r,s, Średnicę pręta. Swój wybór akceptujemy klawiszem OK.

Edycja pręta			×
	Dane: Liczba prętów : Współrzędna r: Współrzędna s: Średnica :	1 27 -13 12	szt. cm cm mm
	OK	An	uluj

Kreator rozłożenia prętów

Jeżeli w oknie Dane ogólne zostanie wybrana opcja Sprawdzanie nożności oraz przekrój pręta prostokątny program umożliwi skorzystanie z kreatora rozłożenia prętów. Opcja ta umożliwia w sposób szybki wprowadzić pręty do przekroju. Na wstępie definiujemy przekrój pręta, a następnie ilości prętów na poszczególnych krawędziach przekroju słupa.

Kreator prętów	×
Średnica [10 - 40] : – Ilość prętów na bo	16 mm oku [szt.]
lewym	4
prawym	4
górnym	4
dolnym	
ОК	Anuluj

230.2.5.2. Edycja pręta.

Aby edytować aktualnie zaznaczony pręt naciśnij przycisk Pojawi się okno dialogowe "Edycja pręta", w którym wprowadzamy zmiany we: Współrzędnych r,s, Średnicy pręta. Swój wybór akceptujemy klawiszem Ok.

1

230.2.5.3. Usuwanie pręta.

Aby usunąć aktualnie zaznaczony pręt naciśr	Usuń	
Aby usunać wszystkie prety naciśnii przycisk	Usuń wszystkie	

230.2.5.4.Zaznaczanie pręta.

Aby zaznaczyć dowolny pręt kliknij na dowolnym polu należącym do pręta (Współrzędna r,s, Średnica pręta).

Mz-N	[-]	Powoduje włączenie obwiedni nosności dla płaszczyzny YoZ.	
Mx-N	[-]	Powoduje włączenie obwiedni nośności dla płaszczyzny XoY.	
Nośność XY	[-]	Powoduje włączenie wyników sprawdzenia nośności dla ściskania z dwukierunkowym zginaniem.	
alfa	[-]	Współczynnik uwzględniający dwukierunkowość zginania przekroju, wartość domyślna α=1 jest wartością zawsze po stronie bezpiecznej.	{12}
		Minimalna wartość momentu zginającego,	

M _{RdZmin}	[kNm]	jaka może zostać przeniesiona przez przekrój w danej płaszczyźnie. Maksymalna wartość momentu
M _{RdZmax}	[kNm]	zginającego, jaka może zostać przeniesiona przez przekrój w danej płaszczyźnie.
N _{Rdmin}	[kN]	Minimalna wartość siły normalnej, jaka może zostać przeniesiona przez przekrój.
N _{Rdmax}	[kN]	Maksymalna wartość siły normalnej, jaka może zostać przeniesiona przez przekrój.
Ν	[kN]	Współrzędna pozioma obwiedni nośności.
Μ	[kNm]	Współrzędna pionowa obwiedni nośności.
[1] (na wykresie obwiedni)	[-]	Układ sił wewnętrznych z uwzględnieniem wpływu smukłości na podporze górnej
[2] (na wykresie obwiedni)	[-]	Układ sił wewnętrznych z uwzględnieniem wpływu smukłości na podporze dolnej
[3] (na wykresie obwiedni)	[-]	Układ sił wewnętrznych z uwzględnieniem wpływu smukłości na odcinku środkowym gdzie Mz osiąga maksimum
[4] (na wykresie obwiedni)	[-]	Układ sił wewnętrznych z uwzględnieniem wpływu smukłości na odcinku środkowym gdzie Mx osiąga maksimum

230.3. Widok 3D

Aby włączyć/wyłączyć okno widoku 3D należy wcisnąć przycisk 🗐, lub z menu Widok wybrać polecenie Widok 3D.

Okno 3D pozwala na przestrzenną wizualizację wprowadzonego słupa. Poruszanie myszką przy wciśniętym lewym przycisku pozwala na dowolne obracanie konstrukcji w przestrzeni, natomiast przesuwanie myszki przy wciśniętym prawym klawiszu powoduje zbliżanie i oddalanie konstrukcji.

230.4. Drzewo projektu

Drzewo projektu umożliwia szybki dostęp do wprowadzanych danych w czasie pracy z programem. Dwukrotne kliknięcie na polu oznaczającym określoną wartość w drzewie projektu powoduje automatyczne przeniesienie kursora do odpowiadającej tej wartości zakładki w głównym oknie wprowadzania danych. W przypadku przekazywania danych do wymiarowania z modułu Rama 2D do programu Słup żelbetowy, okno wykorzystywane jest do przeciągania danych z "Wyników do wymiarowania" do modułu wymiarującego słup. Podwójne kliknięcie pola oznaczającego konkretną wartość powoduje automatyczne przejście do edycji danych. Zaznaczenie danego elementu pojedynczym kliknięciem i naciśnięcie klawisza Delete powoduje usunięcie danego elementu (jeśli dany element można usunąć).

230.5. Obliczenia i konfiguracja raportów

Aby wykonać obliczenia aktualnego elementu z projektu należy wykonać jedną z poniższych czynności:

- Z menu Elementy wybrać polecenie Rozpocznij obliczenia.
- Nacisnąć przycisk Rozpocznij obliczenia.

Po wywołaniu funkcji "obliczenia" na ekranie pojawia się okno "Konfiguracja raportu", w którym możemy zdecydować jakie dane i wyniki ma zawierać raport.

ĸ	onfiguracja raportu 🗙		
	Dołącz wybrane elementy		
	Parametry ogólne 🔽 Obciążenia 🔽		
	Dane Geometryczne 🔽 Zbrojenie 🔲		
	Wyniki obliczeń 🔽		
	Wybierz obwiednię		
	Nmax, M odpowiadające		
	C Nmin, M odpowiadajace		
	C Mmax, N odpowiadające		
	C Mmin, N odpowiadajace		
	OK Anuluj		

Pole "Wybierz obwiednię" jest aktywne tylko w przypadku współpracy z programem Rama 2D. Po przekazaniu danych i wyników obliczeń statycznych z programu Rama 2D do programu Słup żelbetowy, a następnie uruchomieniu obliczeń na ekranie pojawi się okno "Konfiguracja raportu", gdzie dodatkowo możemy zdecydować, dla której z obwiedni zostaną przeprowadzone obliczenia. Funkcja wyboru obwiedni dotyczy wyłącznie trybu "Wymiarowanie".

230.6. Wyniki

W wyniku przeprowadzanych obliczeń program informuje nas o nośności elementu lub wymaganym zbrojeniu - w zależności od wybranego trybu obliczeń (sprawdzanie nośności lub wymiarowanie). Wyniki podzielone są na następujące działy: Parametry ogólne Dane geometryczne Obciążenia Obliczenia siły wewnętrzne bez uwzględnienia wpływu smukłości siły wewnętrzne z uwzględnieniem wpływu smukłości wyniki obliczeń

230.7. Literatura

[1] PN-B-03264:2002 "Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie."

[2] Eurokod 2 "Projektowanie konstrukcji z betonu", Projekt PN-ENV 1992-1-1:1991, Instytut Techniki Budowlanej, Warszawa 1992

[3] NS 3473 E: 1992 "Concrete structures. Design rules", Norwegian Council for Building Standardization, 4th edition, Nov. 1992

[4] Maria Ewa Kamińska "Doświadczalne badania żelbetowych słupów ukośnie mimośrodowo ściskanych" Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa, Architektury i Inżynierii Środowiska Politechniki Łódzkiej, Łódź 1995

230.8. Przykład 1 – Sprawdzanie nośności

Sprawdzić nośność słupa żelbetowego monolitycznego o przekroju dwuteowym, wysokości 5m oraz zadanym zbrojeniu w stanie dwukierunkowego ściskania ze zginaniem. Wymiary przekroju, sposób obciążenia, dane materiałowe, zbrojenie oraz schemat statyczny słupa należy przyjąć zgodnie z danymi podanymi poniżej. Schemat statyczny słupa należy przyjąć jako pręt obustronnie utwierdzony w obu płaszczyznach.

230.8.1. Dane wejściowe

Materiał Beton: B25 Stal zbroieniowa: 18G2-b Sposób wykonania: Słup monolityczny Wymiary przekroju Beff Ьω Deff h 0.60 m _ hw 0.20 m = beff 0.60 m = b'eff 0.60 m _ hf 0.20 m _ h`f 0.20 m = beff1 0.20 m _ b`eff1 0.20 m _ Wysokość słupa Lcol 5.00 m

Dane do obliczenia długości wyboczenia

Zakładamy, że rozpatrywany słup jest połączony monolitycznie u góry i u dołu z ryglami poziomymi o przekroju prostokątnym 30x60 cm i rozpiętości 6m oraz od dołu i od góry dochodzą do niego słupy żelbetowe o wymiarach 30x30 i wysokości 6m. Dla takiego układu możemy, zgodnie z PN-B-03264:2002 obliczyć długość wyboczeniową słupa żelbetowego. Jako parametry opisujące elementy dochodzące do rozpatrywanego słupa należy wprowadzić dane w postaci momentów bezwładności oraz rozpiętości poszczególnych elementów. Rozpatrywany słup znajduje się na drugiej kondygnacji licząc od góry.

Zbrojenie

Przekrój zbrojony jest 8 prętami o przekroju 12mm rozmieszczonymi w obu półkach dwuteownika. Przyjęto otulinę 3 cm.

Obciążenia

Do słupa przyłożone są następujące obciążenia

Siła normalna (pionowa) o wartości 300 kN oraz:

W płaszczyźnie YoZ:

obciążenie równomiernie rozłożone na całej wysokości słupa o wartości 10 kN/m siła skupiona pozioma na wysokości 3 m o wartości 3,5 kN

W płaszczyźnie YoX:

obciążenie równomiernie rozłożone na całej wysokości słupa o wartości 5 kN/m obciążenie równomiernie rozłożone trójkątne na wysokości od 2 do 4m o wartości od 0 do 2 kN/m.

230.8.2. Wprowadzanie Projektu do Programu Konstruktor.

Aby wprowadzić wyżej wymienione dane do projektu w programie Konstruktor należy:

1. Uruchomić program Konstruktor.

2. Utworzyć nowy Projekt.

Po uruchomieniu programu Konstruktor można stworzyć nowy projekt zaznaczając opcję **Nowy projekt** w oknie Konstruktor, a następnie klikając na przycisk **OK**.

Konstruktor 4.0
Intersoft 4.0
Licencja dla:
INTERsoft
Zarządzanie projektami
OK Anuluj
Lista ostatnio otwartych projektów
D:\INTER\Projekty\Konstruktor\Projekt Hali Żelbetowej\Projekt Hali Ż D:\INTER\Projekty\Konstruktor\TEST\TEST.wrk D:\INTER\Projekty\Konstruktor\dfs\dfs.wrk

3. Wypełnić Pola informacyjne.

Nowy proje	kt 🛛 🔀
	Ścieżka dostępu
	D:\EXE_REL
	Nazwa projektu
A	Przykład 1
	Autor projektu
	Jan Kowalski
41.83	
	Opis
	Sprawdzenie nośności 📃
	OK Anuluj

W oknie tym należy wypełnić pola:

Ścieżka dostępu – informuje gdzie ma być zapisany nasz projekt.

Zmianę ścieżki dostępu wykonujemy klikając na . Program wyświetli standardowe okno dialogowe "Przeglądaj w poszukiwaniu folderu".

Nazwa projektu – Nazwa pod jaką będzie zapisany projekt, oraz jaka będzie widoczna na wydrukach (np.:"Przykład1").

Autor projektu – Osoba odpowiedzialna za realizację projektu, oraz która będzie widniała na wydrukach (np.:"Jan Kowalski").

Opis- Komentarz jaki będzie umieszczony na wydrukach (np.: "Sprawdzenie nośności"). Po wypełnieniu wszystkich pól należy kliknąć przycisk **OK.**

Yprowadź	nowy element	2
	Typy elementów	
	 010 Obciążenia 110 Rama 2D 110 Balka żelbetowa 230 Stup żelbetowy 255 Fundamenty bezpośrednie 260 Sciana oporowa kątowa 270 Schody płytowe żelbetowe 410 Belka stałowa 411 Płatew stałowa 412 Blachownica stałowa 430 Słup stałowy 430 Słup stałowy 430 Słup stałowy 430 Słup stałowy 470 Połączenia doczołowe 650 Wiązary dachowe drewniane 710 Przenikanic ciepła 720 Zapotrzebowanie ciepła i termomodernizacj 810 Grups fundamentów 	
	Nazwa elementu	
Słup nr		
	ΟΚ Αρυμί	

Aby dodać element słup klikamy myszką w oknie Typy elementów na elemencie **Słup**, wpisujemy nazwę elementu słup w polu Nazwa elementu (np.:"Słup nr 1"). Akceptujemy swój wybór klikając na klawisz OK.

5. Wprowadzić Dane ogólne.

Uaktywniamy okno dialogowe Słup żelbetowy.

Słup żelbetowy • • • • MT	ERsoft
Dane ogólne Wymiary i obciążenia Zamocowanie i podparcie	Zbrojenie Obw. M-N
Obliczenia: © Sprawdzanie nośności	C Wymiarowanie
Zagadnienia: Ściskanie z dwukierunkowym zginanier	n
Element:	O Wewnętrzny
Typ przekroju:	LI
Materiał: Stal zbrojeniowa: Klasa: 1862 ▼ E uk = 100 ‰ Wiek betonu w chwili obci	B25 💌 qżenia: 28 dni 💌
Obciążenia C Siły wewnętrzne w przekroju. C Obciążen	ia przyłożone do słupa.

W zakładce Dane ogólne (patrz 230.2.2) w polu Obliczenia wybieramy opcję Sprawdzanie nośności.

4. Dodać nowy element do projektu.

W polu Zagadnienia wybieram opcję Ściskanie z dwukierunkowym zginaniem.

W polu Typ przekroju wybieramy opcję (dwuteowy). W polu Materiał, Stal zbrojeniowa, Klasa wybieramy z listy rozwijanej opcję **18G2**. W polu Materiał, Beton, klasa wybieramy z listy rozwijanej opcję **B25**. W polu Obciążenia wybieramy opcję **Obciążenia przyłożone do słupa**.

6. Wprowadzić Wymiary i obciążenia.

W zakładce Wymiary i obciążenia (patrz 230.2.3): wprowadzamy następujące wartości

h	1		=	60 cm			
b	w		=	20 cm			
b	eff		=	60 cm			
b	'eff	1	=	60 cm			
h	f		=	20 cm			
h	ì f		=	20 cm			
b	eff	1	=	20 cm			
b)`ef	f1	=	20 cm			
а	I		=	3 cm			
L	.col		=	5 m			
Aby	wp	rowadzić podane obo	ciążenia:				
n	r	typ	P1	P2	a[m]	b[m]	płaszczyzna
1		siła pionowa	300	0.00	0.00	5.00	YoZ
2		równomierne	10	0.00	0.00	5.00	YoZ
3		równomierne	5.00	0.00	0.00	5.00	YoX
4		siła pozioma	3.50	0.00	0.00	3.00	YoZ
5		trapezowe	2.00	0.00	2.00	4.00	YoX

Uaktywniamy zakładkę Obciążenia (**patrz** Błąd! Nie można odnaleźć źródła odwołania.). Naciskamy klawisz **Dodaj** aby dodać nowe obciążenie.

Z listy rozwijanej Rodzaj obciążenia wybieramy: Siła pionowa.

Wprowadzamy wielkość P1=300 [KN]

Postępując analogicznie wprowadzamy pozostałe obciążenia.

7. Wprowadzić Warunki zamocowania i podparcia

Dane ogólne Wymiary i obciązenia Zamocowanie i podparcie Zbrojenie Dbw. M-N Długość wyboczeniowa: C W stopie Rodzaj słupa: C Dana długość wyboczeniowa C W stopie Monolityczny O Dbliczana długość wyboczeniowa C W stopie Prefabrykowany Nr. kondygnacji od góty n = 2 Płaszczyzna YoZ Płaszczyzna YoX Współczynnik wyboczenia w płaszcz. YoZ: 1 Rygle poziome Jri (cm [*] 4) Lcl [m] Joan słupów 540000 6 Joan słupów Joan słupów Przegub górą Joan słupów Jcol (cm [*] 4) Lco [m] Joan słupów G Węzły przesuwne Joan słupów 6 57500	Słup żelbetowy	• • • INTERsoft
Długość wyboczeniowa: Zamocowania: Rodzaj słupa: Dana długość wyboczeniowa W stopie Monolityczny Dbliczana długość wyboczeniowa Inne Prefabrykowany Nr. kondygnacji od góry n = 2 Płaszczyzna YoZ Płaszczyzna YoZ Współczynnik wyboczenia w płaszcz. YoZ: 1 Rygle poziome Jrli cm^4] Jrli cm^4] Lcl [m] Jrp. na dole 540000 6 Jcol cm^4] Lcol [m] Przegub górą na dole 67500 6 Węzły przesuwne Jre	Dane ogólne Wymiary i obciążenia	Zamocowanie i podparcie Zbrojenie Obw. M-N
Płaszczyzna YoZ Płaszczyzna YoX Współczynnik wyboczenia w płaszcz. YoZ: 1 Rygle poziome 1 na dole 540000 6 540000 0a górze 540000 0a słupów 1 1 col [cm ⁴] 1 col [cm ⁴] 1 col 6 1 col 540000 6 540000 6 540000 6 540000 9 1 1 col [cm ⁴] 1 col [cm ⁴] <td>Długość wyboczeniowa: C Dana długość wyboczeniowa C Obliczana długość wyboczenie Nr. kondvgnacji od góry n = 2</td> <td>Zamocowania: C W stopie C Inne Rodzaj słupa: Monolityczny C Prefabrykowany</td>	Długość wyboczeniowa: C Dana długość wyboczeniowa C Obliczana długość wyboczenie Nr. kondvgnacji od góry n = 2	Zamocowania: C W stopie C Inne Rodzaj słupa: Monolityczny C Prefabrykowany
rygle pozione Jrl [cm ² 4] Lcl [m] Jrp [cm ² 4] Lcp [m] na dole 540000 6 sgórze 540000 6 Dane słupów Jcol [cm ² 4] Lcol [m] na dole 67500 6 na górze 67500 6	Płaszczyzna YoZ Płaszczyzna Y Współczynnik wyboczenia w pła	rox szcz. YoZ: 1
Dane słupów Jcol [cm [^] 4] Lcol[m] □ Przegub górą na dole 67500 6 na górze 67500 6	Hygie pozione Jrl [cm^4] Lcl [na dole 540000 6 6 na górze 540000 6 6	m] Jrp [cm ⁴] Lcp [m] 540000 6 540000 6
	Dane słupów Jcol [cm^4] Lcol na dole [67500 6 na górze [67500 6	[m] □ Przegub górą ↓ ₩ęzły przesuwne ↓

Uaktywniamy zakładkę Warunki zamocowania (**patrz** Błąd! Nie można odnaleźć źródła odwołania.).

W polu Długość wyboczenia zaznaczamy opcję **Obliczana długość wyboczenia**. W polu Zamocowania zaznaczamy opcję **inne**.

Zaznaczamy opcję Słup Monolityczny.

Ponieważ rozpatrywany słup znajduje się na drugiej kondygnacji licząc od góry, w polu "nr kondygnacji od góry" należy wprowadzić wartość n = 2.

Na podstawie danych o elementach dochodzących do węzła dolnego i górnego obliczamy momenty bezwładności rygli poziomych oraz słupów i wprowadzamy do programu,

niezależnie dla płaszczyzny YoZ i YoX (zakładka Płaszczyzna YoZ i zakładka Płaszczyzna YoX)

Zatem zgodnie z oznaczeniami z Błąd! Nie można odnaleźć źródła odwołania. wprowadzamy:

=	540000
=	540000
=	6
=	6
=	540000
=	540000
=	6
=	6
=	67500
=	67500
=	6

Lcol na górze = 6

Oraz zaznaczmy opcję Węzły przesuwne.

8. Wprowadzić Zbrojenie.

Uaktywniamy zakładkę Zbrojenie.

Słup żelbetowy • • • INTERsoft					
Dane	ogólne 🛛 Wymiary i obciążeni	a Zamocowanie i podparcie	Zbrojenie Obw. M-N		
Roz	Rozłożenie prętów Układ współrzędnych				
0	C równomierne C nierównomierne C kartezjański C biegunowy				
Nr	Współrzędna R[cm]	Współrzędna S[cm]	Średnica [mm]		
1	-27.00	27.00	12.00		
2	27.00	27.00	12.00		
3	-27.00	-27.00	12.00		
4	27.00	-27.00	12.00		
5	27.00	13.00	12.00		
6	-27.00	13.00	12.00		
7	27.00	-13.00	12.00		
8	-27.00	-13.00	12.00		
Definiuj pręty równomierne Dodaj Edytuj Usuń Usuń wszystkie					

Aby wprowadzić podane w założeniach zbrojenie:

Wybieramy funkcję "**Dodaj**" poprzez naciśnięcie przycisku <u>Dodaj</u>. Na ekranie pojawi się okno dialogowe "Edycja pręta" służące do wprowadzania prętów w przekroju. Wówczas wprowadzamy kolejno położenie wszystkich prętów zgodnie z danymi poniżej. Podajemy poszczególne parametry takie jak **Współrzędna R, Współrzędna S, Średnica**

Akceptujemy wprowadzone dane klikając na przycisk **OK**.

vv	prowa	dzamy pręty zbrojenia	zgodnie z danymi podanymi ponizej:	
	nr	współrzedna X [cm]	współrzedna Y [cm]	śr

nr	współrzędna X [cm]	współrzędna Y [cm]	średnica [mm]
1	27.00	27.00	12.00
2	-27.00	27.00	12.00
3	27.00	-27.00	12.00
4	-27.00	-27.00	12.00
5	27.00	13.00	12.00
6	-27.00	13.00	12.00
7	27.00	-13.00	12.00
8	-27.00	-13.00	12.00

9. Wykonać Obliczenia.

Aby wykonać obliczenia naciskamy przycisk **Rozpocznij obliczenia** lub z menu **Elementy** wybieramy polecenie **Rozpocznij obliczenia**.

Po wywołaniu funkcji "obliczenia" na ekranie pojawia się okno "Konfiguracja raportu", w którym możemy zdecydować jakie dane i wyniki ma zawierać raport.

K	onfiguracja raportu 🛛 🗶
	Dołącz wybrane elementy
	Parametry ogólne 🔽 Obciążenia 🔽
	Dane Geometryczne 🔽 Zbrojenie 🗖
	Wyniki obliczeń 🔽
	Wybierz obwiednię
	Nmax, M odpowiadajace
	C Nmin, M odpowiadajace
	C Mmax, N odpowiadajace
	C Mmin, N odpowiadajace
	(OK) Anuluj

Po zaakceptowaniu swojego wyboru w oknie "Konfiguracja raportu" przyciskiem **OK**., program Konstruktor wykona wszystkie obliczenia i uruchomi przeglądarkę raportów z nowymi wynikami.

10. Przeglądanie wyników obliczeń.

Korzystanie z "drzewa" danych i wyników projektu pozwala na szybkie przełączanie się między informacjami o różnym charakterze dla całego projektu oraz dla pojedynczego elementu z projektu.

Wskazanie nazwy elementu w "drzewie" powoduje ukazanie w oknie widoku treści danego dokumentu.

Naciśnięcie przycisku **H** Powoduje rozwinięcie drzewa związanego z danym elementem.

230.8.3. Wyniki

Parametry ogólne

ZałożeniaTyp obliczeń:sprawdzanie nośnościZagadnienia:ściskanie z dwukierunkowym
zginaniemTyp przekroju:dwuteowy

Materiał

Beton:	B25
Stal zbrojeniowa:	20G2Y
Słup monolityczny	

Dane geometryczne

Wymiary przekroju

h	[m]	0.60
b _w	[m]	0.20
b _{eff}	[m]	0.60
b' _{eff}	[m]	0.60
h _f	[m]	0.20
h _{pf}	[m]	0.20
b _{eff1}	[m]	0.20
b _{peff1}	[m]	0.20
Otulina	[m]	0.03

Charakterystyki geometryczne przekroju

Pole przekroju		
Ac	[m ²]	0.28
Promień bezwładności		
i[x]	[m]	0.1940
i[Z]	[m]	0.1618
Momenty bezwładności		
J[x]	[m⁴]	0.0105
J[z]	[m⁴]	0.0073
Wysokość słupa		
L _{col}	[m]	5.00
Długość wyboczeniowa - obliczana		
l _{oz}	[m]	6.9314
l _{ox}	[m]	7.5944

Zbrojenie

nr	współrzędna r[cm]	współrzędna s[cm]	średnica [mm]
1	-27.00	27.00	12.00
2	27.00	27.00	12.00
3	-27.00	-27.00	12.00
4	27.00	-27.00	12.00
5	27.00	13.00	12.00
6	-27.00	13.00	12.00
7	27.00	-13.00	12.00
8	-27.00	-13.00	12.00

Obciążenia

nr	typ	P₁ [kN]	P ₂ [kN]	a [m]	b [m]	grupa	płaszczyzna
1	siła pionowa	300.00	0.00	0.00	5.00	1	YoZ
2	równomierne	10.00	0.00	0.00	5.00	1	YoZ

3	równomierne	5.00	0.00	0.00	5.00	1	YoX
4	siła pozioma	3.50	0.00	0.00	5.00	1	YoZ
5	trapezowe	2.00	0.00	2.00	4.00	1	YoX

Siły wewnętrzne bez uwzględnienia wpływu smukłości słupa

Płaszczyzna YoZ

Siły wewnętrzne w przekroju z uwzględnieniem wpływu smukłości słupa

Przekrój 1. podpora górna

siła ściskająca	[kN]	335.00
moment zginajacy Mz	[kNm]	-29.22
moment zginajacy M _x	[kNm]	19.44

Przekrój 2. podpora dolna

siła ściskająca	[kN]	335.00
moment zginajacy Mz	[kNm]	-29.22
moment zginajacy M _x	[kNm]	19.29

Przekrój 3. układ sił, gdzie Mz osiąga maximum

siła ściskająca	[kN]	335.00
moment zginajacy Mz	[kNm]	18.17
moment zginajacy M _x	[kNm]	-13.55

Przekrój 4. układ sił, gdzie M_x osiąga maximum

siła ściskająca	[kN]	335.00
moment zginajacy M _z	[kNm]	18.17
moment zginajacy M _x	[kNm]	-13.55

Wyniki obliczeń

Obwiednia N-M_z

Obwiednia N-M_x

Wykres obwiedni nośności w dwukierunkowym stanie obciążenia

Warunki nośności w poszczególnych przekrojach słupa

Warunek nośności w przekroju 1

M Sax M ‰a∞ = 0.30M Ras M Åa∗ Warunek nośności w przekroju 2 M &ax M ‰a∞ - = 0.30M Rax Måa₂ Warunek nośności w przekroju 3 M Sax M Sa . - = 0.19M Ras M Åa∗ Warunek nośności w przekroju 4 Mada M %a≠ - = 0.19M Rax Måa≖