Moduł

Słup stalowy

Spis treści

430. SŁUP S	ГАLOWY	3
430.1.	WIADOMOŚCI OGÓLNE	3
430.1.1.	Opis programu	3
430.1.2.	Zakres programu	3
430.1.3.	Opis podstawowych funkcji programu	4
430.1.	3.1. Obliczenia statyczne	4
430.1.	3.2. Sprawdzanie nośności na zginanie	4
430.1.	3.3. Sprawdzanie nośności na ścinanie	4
430.1.	3.4. Sprawdzenie nośności na ściskanie (rozciąganie)	4
430.1.	3.5. Przemieszczenia	4
430.2.	WPROWADZENIE DANYCH	4
430.2.1.	Utworzenie nowego projektu słupa	4
430.2.2.	Zakładka "Geometria"	5
430.2.3.	Zakładka "Obciążenia i podpory"	9
430.2.4.	Zakładka "Wymiarowanie"	.11
430.2.5.	Zakładka "Zwichrzenie"	.12
430.2.6.	Pulpit graficzny programu	.12
430.2.7.	Okno 3D	.13
430.2.9.	Obliczenia słupa	.15
430.3.	WYNIKI	.16
430.4.	Przykład	.17

430. Słup stalowy

430.1. Wiadomości ogólne

430.1.1. Opis programu

Program "Słup stalowy" przeznaczony jest do obliczeń statycznych i dwukierunkowego sprawdzania nośności stalowych słupów jednogałęziowych. Program - współpracując z modułem Rama 2D - oblicza siły przekrojowe w słupie wykorzystując model metody przemieszczeń w ujęciu macierzowym.

W wyniku analizy statycznej otrzymujemy wartości sił przekrojowych w słupie dla zadanego obciążenia. Istnieje też możliwość przejęcia z modułu Rama 2D obwiedni sił przekrojowych uwzględniającej pełną kombinatorykę dla wszystkich grup obciążeń (z relacjami typu wykluczenie lub występowanie łączne). Algorytm sprawdzania nośności słupów wykonany został w oparciu o normę PN-B-03200: 1990. "Konstrukcje stalowe; Obliczenia statyczne i projektowanie". Warunki nośności są sprawdzane w 61 punktach słupa. Istnieją dwa przypadki sprawdzania nośności:

- a) w przypadku zadawania obciążeń bez kombinatoryki nośność sprawdzana jest w dwóch kierunkach dla wartości momentów zginających, sił tnących i sił normalnych występujących w danym punkcie w kierunkach X i Y,
- b) w przypadku przejmowania obwiedni sił przekrojowych z modułu Rama 2D nośność sprawdzana jest w jednym kierunku. W każdym punkcie przeprowadzane są następujące obliczenia nośności:
 - dla maksymalnego co do wartości bezwzględnej momentu zginającego i odpowiadających mu wartości siły tnącej i siły normalnej,
 - dla maksymalnej siły normalnej i odpowiadających mu wartości momentu zginającego i siły tnącej,
 - dla minimalnej siły normalnej i odpowiadających mu wartości momentu zginającego i siły tnącej

W każdym przypadku sprawdzany jest również stan graniczny użytkowania i podawane jest ekstremalne ugięcie sprężyste w słupie.

430.1.2. Zakres programu

Program oblicza słupy stalowe jednogałęziowe o stałym przekroju. W 61 punktach obliczane są ekstremalne wartości momentów zginających, sił tnących i sił normalnych służące sprawdzaniu nośności. Aktualna wersja programu sprawdza nośność słupów wykonanych z kształtowników walcowanych oraz blachownic. W zaimplementowanych bibliotekach przekrojów dostępne są dwuteowniki I, IPE, HEA, HEB, rury okrągłe, kwadratowe i prostokątne, ½ I, ½ IPE, ½ HEA, ½ HEB, kątowniki równoramienne i różnoramienne, ceowniki. Istnieje także możliwość samodzielnego zdefiniowania przekrojów. Dotyczy ona blachownic, rur kwadratowych, prostokątnych (klasy od 1 do 4) i rur okrągłych (klasy od 1 do 3), przekrojów krzyżowych i teowych. Dostępne są następujące gatunki stali: St0S, St3S, St3V, St4V, 18G2, 18G2A, 18G2AV, R35 i R45. Istnieje możliwość zdefiniowania własnego gatunku stali poprzez podanie jej wytrzymałości obliczeniowej na rozciąganie i ściskanie f_d [Mpa]. W obliczeniach sprawdzane jest wyboczenie giętne i giętno-skrętne.

430.1.3. Opis podstawowych funkcji programu

430.1.3.1. Obliczenia statyczne

Program oblicza statykę słupa macierzową metodą przemieszczeń. W przypadku wprowadzania wartości obciążeń w programie "Słup stalowy" wyniki podawane są bez kombinatoryki (wszystkie obciążenia zapisywane są do tej samej grupy). Jeśli natomiast wymiarowanie słupa przeprowadzane jest na podstawie danych otrzymanych z modułu Rama 2D to podawana jest obwiednia sił tnących, momentów i sił normalnych w poszczególnych punktach słupa.

430.1.3.2. Sprawdzanie nośności na zginanie

Algorytm sprawdzania nośności słupa na zginanie opracowano w oparciu o normę PN-B-03200: 1990 "Konstrukcje stalowe; Obliczenia statyczne i projektowanie". Program sprawdza warunki nośności z uwzględnieniem możliwości zwichrzenia, miejscowej utraty stateczności oraz wykorzystania rezerwy plastycznej w obydwu kierunkach. W przypadku, gdy rozstawy stężeń bocznych pasów ściskanych mają różne wartości a moment zginający zmienia znak na długości słupa, za miarodajny należy przyjąć rozstaw większy (bardziej niekorzystny).

W celu określenia współczynnika zwichrzenia użytkownik musi podać na końcach słupa warunki brzegowe w kierunku prostopadłym do płaszczyzny największej bezwładności przekroju oraz sposób obciążenia pręta zgodnie z tablicą Z1-2 normy PN-B-03200. Współczynnik β przyjęto w kierunku bezpieczeństwa równy jeden.

430.1.3.3. Sprawdzanie nośności na ścinanie

Nośność słupa na ścinanie jest sprawdzana ze wzoru (16) normy PN-B-03200. Ścinanie jest też uwzględniane podczas sprawdzania nośności elementów dwukierunkowo zginanych lub zginanych i rozciąganych.

430.1.3.4. Sprawdzenie nośności na ściskanie (rozciąganie)

Nośność słupa na ściskanie (rozciąganie) sprawdzana jest zgodnie z normą PN-B-03200: 1990. Program sprawdza warunki nośności z uwzględnieniem wyboczenia oraz miejscowej utraty stateczności. Długości wyboczeniowe słupa ustalane są na podstawie współczynników długości wyboczeniowej podanych przez użytkownika.

Nośność słupa na ściskanie i rozciąganie obliczana jest bez uwzględnienia osłabienia przekroju otworami.

Dla przekrojów wymiarowanych tylko na osiowe ściskanie zablokowano możliwość definiowania innych obciążeń niż siła skupiona na górze słupa.

430.1.3.5. Przemieszczenia

Program oblicza przemieszczenia punktów słupa dla charakterystycznych wartości obciążeń uzyskanych przez podzielenie wartości obliczeniowych podanych przez użytkownika w programie przez uśredniony współczynnik 1,18. Prezentacja przemieszczeń nie jest konieczna w przypadku wymiarowania słupa na podstawie danych otrzymanych z modułu RAMA 2D.

430.2. Wprowadzenie danych

430.2.1. Utworzenie nowego projektu słupa

Wprowadzenie nowego projektu słupa rozpoczynamy od uaktywnienia w pasku narzędziowym górnego menu ekranu opcji **Elementy - Nowy element**. Następnie w oknie dialogowym **Nowy element** zaznaczamy jako typ elementu – Słup stalowy, nadajemy mu oznaczenie

(pozycję lub nazwę) i zatwierdzamy wybór kliknięciem przycisku OK. Po uruchomieniu modułu "Słup stalowy" pojawia się okno **Słup stalowy** wyposażone w cztery kolejne zakładki:

```
Geometria Obciążenia i podpory Wymiarowanie Zwichrzenie
```

Otwieranie okna zakładek (formularzy) można wykonać przez naciśnięcie odpowiedniej ikony na pulpicie:

🗏 - Ikona wywołująca lub ukrywająca okno zakładek (formularzy).

430.2.2. Zakładka "Geometria"

Siup stalowy 🛛 🔹 🔴 🖊	VTERsoft
Geometria Obciążenia i podpory Wymiarowanie Zwi	chrzenie
Typ przekroju Pręt jest tylko osiowo ściskany Opis Blachownica	ownica DO mm h 300 mm
Przekrój standard. Przekrój def. t _f 2 Rodzaj materiału Gatunek stali St3S V fd = 205 MPa Wyboczenie Długość obliczeniowa stuna 3 m	
Współczynnik dł. wybocz. μ _χ 1 Współczynnik dł. wybocz. μ _χ 1 Współczynnik dł. wybocz. μ _φ 1 w płaszcz. YOZ Współczynnik dł. wybocz. μ _φ 1	

W zakładce "Geometria" podawane są podstawowe dane dotyczące kształtu słupa, podpór i materiału.

Okno "Typ przekroju"

Opis – okno prezentujące nazwę wybranego przekroju. Nazwa ta może zostać zmieniona przez użytkownika.

Przekrój standard. – przycisk wywołujący okno z biblioteką przekrojów standardowych, zaimplementowanych w programie.

Biblioteka przekrojów			
Nazwa typu	Nazwa kształtownika		
HEA	HEA 100		
HEB	HEA 120		
1	HEA 140		
IPE	HEA 160		
Rury okrągłe	HEA 180		
Rury kwadratowe	HEA 200		
Rury prostokątne	HEA 220		
1/2_HEA	HEA 240		
1/2_HEB	HEA 260		
1/2_1	HEA 280		
1/2_IPE	HEA 300		
C	HEA 320		
L	HEA 340		
	HEA 360		
	OK Anuluj		

Po wywołaniu okna w lewej kolumnie dostępnych jest 7 typów przekrojów walcowanych: dwuteowniki HEA, HEB, I, IPE, rury okrągłe, rury kwadratowe i rury prostokątne. Jeśli przed otwarciem okna przekrojów standardowych zaznaczymy opcję "Pręt jest tylko osiowo ściskany" to w bibliotece przekrojów dostępne będą dodatkowo ½ I, ½ IPE, ½ HEA, ½ HEB, kątowniki równoramienne i różnoramienne, ceowniki. Po wyborze odpowiedniego typu, w kolumnie lewej wyświetlona zostaje lista kształtowników dostępnych w danym typie. Aby wybrać kształtownik należy zaznaczyć jego nazwę i kliknąć OK. Nazwa wybranego kształtownika zostanie wówczas wpisana w oknie "Opis".

Przekrój def. – przycisk wywołujący okno umożliwiające wybór rodzaju przekroju definiowanego przez użytkownika.

Rodzaje przekrojów			
Wybierz typ przekroju definiowanego Blachownica			
🔿 Rura okrągła			
C Rura kwadratowa			
C Rura prostokątna			
C Teownik			
Krzyżowy			
OK Cancel			

Po wywołaniu okna użytkownik ma możliwość wyboru jednego spośród sześciu typów przekrojów definiowanych - blachownicy, rury okrągłej, rury kwadratowej, rury prostokątnej, tewonika lub przekroju krzyżowego. Wybór zatwierdza się klikając przycisk OK.

Gdy słup wymiarowany jest na podstawie danych otrzymanych z modułu RAMA 2D, istnieje możliwość zmiany typu przekroju. Należy jednak pamiętać, że nie spowoduje to zmiany przyjętego do obliczeń statycznych ciężaru własnego.

W przypadku przekazywania obwiedni pręta z ramy do słupa stalowego dla przekrojów wymiarowanych jedynie na osiowe ściskanie (np. definiowanych teowników i przekrojów krzyżowych), w przypadku wystąpienia zginania podawany jest komunikat o konieczności zmiany typu przekroju.

Okno "Rodzaj materiału"

Gatunek stali – lista rozwijalna umożliwiająca wybór jednego spośród dziewięciu gatunków stali. Dostępne są następujące gatunki: St0S, St3S, St3V, St4V, 18G2, 18G2A, 18G2AV, R35

i R45. Po wybraniu opcji "Inny" użytkownik ma możliwość zdefiniowania własnego typu stali przez podanie jesgo wytrzymałości obliczeniowej fd [Mpa].

Okno "Wyboczenie"

Długość obliczeniowa słupa – długość słupa przyjmowana do obliczeń. Długość należy podawać w metrach. Opcja ta nie jest dostępna w przypadku obliczeń na podstawie danych otrzymanych z modułu RAMA 2D.

Wsp. dł. wybocz. w pł. XoZ – współczynnik długości wyboczeniowej słupa w płaszczyźnie XoZ, ustalany zgodnie z zał. 1 pkt 2 normy PN-90/B-03200.

Wsp. dł. wybocz. w pł. YoZ - współczynnik długości wyboczeniowej słupa w płaszczyźnie YoZ, ustalany zgodnie z zał. 1 pkt 2 normy PN-90/B-03200.

Wsp. dł. wybocz. μω - współczynnik długości wyboczeniowej dla wyboczenia giętnoskrętnego.

Okno "Blachownica"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego blachownicy. Opcja ta dostępna jest po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "blachownica".

- b szerokość przekroju blachownicy,
- h wysokość przekroju blachownicy,
- t_f grubość półki blachownicy,
- tw grubość środnika blachownicy,

Wszystkie wymiary należy podawać w milimetrach.

Okno "Rura okrągła"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego rury okrągłej. Opcja ta jest dostępna po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "rura okrągła".

- D zewnętrzna średnica rury,
- t grubość ścianki rury,

Wszystkie wymiary należy podawać w milimetrach.

Okno "Rura kwadratowa"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego rury kwadratowej. Opcja ta jest dostępna po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "rura kwadratowa".

- h długość boku rury,
- t grubość ścianki rury,

Wszystkie wymiary należy podawać w milimetrach.

Okno "Rura prostokątna"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego rury prostokątnej. Opcja ta jest dostępna po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "rura prostokątna".

b – szerokość rury,

h – wysokość rury,

t – grubość ścianki rury,

Wszystkie wymiary należy podawać w milimetrach.

Okno "Teownik"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego teownika. Opcja ta jest dostępna po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "Teownik".

- b szerokość teownika,
- h wysokość teownika,
- tf, tw grubości blach teownika wg rysunku

Wszystkie wymiary należy podawać w milimetrach.

Okno "Krzyżowy"

Jest to okno umożliwiające podanie wymiarów przekroju poprzecznego przekroju krzyżowego. Opcja ta jest dostępna po wcześniejszym wybraniu w oknie "Typ przekroju" przekroju definiowanego a następnie poprzez wybranie opcji "Krzyżowy".

- b szerokość przekroju,
- h wysokość przekroju,
- tf, tw grubości blach przekroju krzyżowego wg rysunku

Wszystkie wymiary należy podawać w milimetrach.

3	Siup stalowy • • • INTERsoft						
	Geometria Obciążenia i podpory Wymiarowanie Zwichrzenie						
		rodzaj	P1	P2	a [m]	b [m]	pł. obc.
		siła pozioma [kN]	12	0	0	2.00	XoZ 💌
		siła pionowa (kN)	16	0	0	3.00	YoZ
		równomierne (kN/m)	2.5	0	0	1.5	YoZ
	Płaszczyzna XoZ Dodaj Usuń Uwzględnij ciężar własny						

430.2.3. Zakładka "Obciążenia i podpory"

W zakładce " Obciążenia i podpory" definiowane są obciążenia przyłożone do słupa, zasięg i płaszczyzna ich działania oraz rodzaje podpór w obydwu płaszczyznach. Zadawanie obciążeń polega na dodawaniu do arkusza kolejnych wierszy i wpisywaniu danych do odpowiednich kolumn. Każde dodane obciążenie jest przedstawiane graficznie w głównym oknie programu. Przyłożenie siły pionowej możliwe jest tylko na górze słupa. Zakładka ta nie jest aktywna w przypadku obliczeń na podstawie danych otrzymanych z programu RAMA 2D.

Rodzaj – w tej kolumnie istnieje możliwość wyboru jednego spośród pięciu rodzajów obciążenia. Dostępne są następujące rodzaje obciążenia: równomierne, trapezowe, siła pionowa, siła pozioma i moment skupiony. Wyboru dokonuje się poprzez kliknięcie na rozwijalnej liście. W przypadku, gdy na zakładce "Geometria" zaznaczona jest opcja "Pręt jest tylko osiowo ściskany" (dla definiowanych teowników i przekrojów krzyżowych opcja ta zaznaczana jest automatycznie) dostępne jest tylko obciążenie siłą pionową.

Obciążenia skupione (siły poziome i momenty) przyłożone w górnym końcu słupa (ze względu na to że mogą wejść w podporę górną) w rzeczywistości przykładane są przez program o 1 cm poniżej górnej podpory.

P1, P2, a, b – wartości i zasięg obciążeń. Ich znaczenie zależy od rodzaju wybranego obciążenia:

dla obciążenia równomiernego

- P1 wartość obciążenia w kN/m,
- P2 nieaktywne,
- a rzędna początku obciążenia w m, liczona od dołu słupa,
- b rzędna końca obciążenia w m, liczona od dołu słupa

dla obciążenia trapezowego

- P1 wartość obciążenia w punkcie początkowym w kN/m,
- P2 wartość obciążenia w punkcie końcowym w kN/m,
- a rzędna początku obciążenia w m, liczona od dołu słupa,
- b rzędna końca obciążenia w m, liczona od dołu słupa

dla siły pionowej

- P1 wartość siły w kN (wartość dodatnia oznacza siłę ściskającą),
- P2 nieaktywne,
- a nieaktywne,
- b nieaktywne
- dla siły poziomej
- P1 wartość siły w kN,
- P2 nieaktywne,
- a rzędna punktu przyłożenia siły w m, liczona od dołu słupa,
- b nieaktywne

dla momentu skupionego

- P1 wartość momentu w kNm,
- P2 nieaktywne,
- a rzędna punktu przyłożenia momentu w m, liczona od dołu słupa,
- b nieaktywne

Pł. obc. – płaszczyzna działania obciążenia. Rozwijalna lista umożliwia wybór jednej z dwóch opcji: XoZ i YoZ.

Okna "Płaszczyzna XoZ" i "Płaszczyzna YoZ"

Okna te służą do wyboru rodzaju podparcia słupa w dwóch prostopadłych do siebie płaszczyznach. W każdym z okien pierwsza ikona oznacza podporę górną a druga podporę dolną. Wyboru dokonuje się klikając odpowiedni symbol na rozwijalnej liście. Wybranie jednej z podpór w danej płaszczyźnie powoduje, że jako drugą z podpór użytkownik może wybrać tylko taką, która nie spowoduje powstania układu kinematycznie zmiennego (mechanizmu).

Poszczególne ikony oznaczają:

,	pełne utwierdzenie	ļ	podpora przegubowa przesuwna
	teleskop		swobodny koniec
 ,	podpora przegubowa nieprzesuwna		

Każda górna podpora w obliczeniach statycznych wykonywanych przez moduł słupa stalowego przyjmowana jest do obliczeń z uwolnionym przesuwem wzdłuż osi pręta (cała siła pionowa przyłożona w górnym końcu słupa przenosi się jako siła wewnętrzna w słupie brana do wymiarowania).

Wybór podpór nie jest możliwy w przypadku obliczeń na podstawie danych otrzymanych z programu RAMA 2D.

Uwzględnij ciężar własny – zaznaczenie opcji powoduje uwzględnienie w obliczeniach statycznych obciążenia ciężarem własnym.

Dodaj – kliknięcie przycisku spowoduje dodanie do tabeli obciążeń kolejnego wiersza, w którym można zdefiniować następne obciążenie.

Usuń – kliknięcie przycisku spowoduje usunięcie zaznaczonego wiersza z tabeli obciążeń. Aby zaznaczyć wiersz należy kliknąć w pierwszej komórce wiersza, który ma być usunięty.

430.2.4. Zakładka "Wymiarowanie"

Siup stalowy		INTERsoft
Geometria Obciążenia i p	odpory Wymiarowanie	Zwichrzenie
– Stan pracy konstrukcji– W przypadku przekrojó	iw klasy 4 uwzględnij praci	ę konstrukcji w stanie:
 krytyczny 	C nadkrytyczny	C nadkrytyczny ograniczony
Największe naprężenia	a w przekroju współpracuj	acym 0 MPa
Sposób obciążenia elem	nentu	
 statycznie 	O dynamicznie	
- Współczynniki momenti	u zginającego	
β _x =	1	βy = 1
🔲 Element jest konstr	ukcyjnie zabezpieczony p	rzed zwichrzeniem
🗌 Uwzględnij rezerwę	plastyczną przy zginaniu	
🗌 Występują napręże	nia spawalnicze	

W zakładce "Wymiarowanie" użytkownik ma możliwość wprowadzenia danych dotyczących stanu pracy konstrukcji, sposobu jej obciążenia oraz innych danych koniecznych do przeprowadzenia obliczeń.

Okno "Stan pracy konstrukcji"

Jest to okno umożliwiające wybór stanu pracy konstrukcji zgodnie z normą PN-90/B-03200. Dokonany tutaj wybór uwzględniany jest w obliczeniach tylko wtedy, gdy przyjęty przekrój poprzeczny jest klasy czwartej. W innym przypadku zaznaczenie w tym oknie jakiejkolwiek opcji nie będzie miało wpływu na obliczenia wytrzymałościowe. Ilość dostępnych opcji uzależniona jest od typu profilu stalowego wybranego na zakładce "Geometria". W przypadku zaznaczenia opcji "nadkrytyczny ograniczony" uaktywnione zostaje okno, w którym należy podać największe naprężenia w przekroju współpracującym (w Mpa). Jeżeli wartość ta będzie mniejsza od wartości wynikającej ze stanu krytycznego ścianki podpierającej to zostanie ona uwzględniona w obliczeniach. W przeciwnym razie do obliczeń zostanie użyta wartość wyliczona przez program. Wartość przyjęta do obliczeń jest podawana w raporcie.

Okno "Sposób obciążenia elementu"

Okno umożliwia wybór jednej z dwóch opcji obciążenia elementu.

Element jest konstrukcyjnie zabezpieczony przed zwichrzeniem – zaznaczenie tej opcji spowoduje przyjęcie przez program współczynnika zwichrzeniowego równego 1. Nie będzie wówczas dostępna zakładka "Zwichrzenie".

Uwzględnij rezerwę plastyczną przy zginaniu – zaznaczenie tej opcji spowoduje wykorzystanie w obliczeniach rezerwy plastycznej przekroju.

Występują naprężenia spawalnicze – zaznaczenie tej opcji spowoduje uwzględnienie w sposobie obliczeń faktu, iż w słupie występują naprężenia spawalnicze.

Okno "Współczynniki momentu zginającego"

Istnieje tutaj możliwość indywidualnego definiowania współczynników momentu zginającego β_x i β_y (w przypadkach wątpliwych zaleca się przyjąć $\beta_x = \beta_y = 1$).

430.2.5. Zakładka "Zwichrzenie"

Slup stalowy	• • • INTERsoft		
Geometria Obciążenia i podpory Wymia	rowanie Zwichrzenie		
Obciążenie słupa w płas © Zginanie stałym momentem	zczyźnie symetrii przekroju Moment stały lub zmienny liniowo		
C Obciążenie równomiemie rozłożone C Siła skupiona na końcu wspornika	 Obciążenie równomiernie rozłożone Siła skupiona w środku wysokości 		
Obustronne warunki podparcia w płaszczyźnie środnika for przegub dwierdzenie dwierdzenie			
Czy przekrój końcowy ulega spaczeniu?			
Długość obliczeniowa słupa na zwichrzenie 3 m Przekrój spawany w sposób zmechanizowany			

Zakładka ta umożliwia wprowadzenie danych potrzebnych do obliczenia współczynnika zwichrzeniowego. Nie jest ona dostępna, jeśli na zakładce "Wymiarowanie" zaznaczono opcję "Element jest konstrukcyjnie zabezpieczony przed zwichrzeniem".

Okno "Obciążenie słupa w płaszczyźnie symetrii przekroju"

Okno umożliwia wybór jednej z trzech opcji zgodnie z zał. 1 normy PN-90/B-03200. Opcje umieszczone w lewej kolumnie dostępne są w przypadku, gdy słup w płaszczyźnie większego momentu bezwładności jest wspornikiem. W innym przypadku dostępne są opcje umieszczone w prawej kolumnie. Wybór jednej z opcji determinuje dostępność opcji umieszczonych w kolejnych oknach.

Okno "Obustronne warunki podparcia"

Okno umożliwia podanie obustronnych warunków podparcia w płaszczyźnie środnika (YoZ) i w płaszczyźnie prostopadłej do niej (XoZ) zgodnie z tabl. Z1-2 normy PN-90/B-03200. Dostępność opcji zależy od wyboru dokonanego w oknie "Obciążenie słupa w płaszczyźnie symetrii przekroju".

Czy przekrój końcowy ulega spaczeniu? – użytkownik ma tutaj możliwość określenia sposobu spaczenia przekroju a tym samym określenia wartości współczynnika długości wyboczeniowej przy wyboczeniu skrętnym zgodnie z zał. 1 do normy PN-90/B-03200.

Długość obliczeniowa słupa na zwichrzenie – należy podać długość obliczeniową słupa na zwichrzenie w metrach.

Przekrój spawany w sposób zmechanizowany – opcję należy zaznaczyć, jeśli spawanie odbywa się w sposób zmechanizowany.

430.2.6. Pulpit graficzny programu

Główną część ekranu (o żółtym kolorze tła) zajmuje pulpit graficzny na którym na bieżąco w postaci graficznej pokazywane są zmiany wprowadzone dla słupa. Aktywne obciążenie wyświetlane jest na zielono.

430.2.7. Okno 3D

- ikona wywołująca okno

430-Słup stalowy

Okno 3D pozwala na przestrzenną wizualizację wprowadzonego słupa. Poruszanie myszką przy wciśniętym lewym przycisku pozwala na dowolne obracanie konstrukcji w przestrzeni, natomiast przesuwanie myszki przy wciśniętym prawym klawiszu powoduje zbliżanie i oddalanie konstrukcji.

430.2.8. Drzewo projektu

Z lewej strony ekranu widoczne są cały czas poszczególne elementy składające się na słup w postaci "drzewa" projektu. Pozwalają one na szybkie przełączanie się między poszczególnymi elementami i ich edycję w odpowiednich zakładkach.

430.2.9. Obliczenia słupa

Po uruchomieniu obliczeń słupa pojawia się okno **Konfiguracja raportu**, w którym możemy zdecydować jakie dane i wyniki ma zawierać raport.

Konfiguracja raportu				
- Wybierze I ☑ Dan	Wybierz elementy raportu ✓ Dane geometryczne			
🔽 Obc	ążenia			
🔽 Wyr	🔽 Wyniki statyki			
🔽 Wyniki wymiarowania				
llość pu	nktów wymiarowania 3			
	OK Anuluj			

Zaznaczenie dowolnej z wyżej wymienionych opcji powoduje poszerzenie raportu o odpowiednie dane lub wyniki. Standardowo program sprawdza nośność słupa w trzech punktach (początek, środek, koniec). Jeśli ekstrema sił wewnętrznych nie pokrywają się z tymi punktami to dodatkowo sprawdzenie przeprowadzone jest dla punktów, w których te ekstrema występują. Niezależnie od tego użytkownik przed przeprowadzeniem obliczeń ma możliwość podania ilości punktów, w których ma nastąpić sprawdzenie nośności (nie wliczając ekstremów).

430.3. Wyniki

Wyniki obliczeń statycznych i wymiarowania tworzone są w postaci plików raportu (format "html") zlokalizowanych w katalogu projektu (podkatalog Raporty), które można przejrzeć w przeglądarce raportów. Wywołanie przeglądarki w górnym pasku narzędziowym (menu **Narzędzia** → **Przeglądarka raportów**) lub za pomocą odpowiedniej ikony w pasku narzędzi elementu. Pozostałe dane dotyczące obsługi przeglądarki zawiera opis modułu Konstruktor.

🔊 Przeglądarka raportów programu Konstruktor 3		_ (# X
Elik Widok Edycja Pomoc		
📂 🕃 😓 🤔 🇱 💘 🗨 💽		
		-
(8) Conceptia (8) Charles Conception		
🗄 🚍 Wyniki - statyka 🕀 🥌 Wyniki sprawdzania		
	Nazwa projektu : ttt	
	Autor : INTERsoft	
	Data utworzenia projektu : 2004-09-20	
		_
🏨 Start 🛛 😫 🧶 😻 🔯 💿 💾 🛛 🔯 Skrzynka odbiorcza - N	i 💾 Total Commander 6.01 😰 430-Skip Stalowy.doc 🗍 KONSTRUKTOR 3.5 - Li 🌻 Przeglądarka raportów	 11:01

Wyniki w programie "**Słup stalowy**" można podzielić na cztery osobne i niezależne grupy: Dane dotyczące geometrii układu:

- dane dotyczące węzłów
- dane dotyczące przekroju,
- dane dotyczące materiału

Dane dotyczące obciążeń (brak w przypadku importu danych z modułu RAMA 2D):

dane dotyczące typu, kierunku działania i wartości obciążeń

Wyniki obliczeń statycznych:

- siły wewnętrzne w poszczególnych płaszczyznach,
- przemieszczenia w poszczególnych płaszczyznach,
- reakcje podporowe

Wyniki sprawdzania nośności słupa:

- parametry wymiarowania,
- wyniki dotyczące całego słupa,
- wyniki sprawdzenia nośności w poszczególnych punktach wraz z tabelarycznym zestawieniem wyników,

430.4. Przykład

Projekt:	Hala stalowa	
Nazwa elementu:	Słup 1	
Autor projektu:	Intersoft	

Lista Węzłów

Nr Węzła	Z [m]	Y [m]
1	0.00	0.00
2	0.00	4.50

<u>Materiał</u>

Nazwa	E[MPa]	Ciężar własny [kN/m³]	α_{t}
St3S	205000000	78,5	0.000012

<u>Przekrój</u>

Nazwa	A	Jx	Jy	Wx	Wy	Nazwa	Długość
	[cm ²]	[cm⁴]	[cm⁴]	[cm³]	[cm³]	materiału	słupa [m]
IPE 300	53.80	8360.00	604.00	557.00	80.50	St3S	4.50

<u>Obciążenia</u>

Parametry obciażeń

Nr Obciążenia	Nr Pręta	Typ obc.	Kierunek działania	P1	P2	a [m]	b [m]
1	1	siła	YoZ	192.30 kN	-	-	4.50
2	1	równomierne	YoZ	5.70 kN/m	-	0.00	4.50
3	1	siła	XoZ	13.10 kN	-	-	2.10

Lp.	z [m]	M [kNm]	T [kN]	N [kN]
1	0.00	7.83	-7.20	-194.39
2	1.13	-0.28	-7.20	-193.87
3	2.25	-6.42	5.90	-193.35
4	3.38	0.21	5.90	-192.82
5	4.50	6.85	5.90	-192.30
ext M	0.00	7.83	-7.20	-194.39
ext N	0.00	7.83	-7.20	-194.39
ext T	0.00	7.83	-7.20	-194.39

Siły wewnętrzne - płaszcz. YoZ

Lp.	z [m]	M [kNm]	T [kN]	N [kN]
1	0.00	-0.00	-12.83	-194.39
2	1.13	-10.82	-6.41	-193.87
3	2.25	-14.43	0.00	-193.35
4	3.38	-10.82	6.41	-192.82
5	4.50	-0.00	12.83	-192.30
ext M	2.25	-14.43	0.00	-193.35
ext N	0.00	-0.00	-12.83	-194.39
ext T	0.00	-0.00	-12.83	-194.39

Przemieszczenia w płaszczyźnie XoZ

Nr Węzła	Vx [mm]	Vy [mm]	Fi [1000*rad]
1	0.000	0.000	0.000
2	0.000	-0.665	0.000

Przemieszczenia w płaszczyźnie YoZ

Nr Węzła	Vx [mm]	Vy [mm]	Fi [1000*rad]
1	0.000	0.000	1.070
2	0.000	-0.665	-1.070

Reakcje w płaszcz. XoZ

Nr Podpory	Nr Węzła Podp.	Rx [kN]	Ry [kN]	Mz [kNm]
1	1	7.20	192.30	-7.83
2	2	5.90	0.00	6.85

Reakcje w płaszcz. YoZ

Nr Podpory	Nr Węzła Podp.	Rx [kN]	Ry [kN]	Mz [kNm]
1	1	12.83	192.30	0.00
2	2	12.83	0.00	0.00

Wyznaczenie klasy przekroju

Klasa przekroju ściskanego	4
Klasa przekroju zginanego względem osi X	1
Klasa przekroju zginanego względem osi Y	1

Wyboczenie lokalne pręta ściskanego

Stan pracy konstrukcji	krytyczny
------------------------	-----------

Nośność przekrojów

Nośność przekroju ściskanego (N_{Rc})	1156.70 kN
Nośność przekroju zginanego względem osi X (M_{Rx})	119.755 kNm
Nośność przekroju zginanego względem osi Y (M_{Ry})	17.308 kNm

Wyboczenie

Smukłość pręta względem osi X (λ_x)	36.099
Smukłość pręta względem osi Y (λ_y)	134.303
Smukłość porównawcza (λ _p)	84.00
Smukłość względna względem osi X (λ_{x})	0.430
Smukłość względna względem osi Y (λ_{y})	1.599
Współczynnik wyboczeniowy względem osi X (ϕ_x)	0.983
Współczynnik wyboczeniowy względem osi Υ (φ _y)	0.345

<u>Zwichrzenie</u>

Moment krytyczny (M _{cr})	249.33 kNm
Smukłość względna przy zwichrzeniu ($\lambda_{_1}$)	0.797
Współczynnik zwichrzeniowy (ϕ_L)	0.894

Punkt nr 1 (z = 0.00 m)

N = -194.39 kN Mx = 0.00 kNm My = 7.83 kNm

Tx = -7.20 kN Ty = -12.83 kN

Ściskanie ze zginaniem jednokierunkowym bez zwichrzenia

$$\begin{split} & \mathsf{N} / (\phi_x * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_x / \mathsf{M}_{\mathsf{Rx}} + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_x = 0.623 < 1,0 \\ & \text{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) = 0.487 < 1,0 \\ & \text{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \mathsf{M}_x / \mathsf{M}_{\mathsf{Rx}} + \Delta_y = 1.023 > 1,0 \\ & \text{Warunek przekroczony!!!} \\ & \mathsf{N} / (\mathsf{A}^* \mathsf{f}_d) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} = 0.620 < 1,0 \end{split}$$

Warunek spełniony

Punkt nr 2 (z = 1.50 m)

N = -193.69 kN Mx = -12.83 kNm My = -2.98 kNm Tx = -7.20 kN Ty = -4.28 kN

Ściskanie ze zginaniem dwukierunkowym lub jednokierunkowym ze zwichrzeniem

$$\begin{split} & \mathsf{N} / (\phi_x * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_x = 0.466 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) = 0.485 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_X / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_y = 0.809 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) = 0.485 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_X / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_y = 0.809 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_X / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_y = 0.809 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{N} / (\mathsf{A}^*\mathsf{f_d}) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} = 0.459 < 1,0 \\ & \mathsf{Warunek spełniony} \\ & \mathsf{Warunek spełniony \\ & \mathsf{Warunek spełniony} \\ & \mathsf{Warunek spełniony} \\ & \mathsf{Warunek spełniony \\ & \mathsf{Warunek speł$$

Punkt nr 3 (z = 3.00 m)

N = -193.00 kN Mx = -12.82 kNm My = -2.00 kNm Tx = 5.90 kN Ty = 4.28 kN

Ściskanie ze zginaniem dwukierunkowym lub jednokierunkowym ze zwichrzeniem

$$\begin{split} & \mathsf{N} / (\phi_x * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_x = 0.409 < 1,0 \\ & \mathsf{Warunek spehiony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) = 0.484 < 1,0 \\ & \mathsf{Warunek spehiony} \\ & \mathsf{N} / (\phi_y * \mathsf{N}_{\mathsf{Rc}}) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} + \Delta_y = 0.740 < 1,0 \\ & \mathsf{Warunek spehiony} \\ & \mathsf{N} / (\mathsf{A}^*\mathsf{f}_d) + \mathsf{M}_x / (\phi_L * \mathsf{M}_{\mathsf{Rx}}) + \mathsf{M}_y / \mathsf{M}_{\mathsf{Ry}} = 0.402 < 1,0 \\ & \mathsf{Warunek spehiony} \\ & \mathsf{Punkt nr 4 (z = 4.50 m)} \\ & \mathsf{N} = -192.30 \ \mathsf{kN} \quad \mathsf{Mx} = 0.00 \ \mathsf{kNm} \quad \mathsf{My} = 6.85 \ \mathsf{kNm} \\ & \mathsf{Tx} = 5.90 \ \mathsf{kN} \quad \mathsf{Ty} = 12.83 \ \mathsf{kN} \end{split}$$

Ściskanie ze zginaniem jednokierunkowym bez zwichrzenia

$$\begin{split} & \text{N} / (\phi_x ^* \text{N}_{\text{Rc}}) + \text{M}_x / \text{M}_{\text{Rx}} + \text{M}_y / \text{M}_{\text{Ry}} + \Delta_x = 0.565 < 1,0 \\ & \text{Warunek spełniony} \\ & \text{N} / (\phi_y ^* \text{N}_{\text{Rc}}) = 0.482 < 1,0 \\ & \text{Warunek spełniony} \\ & \text{N} / (\phi_y ^* \text{N}_{\text{Rc}}) + \text{M}_y / \text{M}_{\text{Ry}} + \text{M}_x / \text{M}_{\text{Rx}} + \Delta_y = 0.950 < 1,0 \\ & \text{Warunek spełniony} \\ & \text{N} / (\text{A}^* f_d) + \text{M}_x / (\phi_L ^* \text{M}_{\text{Rx}}) + \text{M}_y / \text{M}_{\text{Ry}} = 0.562 < 1,0 \\ & \text{Warunek spełniony} \\ & \text{Warunek spełniony} \end{split}$$

Punkt nr 5 (z = 2.25 m)

N = -193.35 kN Mx = -14.43 kNm My = -6.42 kNm Tx = 5.90 kN Ty = 0.00 kN

Ściskanie ze zginaniem dwukierunkowym lub jednokierunkowym ze zwichrzeniem N / ($\phi_x^*N_{Rc}$) + M_x / ($\phi_L^*M_{Rx}$) + M_y / M_{Ry} + Δ_x = 0.680 < 1,0 Warunek spełniony N / ($\phi_y^*N_{Rc}$) = 0.485 < 1,0 Warunek spełniony N / ($\phi_y^*N_{Rc}$) + M_x / ($\phi_L^*M_{Rx}$) + M_y / M_{Ry} + Δ_y = 1.058 > 1,0

Warunek przekroczony!!!

N / (A*f_d) + M_x / (ϕ_L *M_{Rx}) + M_y / M_{Ry} = 0.673 < 1,0 Warunek spełniony

ZESTAWIENIE WYNIKÓW

nr punktu	położenie punktu [m]	osiowe rozciąganie	osiowe ściskanie	jednokier. zginanie	dwukier. zginanie lub zgin. i rozc.	zginanie i ściskanie
1	0.00	-	-	-	0.62	1.02
2	1.50	-	-	-	0.46	0.81
3	3.00	-	-	-	0.40	0.74
4	4.50	-	-	-	0.56	0.95
5	2.25	-	-	-	0.67	1.06