EuroZłącza

Podręcznik użytkownika dla programu EuroZłącza

2016-07-27

1 Spis Treści

1	SPIS TI	REŚCI	
2	WSTĘF	>	
3	RAPOL	PT 7 ORI ICZENIAMI	14
5			
4	PANEL	E GŁOWNE PROGRAMU	17
	4.1 Mo	DDEL POŁĄCZENIA	
	4.2 Mo	DDEL SIŁ	
	4.2.1	Dodawanie kombinacji sił	
	4.2.2	Usuwanie kombinacji sił	
	4.2.3	Współpraca z programem Rama 3D/2D	
	4.3 WY	/NIKI WYMIAROWANIA	
	4.3.1	Komunikaty wyniki w oknie głównym	
	4.4 Wy	/DRUKI	
	4.4.1	Rysunek	
	4.4.2	Raport wytężeń	
	4.4.3	Raport skrócony	
	4.4.4	Raport pełny	
	4.5 ZA	PISYWANIE (ODCZYTYWANIE) DANYCH	
	4.5.1	Zapis danych	
	4.5.2	Odczyt danych	
5	POŁĄC	ZZENIE EUROZŁĄCZA SŁUP-BELKA DOCZOŁOWE	
	5.1 TY	P POŁĄCZENIA	
	5.2 DA	NE OGÓLNE	
	5.2.1	Słup	
	5.2.2	Belka	
	5.2.3	Globalne parametry połączenia	
	5.2.4	Geometria przy styku	
	5.2.5	Sposób łączenia	
	5.2.6	Rodzaj węzła	
	5.2.7	Żebra wzmacniające półki	
	5.2.8	Ogólny sposób wymiarowania	
	5.2.9	Typ połączenia	
	5.3 BL	ACHA CZOŁOWA	
	5.3.1	Blacha czołowa – Wymiary	
	5.3.2	Blacha czołowa –Baza materiałowa	
	5.4 Żei	BRO WZMACNIAJĄCE GÓRNE (DOLNE) – BLACHA	
	5.4.1	Blacha żebra – Wymiary	
	5.4.2	Blacha żebra – Baza materiałowa	
	5.5 Żei	BRO WZMACNIAJĄCE GÓRNE (DOLNE)-TEOWNIK	

Spis Treśc	i i	
5.5.1	Żebro – Wymiary	
5.5.2	Żebro – Rodzaj	
5.6 PAI	RAMETRY SPOIN	
5.6.1	Belka	
5.6.2	Rodzaj spoiny	
5.6.3	Sposób wymiarowania spoin	
5.6.4	Blacha wzmacniająca żebra górna (dolna)	
5.6.5	Żebro wzmacniające górne (dolne)	
5.7 PAI	RAMETRY ŚRUB	
5.7.1	Kategoria połączenia	
5.7.2	Geometria połączenia	
5.7.3	Baza materiałowa	
5.7.4	Liczba szeregów rozciąganych	
5.7.5	Odległość blachy czołowej oraz pierwszego szeregu śrub o krawędzi słupa	
5.8 Wz	MOCNIENIA ŚRODNIKA SŁUPA	
5.8.1	Brak	
5.8.2	Zdwojone żebra poprzeczne	
5.8.2.1	Parametry żeber usztywniających poprzecznych	
5.8.2.2	2 Baza materiałowa	
5.8.3	Nakładki środnika	
5.8.3.	Parametry nakładki środnika słupa – Wymiary	
5.8.3.2	2 Parametry nakładki środnika słupa – Rodzaj spoiny	
5.8.3.3	B Parametry nakładki środnika słupa – Baza materiałowa	
5.9 SZT	YWNOŚĆ POŁĄCZENIA	
5.9.1	Klasyfikacja węzła ze względu na sztywność	
5.9.2	Parametry sztywności	
6 POŁAC	ZENIE EUROZŁĄCZA PODCIAG-BELKA	
6 1 Typ		16
6.1 IY	ΥΡΟΕΑCZENIA	
0.2 DA	Podoing	
6.2.2	Polica	
6.2.2	Globalne parametry polaczenia	
624	Elementy Jaccace	
625	Geometria przy styku	
626	Ogólny sposóh wymiarowania	
627	Wyciecia przykońcowe	
63 PAI	AMETRY PRZYKŁADKI	
631	Typ elementu	
6.3.2	Parametry przykładki – Wymiary	
0.5.2	Tarametry przyklauki – w ymary	

2	pis Tresci		
	6.3.3	Parametry przykładki – Położenie	. 52
	6.3.4	Parametry przykładki – Baza materiałowa	. 52
	6.4 POŁ	ĄCZENIE BELKA-BLACHA (PRZYKŁADKA)	. 52
	6.4.1	Typ połączenia – Spawane	. 52
	6.4.2	Typ połączenia – śrubowe	. 53
	6.4.2.1	Geometria połączenia	. 54
	6.4.2.2	Baza materiałowa	. 54
	6.5 POŁ	ĄCZENIE PODCIĄG-BLACHA (PRZYKŁADKA)	. 54
	6.5.1	Rodzaj spoiny – Pachwinowa	. 54
	6.5.2	Rodzaj spoiny – Czołowa	. 55
	6.6 PAR	AMETRY UŻEBROWANIA PODCIĄGU	. 56
	6.6.1	Baza materiałowa	. 57
	6.7 POŁ	ĄCZENIE BELKA-BLACHA (ŻEBRO)	. 57
	6.7.1	Typ połączenia – Spawane	. 57
	6.7.2	Typ połączenia – Śrubowe	. 58
	6.7.2.1	Geometria połączenia	. 58
	6.7.2.2	Baza materiałowa	. 59
7	POŁĄCZ	ZENIE EUROZŁĄCZA SŁUP-BELKA	. 60
	71 TVP	ροι α στενία	62
	7.2 DAN	E WEIŚCIOWE	63
	7.2.1	Słup	. 63
	7.2.2	Belka	. 64
	7.2.3	Globalne parametry połaczenia	. 64
	7.2.4	Sposób łaczenia	. 64
	7.2.5	Rodzaj wezła	. 65
	7.2.6	Ogólny sposób wymiarowania	. 65
	7.2.7	Geometria przy styku	. 66
	7.2.8	Symetria	. 66
	7.2.9	Elementy łaczace	. 66
	7.3 PAR	AMETRY PRZYKŁADKI	. 69
	7.3.1	Typ elementu	. 69
	7.3.2	Parametry przykładki – Wymiary	. 69
	7.3.3	Parametry przykładki – Położenie	. 69
	7.3.4	Parametry przykładki – Baza materiałowa	. 70
	7.4 Poł	ĄCZENIE BELKA-BLACHA (PRZYKŁADKA)	. 70
	7.4.1	Typ połączenia – Spawane	. 70
	7.4.2	Typ połączenia – Śrubowe	. 71
	7.4.2.1	Parametry ogólne	. 72
	7.4.2.2	Geometria połączenia	. 72
	7.4.2.3	Baza materiałowa	. 72

Sp	ois Treści		
	7.5 POŁA	ĄCZENIE SŁUP-BLACHA (PRZYKŁADKA)	73
	7.5.1	Rodzaj spoiny – Pachwinowa	73
	7.5.2	Rodzaj spoiny – Czołowa	73
	7.6 PARA	AMETRY NAKŁADKI	74
	7.6.1	Baza materiałowa	75
	7.7 POŁA	ĄCZENIE BELKA-BLACHA	75
	7.7.1	Typ połączenia – Spawane	76
	7.7.2	Typ połączenia-Śrubowe	77
	7.7.2.1	Parametry ogólne	77
	7.7.2.2	Geometria połączenia	77
	7.7.2.3	Baza materiałowa	78
	7.8 Poła	ĄCZENIE SŁUP-BLACHA	78
	7.8.1	Rodzaj spoiny – Pachwinowa	78
	7.8.2	Rodzaj spoiny – Czołowa	79
	7.9 S toi	JK MONTAŻOWY	.79
	7.9.1	Przekrój stolika montażowego	80
	7.9.2	Typ połączenia – Śrubowy	81
	7.9.3	Typ połączenia – Spawany	82
	7.10 WZM	10CNIENIE ŚRODNIKA SŁUPA	83
	7.10.1	Parametry żeber poprzecznych słupa – Wymiary	83
	7.10.2	Parametry żeber poprzecznych słupa – Baza materiałowa	83
8	POŁACZ	ZENIE EUROZŁACZA BELKA-BELKA	84
	9.1 TVD		85
	8.1 IYP	rołączenia	03 06
	0.2 DAN	Delles large	00
	8.2.1	Belka lewa	80
	8.2.2	Belka prawa	8/
	8.2.3	Globalne parametry połączenia	8/
	8.2.4	Ogoiny sposob wymiarowania	8/
	8.2.5	Sumetrie	88 00
	8.2.0 8.2.7		90
	0.2.7	Elementy iączące	90
	8.3 FAK	Typ alamantu	91 01
	837	Peremetry przykładki Wymiery	91 01
	833	Parametry przykładki – w ymary	91 Q1
	831	Parametry przykładki – Baza materiałowa	02
	8.4 Por	т аганен у рідукіацкі — Бада шаюнаюwa	92 02
	8/1	Tvn nołaczenia – Snawane	92 02
	847	Typ połączenia – Spawane	92
	0. - .2 ۶ <u>/</u> 71	Parametry ogólne	93
	0.7.2.1	r municity offenie	15

Sľ	pis Tresci		
	8.4.2.2	Geometria połączenia	93
	8.4.2.3	Baza materiałowa	94
	8.5 PARA	AMETRY NAKŁADKI	94
	8.5.1	Baza materiałowa	95
	8.6 POŁA	ĄCZENIE BELKA-NAKŁADKA	95
	8.6.1	Typ połączenia – Spawane	95
	8.6.2	Typ połączenia – Śrubowe	96
	8.6.2.1	Parametry ogólne	97
	8.6.2.2	Geometria połączenia	97
	8.6.2.3	Baza materiałowa	97
9	POŁĄCZ	ZENIE EUROZŁĄCZA BELKA-BELKA DOCZOŁOWE	98
	9.1 TYP	POŁACZENIA	99
	9.2 DAN	د E OGÓLNE	100
	9.2.1	Ogólny sposób wymiarowania	100
	9.2.2	Znak momentu zginającego	100
	9.2.3	Globalne parametry połączenia	101
	9.2.4	Symetria	101
	9.2.5	Cięgno	101
	9.3 Beli	ζΑ	101
	9.3.1	Przekrój	102
	9.3.2	Geometria przy styku	103
	9.3.3	Wzajemna orientacja belek	103
	9.3.4	Żebra wzmacniające półki	104
	9.4 BLAG	CHA CZOŁOWA	104
	9.4.1	Blacha czołowa – Wymiary	104
	9.4.2	Blacha czołowa – Baza materiałowa	105
	9.5 Żebf	RO WZMACNIAJĄCE GÓRNE (DOLNE) – BLACHA	105
	9.5.1	Blacha żebra – Wymiary	105
	9.5.2	Blacha żebra – Baza materiałowa	106
	9.6 Skos	S TEOWY GÓRNY (DOLNY)	106
	9.6.1	Skos teowy – sposób wytworzenia	106
	9.6.2	Wymiary	106
	9.7 PARA	AMETRY SPOIN	108
	9.7.1	Belka	108
	9.7.2	Rodzaj spoiny	108
	9.7.3	Blacha wzmacniająca żebra górna (dolna)	109
	9.7.4	Żebro wzmacniające górne (dolne)	109
	9.8 PARA	AMETRY ŚRUB	109
	9.8.1	Kategoria połączenia	110
	9.8.2	Geometria połączenia	110

Spis Tre	SCI	
9.8.3	Baza materiałowa	
9.8.4	Liczba szeregów rozciąganych	
9.9 S	ZTYWNOŚĆ POŁĄCZENIA	
9.9.1	Klasyfikacja węzła ze względu na sztywność	111
9.9.2	Parametry sztywności	
10 POŁA	CZENIE EUROZŁĄCZA KRATOWE Z BLACHĄ WĘZŁOWĄ	
10.1 Т	YP POŁĄCZENIA	
10.2 E	ANE OGÓLNE	
10.2.1	Pas kratowy	
10.2.2	Globalne parametry połączenia	
10.2.3	Rodzaj węzła	
10.2.4	Ogólny sposób wymiarowania	117
10.2.5	Znak siły normalnej w pasie kratowym	
10.2.6	Przesunięcie punktu węzłowego	
10.2.7	Położenie węzła	
10.3 E	LACHA WĘZŁOWA: PRZEKRÓJ	
10.3.1	Wymiary	
10.3.2	Ustawienie prętów skratowania	119
10.3.3	Baza materiałowa	
10.4 E	LACHA WĘZŁOWA: POŁĄCZENIE	
10.4.1	Rodzaj spoiny	
10.4.2	Parametry spoiny	
10.5 P	RĘTY SKRATOWANIA	
10.5.1	Typ przekroju	
10.5.2	Mnożność przekroju	
10.5.3	Orientacja przekroju	
10.5.4	Geometria przy styku	
10.6 P	RĘTY SKRATOWANIA – POŁĄCZENIE PRZYLEGAJĄCE	
10.6.1	Połączenie śrubowe	
10.6	b.1.1 Parametry ogólne	
10.6	6.1.2 Geometria połączenia	
10.6	5.1.3 Baza materiałowa	
10.6.2	Połączenie spawane	
10.7 P	RĘTY SKRATOWANIA – POŁĄCZENIE TEOWE	
11 POŁA	CZENIE EUROZŁĄCZA KRATOWO-RUROWE SPAWANE	
11.1 Т	YP POŁĄCZENIA	
11.2 E	DANE OGÓLNE	
11.2.1	Pas kratowy	
11.2.2	Pręty pasa	

Spis Treści		
11.2.3	Rodzaj węzła	
11.2.4	Przesunięcie punktu węzłowego	132
11.2.5	Orientacja przekroju pasa	133
11.2.6	Hierarchia prętów skratowania	133
11.2.7	Opcje spawania	133
11.2.8	Cechy konstrukcji	133
11.2.9	Ogólny sposób wymiarowania	133
11.2.10	Znak siły normalnej w pasie kratowym	
11.2.11	Cechy używanych sił	
11.2.12	Położenie węzła	
11.3 Prę	ГҮ SKRATOWANIA	135
11.3.1	Typ przekroju	136
11.3.2	Orientacja przekroju pręta skratowania	136
11.3.3	Geometria przy styku	136
11.4 Bla	CHY WZMACNIAJĄCE WĘZŁA	
11.4.1	Użycie nakładki	138
11.4.2	Wymiary	138
11.4.3	Baza materiałowa	139
11.4.4	Informacje dodatkowe	139
ZAŁĄCZNIK	[140
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA SŁUP-BELKA DOCZOŁOWE	140
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA PODCIĄG-BELKA	
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA SŁUP-BELKA	172
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA BELKA-BELKA	
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA BELKA-BELKA DOCZOŁOWE	199
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA KRATOWE Z BLACHĄ WĘZŁOWĄ	
RAPORT PRZ	YKŁADOWY: POŁĄCZENIE EUROZŁĄCZA KRATOWO-RUROWE SPAWANE	

Wydawca

ArCADiasoft Chudzik sp. j. ul. Sienkiewicza 85/87 90-057 Łódź www.arcadiasoft.pl

Prawa autorskie

Zwracamy Państwu uwagę na to, że stosowane w podręczniku określenia software'owe i hardware'owe oraz nazwy markowe danych firm są prawnie chronione. Program komputerowy oraz podręcznik użytkownika zostały opracowane z najwyższą starannością i przy zachowaniu wszelkich możliwych środków kontrolnych. Pomimo tego nie można całkowicie wykluczyć wystąpienia błędów. Pragniemy w związku z tym zwrócić uwagę na to, że nie możemy udzielić gwarancji, jak również ponosić prawnej odpowiedzialności za wynikłe stąd skutki. Za podanie nam ewentualnych błędów będziemy wdzięczni.

2 Wstęp

EuroZłącza to program do wymiarowania płaskich połączeń stalowych Eurokodu zgodnie z normą **PN-EN 1993-1-8:2006**.

W drugiej wersji programu wymiarowane są następujące typy połączeń stalowych:

- Połączenie EuroZłącza PODCIĄG-BELKA wzmacniane użebrowaniem, spawane lub na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza SŁUP-BELKA z przykładkami, nakładkami oraz ewentualnym użebrowaniem środnika słupa, spawane lub na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza SŁUP-BELKA DOCZOŁOWE użebrowane, spawane lub na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza BELKA-BELKA z nakładkami i przykładkami, spawane lub na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza BELKA-BELKA DOCZOŁOWE użebrowane, na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza KRATOWE Z BLACHĄ WĘZŁOWĄ, spawane lub na śruby, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.
- Połączenie EuroZłącza KRATOWO-RUROWE SPAWANE, z rur kwadratowych, wymiarowane na zadany zestaw sił poprzecznych z uwzględnieniem momentu lub na nośność elementów łączonych.

Program działa samodzielnie lub jako moduł wymiarujący połączenia stalowe w programie **R3D3-Rama 3D** i **R2D2-Rama 2D**.

W trybie współpracy z programem **R3D3/R2D2** do programu **EuroZłącza** przekazywane są zestawy sił wewnętrznych, a skrócone wyniki wymiarowania prezentowane są w modelu programu statycznego. Zapamiętywany jest też model utworzonego połączenia w programie **R3D3/R2D2**.

Raporty z wymiarowania w formacie RTF mogą być tworzone w trzech różnych stopniach szczegółowości z możliwością definiowania ich zakresu przez użytkownika.

Program tworzy zaawansowany, dynamiczny szkic projektowanego modelu połączenia.

W niniejszym dokumencie opisano podstawowe cechy interfejsu użytkownika aplikacji **EuroZłącza** wraz z uwagami użytkowymi.

Aplikację należy traktować jako pomoc przy obliczaniu sytuacji typowych, które zostały opisane w normie, a sposób weryfikacji nośności wprost z niej wynika. Konfiguracja połączenia, której sposób weryfikacji nośności nie został opisany w normie ani nie wynika wprost z poniższej instrukcji obsługi lub z logiki obliczeń przedstawionych w raporcie z obliczeń, może skutkować niepoprawnymi wynikami. Aplikacja wykrywa i informuje użytkownika o większości najczęściej spotykanych tego typu sytuacji, jednak pełna weryfikacja poprawności dopuszczalności modelu (konfiguracja modelu) leży po stronie użytkownika.

Program komputerowy oraz podręcznik użytkownika zostały opracowane z najwyższą starannością i przy zachowaniu wszelkich możliwych środków kontrolnych. Pomimo tego nie można całkowicie wykluczyć wystąpienia błędów. Pragniemy w związku z tym zwrócić uwagę na to, że nie możemy udzielić gwarancji, jak również ponosić prawnej odpowiedzialności za wynikłe stąd skutki. Za podanie nam ewentualnych błędów będziemy wdzięczni.

Raport z obliczeniami

3 Raport z obliczeniami

Raport z obliczeniami

Wynikowych raportów obliczeniowych nie należy rozpatrywać w oderwaniu od przedmiotowych norm budowlanych oraz sposobu modelowania danych w aplikacji. Użytkownik nie jest zwolniony z weryfikacji poprawności modelu oraz obliczeń (przeprowadzanych przez aplikację) pod względem poprawności formalnej oraz zgodności ze sztuką projektowo-budowlaną. Do użytkownika należy decyzja co do zastosowania wygenerowanych obliczeń w toku wymiarowania konstrukcji, w tym m. in. uwzględniania poszczególnych wskazanych przez program wytężeń lub konieczność sprawdzenia innych, niezawartych w raporcie z obliczeń.

Raport z obliczeń generowany jest z poziomu panelu Wydruki.

Strukturę raportu wyznaczają jego kolejne sekcje:

Rysunek złącza (geometria modelu)

Rysunek ma naturę poglądową, nie należy traktować go jako konstrukcyjnego. W przypadku, gdy jest on mało czytelny, można pobrać go w większym rozmiarze z poziomu panelu *Wydruki*, sekcja *Rysunek*.

Obciążenia

Lista z zestawami sił podanymi w panelu Model sił.

Dane geometryczne elementów złącza

Opis konfiguracji modelu w dziedzinie zastosowanych w połączeniu elementów (przekroje, wymiary itp.) oraz w dziedzinie parametrów występujących w nim połączeń (parametry połączeń śrubowych, grubości spoin itp.).

Sprawdzenie warunków geometrycznych złącza

Wyświetlenie sprawdzanych przez aplikację warunków normowych i geometrycznych zamodelowanego połączenia. Warunki spełnione oznaczone są kolorem zielonym, natomiast niespełnione kolorem czerwonym.

W przypadku wybrania opcji konfiguracyjnej *sprawdzenie warunków geometrycznych złącza (tylko niespełnione)* w tym rozdziale wyświetlane są warunki niespełnione.

Lista maksymalnych wytężeń

Wyświetlenie nazw wytężeń wraz z ich maksymalną wartością oraz numerem kombinacji sił, dla których ta wartość maksymalna występuje.

Obliczenia szczegółowe

Raport z obliczeniami

Obliczenia te podzielone są na części:

- Obliczenia wstępne

Przebieg obliczeń niezależnych od sił (wspólnych dla wszystkich kombinacji sił).

-Obliczenia dla kolejnych serii sił

Obliczenia dla kolejnych kombinacji sił (podanych w panelu *Model sił*). Wykorzystywane są w nich wyniki obliczeń wstępnych.

W przypadku wybrania opcji konfiguracyjnej *Obliczeń szczegółowych dla najgorszych sprawdzeń* w tym rozdziale obliczenia generowane są wyłącznie dla kombinacji sił, dla której dane wytężenie osiągnęło największą wartość.

Zależnie od modułu na końcu dokumentu może znajdować się zestawienie wytężeń według pewnych przyjętych kryteriów.

Raport można wygenerować w jednej z trzech postaci: pełnej (*Raport pełny*), skróconej (*Raport skrócony*) bądź zawierający jedynie wyniki (*Raport wytężeń*), za pomocą odpowiedniego wyboru w panelu *Wydruki*.

Domyślne listy sekcji, które mają być zawarte w raportach danego typu można edytować w oknie *Opcje* (menu *Ustawienia* \rightarrow *Opcje*).

Opcje			×
Ogólne Raporty			
		~ ~	
	Peiny	Skrocony	Wytęzenia
Rysunek złącza	\checkmark	V	☑
Obciążenia	✓	¥	¥
Dane geometryczne elementów złącza	✓	V	
Sprawdzenia warunków geometrycznych złącza (wszystkie)	\checkmark	¥	
Sprawdzenia warunków geometrycznych złącza (tylko niespełnione)			V
Lista maksymalnych wytężeń	\checkmark	¥	¥
Obliczenia szczegółowe dla wszystkich sprawdzeń	✓		
Obliczenia szczegółowe dla najgorszych sprawdzeń		¥	
Anuluj		0	ĸ

4 Panele główne programu

Okno główne programu składa się z czterech podstawowych, kolejnych paneli głównych dostępnych w lewym górnym narożniku okna lub za pomocą dolnych strzałek umieszczonych pod listą paneli. Są to kolejno:

- Model połączenia,
- Model sił,
- Wyniki wymiarowania,
- Wydruki.

Przed przystąpieniem do tworzenia modelu połączenia można sprawdzić ustawienia normowe zamieszczone w oknie *Normy* (dostępnym z menu *Ustawienia→Normy*).

W oknie *Normy* użytkownik wpisuje *współczynniki materiałowe* wykorzystywane do obliczeń nośności połączeń. Obliczenia zostaną przeprowadzone zgodnie z normą PN-EN 1993:1-8:2006.

Współczynniki podane są domyślnie, ale użytkownik może je dowolnie zmieniać.

No	ormy 💌
PN-EN 1993-1-8:2006	
Współczynniki materiałowe Nośność elementów i przekrojów $Y_{M0} = 1.00$ $Y_{M1} = 1.00$ Nośność śrub, spoin, blach na docisk $Y_{M2} = 1.25$ Nośność węzłów kratownic z kształtowników rurowych $Y_{M5} = 1.00$	Nośność na poślizg Stan graniczny nośności (kategoria C) : $Y_{M3} = 1.25$ Stan graniczny użytkowalności (kategoria B) : $Y_{M3,ser} = 1.10$ Siły sprężania śrub wysokiej wytrzymałości $Y_{M7} = 1.10$
	Anuluj OK

4.1 Model połączenia

W rozwijalnym panelu *Model połączenia* wybieramy opcję *Typ połączenia* i wówczas w oknie po prawej stronie wyświetlone zostaną szkice dostępnych w programie typów modeli połączeń. Po wybraniu jednego z nich rozwijalna lista *Model połączenia* uzupełniona zostanie o kolejne opcje dostępne dla danego typu połączenia.

UWAGA: Analiza poprawności większości warunków geometrycznych (np. nachodzenie na siebie kolumn (szeregów) śrub) jest przeprowadzana dopiero na etapie obliczeń!

4.2 Model sił

W panelu *Model sił* użytkownik wpisuje dowolną kombinację sił obliczeniowych, dla których program przeprowadzi obliczenia nośności połączenia. Każda kombinacja sił (liczby rzeczywiste) składa się z pól: nazwy kombinacji sił, siły podłużnej (N_{Ed}), siły poprzecznej (V_{Ed}), momentu zginającego (M_{Ed}) działającego na połączenie. W razie potrzeby może to być też siła poprzeczna z płaszczyzny (V_{op,Ed}) oraz moment zginający z płaszczyzny (M_{op,Ed}).

Jeżeli konfiguracja wybranego modelu tego wymaga, włączona zostanie także opcja podawania sił charakterystycznych.

UWAGA: Znakowanie przekazywanych sił (dodatnie lub ujemne) dla każdego pręta musi odpowiadać ich zwrotom.

Na przykładzie belki prawej z powyższego przypadku:

 Dodatnia wartość siły M_{i,1,Ed} odpowiada sytuacji, gdy moment ten rozciąga górne włókna przekroju belki prawej. Analogicznie wartość ujemna oznacza rozciąganie włókien dolnych.

• Dodatnia wartość siły N_{i,1,Ed} odpowiada sytuacji, gdy pręt ten (belka prawa) jest rozciągany. Analogicznie wartość ujemna oznacza ściskanie.

4.2.1 Dodawanie kombinacji sił

Aby stworzyć nową kombinację sił, należy skorzystać z przycisku "dodaj kombinację" (+), a następnie w polu *Nazwa* zbioru sił wpisać jej nazwę oraz w polach siły normalnej N_{Ed} , siły poprzecznej V_{Ed} i momentu zginającego M_{Ed} podać wartości tych sił. Zależnie od wybranego typu połączenia na odpowiedni zestaw sił w ramach danej kombinacji wchodzą 1, 2, 3 lub 4 wiersze definiujące po trzy siły wewnętrzne i odpowiadające ilości prętów schodzących się w danym węźle dla danego typu połączenia.

4.2.2 Usuwanie kombinacji sił

Aby usunąć kombinację sił, należy wybrać odpowiedni numer wiersza, następnie użyć opcji "usuń kombinację"(-). Przy usuwaniu wybranej kombinacji usuwany jest cały zestaw wierszy definiujących siły wewnętrzne we wszystkich prętach dla danego typu połączenia.

4.2.3 Współpraca z programem Rama 3D/2D

UWAGA: W przypadku przekazywania sił poprzez współpracę aplikacji EuroZłącza [do wersji 1.2 włącznie] z programem Rama 3D/2D [do wersji 14.0 włącznie] import sił odbywał się w trybie zgodności co do modułu ich wartości, a po stronie użytkownika występowała konieczność nadania odpowiedniego znakowania każdej trójce sił, aby były one zgodne z modelem wymaganym przez procedurę obliczeniową. W późniejszych wersjach obu programów wprowadzono mechanizmy automatyzacji, mocniej wspomagający w tej konieczności użytkownika, jednak kontrola zgodności modelu z zamierzeniami projektanta jest nadal wymagana.

Podane w formularzy siły traktowane są jako pozyskane z modelu prętowego statyki, czyli występujące w miejscu przecięcia się osi prętów. W niektórych modułach siły te są transformowane, dla danego modelu połączenia, do sił występujących w rzeczywistym miejscu styku. Na bazie tak przetransformowanych sił wykonuje się procedurę wymiarowania.

4.3 Wyniki wymiarowania

Po poprawnym wprowadzeniu danych połączenia i ewentualnej dodatkowej ich kontroli na rysunku należy przełączyć panel główny na *Wyniki wymiarowania*, aby przeprowadzić obliczenia

4.3.1 Komunikaty wyniki w oknie głównym

W oknie głównym przedstawione są obliczenia warunków geometrycznych i normowych dla:

- śrub,
- spoin,
- wymiarów połączenia.

Przy każdym sprawdzanym warunku geometrycznym lub normowym po prawej stronie okna *Wyniki wymiarowania* umieszczone są poglądowe rysunki (nieodzwierciedlające aktualnej konfiguracji połączenia) sygnalizujące rodzaj lub miejsce występowania błędu.

Warunki oznaczone kolorem czerwonym nie spełniają założeń normowych lub geometrycznych.

UWAGA: Nie wszystkie sprawdzane warunki są twardymi ograniczeniami normowymi. Niektóre, specjalnie oznaczone, są sugestiami twórców aplikacji bądź odnoszą się do sugestii występujących w literaturze przedmiotowej.

Użytkownik ma kontrolę nad wyświetlanymi w oknie błędami w wynikach, które może w każdej chwili uaktywnić i wyświetlić dla warunków geometrycznych i normowych, osobno dla: śrub, spoin i wymiarów połączenia.

W oknie przedstawione są również maksymalne wytężenia wynikające z obliczeń dla danego połączenia.

Po wyświetleniu wyników wymiarowania w głównym oknie programu pojawią się także komunikaty określające:

- liczbę niespełnionych warunków geometrycznych i normowych,
- liczbę przekroczonych warunków nośności,
- maksymalne wytężenie w obliczanym połączeniu.

÷	EuroZ	łącza 2.0 - WEWNĘTRZNA L	ICENCJA -	INTERSOF	T [L01]					×
Plik	Ustawienia Pomoc									
P	Model połączenia	Geometria Liczba niespełnionych warunków g	geometrycznyc	ch lub normowy	rch: 0 z 15					٦
55	Model sił	Wyświetlaj jedynie błędy	Wszystkie ((błędy: 0)	Sruby	(0)	Spoiny (C)) 🔽 Wymia	ry (0)	
F.	Wyniki wymiarowania	Nazwa Wymiary: blacha czołowa		Warunek e _{pb} ≥ t _p 20.0 ≥ 20.0) [mm]			llustracja		- Î
÷	Wydruki	 wydłużenie blachy czołow krawędź dolną elementu dochodzącego - e_e [warune 	vej ponad ek					^o pt]	— _t_	
	Wyniki	literaturowy] Warunek spełniony							×	
	Rysunek	,						e _{pb}		
		Wymiary: słup (dwuteownik) - smukłość środnika słupa Warunek spełniony		$\begin{array}{l} d \ / \ t_{w,c} \leq 69 \\ \epsilon = (235 \ / \ f \\ 0.81 \\ \end{array} \\ \begin{array}{l} 208.0 \ / \ 11. \\ [mm] \end{array}$	9*ε ξy)^0,5 = (23 0 = 18.9 ≤ 60	9 * 0.8	5.00)^0,5 = = 56.140			
		Wymiary: Wteżenia		β _{r=} ' < 45 [°	1			U	U	~
		Liczba przekroczonych warunków r Maksymalne wytężenie główne w o	nośności: 0 z obliczanej kon	6 strukcji wynosi:	: 0.72					
		Rodzaj						Wartość	Siły	^
		Smukłość panelu środnika słupa: Warunek smukłości żebra słupa w Warunek nośności przy zginaniu Warunek nośności na ścinanie: gn	warunek stosi v strefie ściska upy łącznikóv	owania metody anej v	obliczania no:	śności		OK OK 0.69 0.48	- 1 1	v
•	*	L Waninek nośności panelu środnik:	asiuna					0.54	1	_

4.4 Wydruki

Na panel Wydruki składają się cztery opcje: Rysunek, Raport wytężeń, Raport skrócony i Raport pełny.

₽	EuroZ	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	_ 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia		
55	Model sił	(1998) (1999) (1	<u>3 - 84, 220 x 620 x 20.</u>
	Wyniki wymiarowania		nt 📩 t
÷	Wydruki		
	Rysunek		
	Raport wytężeń		0 0 1
	Raport skrócony		
	Raport pelny		······································
			Т
4	•		

4.4.1 Rysunek

Po wprowadzeniu wszystkich niezbędnych danych, a przed wykonaniem obliczeń można sprawdzić zamodelowany węzeł poprzez użycie zakładki *Rysunek* dostępnej w panelu *Wydruki*. Wówczas wygenerowany zostanie rysunek poglądowy (niekonstrukcyjny) odzwierciedlający konfigurację modelu zgodną z danymi określonymi przez użytkownika.

Aby wygenerować rysunek zamodelowanego połączenia w formacie PNG w wysokiej rozdzielczości, należy wybrać zakładkę *Rysunek* w panelu *Wydruki*, a następnie zapisać go na dysku w formacie PNG za pomocą przycisku zamieszczonego w górnej części okna.

4.4.2 Raport wytężeń

Aby wygenerować raport w wersji zawierającej jedynie wynikowe podsumowanie projektu w postaci wytężeń, należy użyć opcji generowania raportu z podpanelu *Raport wytężeń*. Raport z przeprowadzonych obliczeń zostanie wygenerowany w formacie RTF lub PDF, zależnie od wyboru użytkownika w górnym pasku narzędzi zamieszczonym w tym oknie.

4.4.3 Raport skrócony

Aby wygenerować raport w wersji skróconej, należy użyć opcji generowania raportu z podpanelu *Raport skrócony*. Raport z przeprowadzonych obliczeń zostanie wygenerowany

w formacie RTF lub PDF, zależnie od wyboru użytkownika w górnym pasku narzędzi zamieszczonym w tym oknie.

4.4.4 Raport pełny

Aby wygenerować raport w wersji pełnej, należy użyć opcji generowania raportu z podpanelu *Raport pełny*. Raport z przeprowadzonych obliczeń zostanie wygenerowany w formacie RTF lub PDF, zależnie od wyboru użytkownika w górnym pasku narzędzi zamieszczonym w tym oknie.

4.5 Zapisywanie (odczytywanie) danych

4.5.1 Zapis danych

Aby zapisać dane, należy użyć opcji menu górnego *Plik – Zapisz* lub *Zapisz jako*. Pliki z danymi połączenia zapisywane są z rozszerzeniem *.ezp (*EuroZłącza* projekt).

4.5.2 Odczyt danych

Aby odczytać dane, należy użyć opcji menu górnego *Plik – Otwórz*.

5 Połączenie EuroZłącza SŁUP-BELKA DOCZOŁOWE

Algorytm dotyczy połączenia EuroZłącza SŁUP-BELKA DOCZOŁOWE, w którym oba główne elementy połączone są za pośrednictwem blachy czołowej bądź za pomocą spawu bezpośredniego. Połączenie jest jednostronne (dla jednej belki dochodzącej z jednej strony słupa), z możliwymi konfiguracjami:

Ogólnie:

- dopuszczalne przekroje dla belki oraz słupa obejmują dwuteowniki,
- belka dochodząca do półki słupa,
- belka dochodząca do słupa pod kątem innym niż prosty,
- istnieje możliwość zastosowania usztywnienia środnika słupa dodatkowymi żebrami: poprzecznym górnym (na przedłużeniu półki górnej belki), poprzecznym dolnym (na przedłużeniu półki dolnej belki) lub nakładką płaską.

Żebra wzmacniające półki belki dolne i (lub) górne, w postaci:

- skosów teownikowych (zamodelowanych jako teownik standardowy, połówka dwuteownika standardowego bądź blacha) lub płaskowników,
- połączenie blacha czołowa-żebro może być realizowane poprzez spoinę pachwinową bądź czołową,
- w razie zastosowania żeber teownikowych istnieje możliwość zastosowania usztywnienia środnika słupa dodatkowymi żebrami: górnym (na przedłużeniu półki żebra teownikowego górnego) oraz dolnym (na przedłużeniu półki żebra teownikowego dolnego).

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza SŁUP-BELKA DOCZOŁOWE

5.1 Typ połączenia

÷	Eur	sZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖 💌
Plik	Ustawienia Pomoc	
P		Wybór połączenia
55	Model sił	
Fi	Wyniki wymiarowania	
e	Wydruki	
	Dane ogólne	
	Blacha czołowa	EuroZłącza PODCIĄG-BELKA EuroZłącza SŁUP-BELKA EuroZłącza SŁUP-BELKA
	Żebro wzmacniające górne - teownik	DOCZOŁOWE
	Parametry spoin	
	Parametry śrub	
	Wzmocnienie środnika słupa	
	Sztywność połączenia	
		EuroZłącza BELKA-BELKA EuroZłącza BELKA-BELKA EuroZłącza KRATOWE Z BLACHĄ DOCZOŁOWE WĘZŁOWĄ
•	•	V Dostępny X Niedostępny - Demo

Dane ogólne 5.2

÷	EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 🗙						
Plik	Ustawienia Pomoc						
P	Model połączenia	Słup	HE 3	DO B (S 355)	Belka	IPE 400 (S 355)	
55	Model sił	Ogólny spo	sób wymiarowania	 Na siły obliczeniowe 	🔿 Na nośr	ność elementów	
E.	Wyniki wymiarowania	-Geometria p	orzy styku		-Żebra wzma ☑ Górne	acniające półki	
P	Wydruki						
	Typ połączenia			a			
	Dane ogólne			/	Dolne		
	Blacha czołowa						
	Żebro wzmacniające górne - teownik						
	Parametry spoin	Nachylenie					
	Parametry śrub	Typ połączenia					
	Wzmocnienie środnika słupa	 Tylko spawane Poprzez blachę czołową (spawane i śrubowe) 			śrubowe)		
	Sztywność połączenia	Globalne pa Konstru korozyji	arametry połączenia kcja narażona na wpły ne	wy atmosferyczne lub	□ Konstrul wibracyj	kcja naražona na oddziaływania udarowe i jne	
		Sposób łąc	czenia	Rodzaj węzła			
		Znak mome ③ M(+) - c	ntu zginającego belki− lodatni OM() - ujemny		RE IE	
4	•						

5.2.1 Słup

W opcji *Słup* znajduje się *Menadżer profili*, z którego należy wybrać odpowiedni profil słupa oraz z listy rozwijalnej rodzaj stali.

Manadżer profili			×
	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość HE 300 B h = 300.00 br = 300.00 tw = 11.00 tr = 19.00 R1 = 27.00 A = 14910.00 OK	< >

5.2.2 Belka

W opcji *Belka* znajduje się *Menadżer profili*, z którego należy wybrać odpowiedni profil belki oraz z listy rozwijalnej rodzaj stali.

Manadżer	r profili	x
IPE 120 IPE 140 IPE 160 IPE 180 IPE 200 IPE 220 IPE 220 IPE 240 IPE 270 IPE 300 IPE 300 IPE 300 IPE 300 IPE 300 IPE 360 IPE 400 IDC 4ED Materiał: S 355 (EN_10025_2) Image: State 100 (EN_10025_2)	Nazwa Wartość Typ profilu IPE 400 Wysokość przekroju [mm] h = 400.00 Szerokość półek przekroju br = 180.00 [mm] Grubość środnika przekroju tw = 8.60 [mm] Grubość półek przekroju [mm] tr = 13.50 Promień wewnętrzny [mm] R1 = 21.00 Pole powierzchni przekroju A = 8450.00 Anuluj OK	

5.2.3 Globalne parametry połączenia

Użytkownik może zaznaczyć następujące opcje:

Konstrukcja narażona na wpływy atmosferyczne lub korozyjne,

Konstrukcja narażona na oddziaływania udarowe i wibracyjne.

Po ustawieniu odpowiedniego znacznika parametr ten zostanie uwzględniony w obliczeniach.

5.2.4 Geometria przy styku

Użytkownik podaje kąt nachylenia belki względem słupa. Kąt podawany jest w stopniach. Pochylenie belki nie powinno mieć dużej wartości.

UWAGA (dotyczy aplikacji w wersji do 1.2): W połączeniu typu spawanego dla belki dochodzącej pod kątem innym niż prostym, może w niektórych sytuacjach nastąpić konieczność dodatkowego sprawdzenia poprawności wyliczeń nośności kładu spoin.

5.2.5 Sposób łączenia

Aplikacja umożliwia przeprowadzenie analizy połączenia jedynie w konfiguracji belki dochodzącej do półki słupa.

5.2.6 Rodzaj węzła

W polu należy wybrać odpowiedni rodzaj węzła dla połączenia doczołowego belki ze słupem.

UWAGA: W celu dokonania wymiarowania węzła środkowego (dwustronnego) dla obu stron połączenia, należy sekwencyjnie wykonać model dla połączenia dla belki prawej oraz oddzielnie (w osobnym projekcie) dla połączenia dla belki lewej, traktując belkę obliczaną jako belkę główną (w przyjętej konwencji – umieszczoną po prawej stronie rysunku poglądowego).

Ŧ	EuroZ	łącza 2.0 - \	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌					
Plik	Ustawienia Pomoc							
P	Model połączenia	Słup	HE 30	00 B (S 355)	Belka	IPE 400 (S 355)		
11	Model sił	Ogólny spo	osób wymiarowania	 Na siły obliczeniowe 	🔿 Na nośr	ność elementów		
R.	Wyniki wymiarowania	Geometria p	Geometria przy styku Zebra wzmacniające półki Z Góme					
e	Wydruki		[]					
	Typ połączenia			a				
	Dane ogólne			/	Dolne			
	Blacha czołowa							
	Żebro wzmacniające górne - teownik							
	Parametry spoin	Nachvlenie	Nachylenie belki $\alpha = 0.00$ deg					
	Parametry śrub	Tvo połaczenia						
	Wzmocnienie środnika słupa	Tylko spawane O Tylko spawane O Poprzez blachę czołową (spawane i śrubowe)						
	Sztywność połączenia	Globalne parametry połączenia						
		Konstrukcja naražona na wpływy atmosferyczne lub Konstrukcja naražona na oddziaływania udarow wibracyjne Sposób łączenia Rodzaj węzła						
		 Znak mome M(+) - c 	entu zginającego belki – dodatni OM(-) - ujemny				
4	*							

5.2.7 Żebra wzmacniające półki

Aby zastosować żebra wzmacniające półki, należy zaznaczyć pole *Górne (Dolne)* oraz wybrać typ żebra.

UWAGA: Użycie usztywnienia w postaci żebra z płaskownika jest możliwe tylko po stronie rozciąganej połączenia, tzn. wszystkie podane w panelu sił momenty zginające dla żebra górnego belki prawej muszą być nieujemne.

UWAGA (dotyczy aplikacji w wersji do 1.2): W połączeniu typu spawanego może w niektórych sytuacjach nastąpić konieczność dodatkowego ręcznego sprawdzenia nośności nieużebrowanego słupa na poprzeczne ściskanie w sytuacjach, gdy krytyczna dla całego połączenia nie jest nośność ściskanego pasa belki.

5.2.8 Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

5.2.9 Typ połączenia

Użytkownik wybiera typ połączenia:

- Tylko spawane oznacza to, że belka jest przyspawana bezpośrednio do słupa,
- *Poprzez blachę czołową (spawane i śrubowe)* oznacza to, że belka jest przyspawana do blachy czołowej, a blacha czołowa jest połączona ze słupem na śruby.

5.3 Blacha czołowa

Zakładka główna *Blacha czołowa* pojawi się w przypadku, gdy użytkownik w zakładce *Dane wejściowe – Typ połączenia* wybierze pole *Poprzez blachę czołową (spawane i śrubowe)*.

÷	Euro	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	Wymiary
-	Model sił	
II.	Wyniki wymiarowania	e_{pt}
H	Wydruki	$e_{pt} = 20 \text{ mm}$
	Typ połączenia	e _{pb} =mm
	Dane ogólne	$l_p = 20 \text{ mm}$
	Żebro wzmacniające górne - teownik	
	Parametry spoin	Baza materialowa
	Parametry śrub	Materiał S 355 (EN 10025 2) V Dobierz automatycznie baze materiałowa taka jak belka
	Wzmocnienie środnika słupa	En contrar annual and faul faul faul annual
	Sztywność połączenia	
•	•	

5.3.1 Blacha czołowa – Wymiary

W panelu *Wymiary* należy podać parametry blachy czołowej zgodnie z rysunkiem umieszczonym w tym polu, gdzie:

 l_P – szerokość blachy czołowej [mm],

 $\mathbf{e_{pt}}$ – odległość od krawędzi górnej blachy czołowej do krawędzi górnej pasa górnego belki [mm],

 $\mathbf{e_{pb}}$ – odległość od krawędzi dolnej blachy czołowej do krawędzi dolnej pasa dolnego belki [mm],

 $\mathbf{t_p}$ – grubość blachy czołowej [mm].

5.3.2 Blacha czołowa – Baza materiałowa

W polu *Baza materiałowa* należy podać rodzaj stali. Po kliknięciu opcji *Dobierz automatycznie bazę materiałową taką jak belka* do blachy czołowej zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

5.4 Żebro wzmacniające górne (dolne) – blacha

Zakładka Żebro wzmacniające górne (dolne) – blacha pojawi się po wyborze odpowiedniej ikony w zakładce Dane wejściowe – Żebra wzmacniające półki górne (dolne).

5.4.1 Blacha żebra – Wymiary

W polu *Wymiary* należy podać wymiary żebra zgodnie z rysunkiem umieszczonym w polu *Wymiary*, gdzie:

l_{stp} – szerokość blachy [mm],

h_{stp} – wysokość blachy [mm],

 $\mathbf{t_{stp}}$ – grubość blachy [mm],

c_{stp} – wcięcie przypołączeniowe [mm] (wyliczane automatycznie na bazie wymagań normy **PN-B-06200**).

5.4.2 Blacha żebra – Baza materiałowa

Po kliknięciu *Dobierz automatycznie bazę materiałową taką jak belka* do żebra wzmacniającego górnego (dolnego) zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

5.5 Żebro wzmacniające górne (dolne)-teownik

Zakładka Żebro wzmacniające górne (dolne)-teownik pojawi się po wyborze odpowiedniej ikony w zakładce Dane wejściowe – Żebra wzmacniające półki górne (dolne).

5.5.1 Żebro – Wymiary

Skos wzmacniający teowy można skonstruować na bazie teownika tablicowego, dwuteownika tablicowego lub blachownicy teowej.

₽	EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 🗙						
Plik	Ustawienia Pomoc						
P	Model połączenia	O Teownik standardowy	🔿 Połówka dwuteownika stan	dardowego	 Spawany z bla 	ch	
5	Model sił	Wymiary		Wymiary			
6	Wyniki wymiarowania	ά	α	Ť			
-	vvydruki	lstt h'stt	stt = 250 mm	s _{sst}	t _{sst, W}	s _{stt} = <u>308.06</u> mm	
	Typ połączenia		h _{stt} = 180 mm			t _{stt.w} = 12 mm	
	Dane ogolne	C _{stt}	t _{stt,f} = 14 mm		b _{stt} =	b _{stt} = 163 mm	
	Blacha czołowa	Waiania and descentions	h'stt = 97.38 mm	<u>-</u>	— D _{sst} —		
-	Zebro wzmacniające gome - teownik	C _{stt} = 60 mm	α = 35.75 deg				
	Parametry śruh	Baza materiałowa					
	Wzmocnienie środnika słupa	Norma PN-I	ma PN-EN 1993-1-1				
	Sztywność połaczenia	Materiał S 35	5 (EN_10025_2) ~	Dobierz au	tomatycznie bazę ma	teriałową taką jak belka	
4	•						

W polu *Wymiary* należy podać wymiary żebra zgodnie z rysunkiem umieszczonym w polu *Wymiary* (możliwość wpisania odpowiednich wymiarów uzależniona jest od rodzaju wzmocnienia), gdzie:

- l_{sbt} szerokość teownika liczona na rzucie poziomym [mm],
- $\mathbf{h_{sbt}}$ wysokość teownika liczona na rzucie pionowym [mm],
- t_{sbt,f} grubość pasa górnego teownika [mm],
- $\mathbf{s_{sbt}}$ długość teownika liczona na rzucie z góry [mm],
- t_{sbt,w} grubość środnika teownika [mm],

b_{sbt} – szerokość teownika liczona na rzucie z góry [mm],

 c_{sbt} – wcięcie przypołączeniowe [mm] (wyliczane automatyczne na bazie wymagań normy **PN-B-06200**),

 α – wyznaczony automatycznie kąt nachylenia teownika względem normalnej do belki, liczony w stopniach dziesiętnych [°].

 h'_{sbt} – automatycznie wyznaczona rzeczywista wysokość teownika [mm].

5.5.2 Żebro – Rodzaj

W polu Żebro – Rodzaj należy wybrać rodzaj żebra wzmacniającego górnego (dolnego):

- Teownik standardowy (wybór teownika z katalogu),
- Połówka dwuteownika standardowego (wybór połówki dwuteownika z katalogu),
- Spawany z blach.

W opcji *Dwuteownik (standardowy)* i *Teownik* dostępny jest *Menadżer profili*, z którego należy wybrać odpowiedni profil żebra wzmacniającego oraz wybrać rodzaj stali.

46	Г						
	Eurozi	ącza 2.0 - WEWINĘTKZINA LICENCJA - INTERSOFT					
Plik		Parametry spoin					
P	Model połączenia	Z niepełnym przetopem	Automatyczny dobór przybliżonej wystarczającej grubości spoiny na bazie nośności przekroju belki				
5	Model sił	Sposób wymiarowania spoin	Rodzaj spoiny				
F	Wyniki wymiarowania						
÷	Wydruki		n. n				
	Typ połączenia	V ^a bw	V ^a stp				
	Dane ogólne						
	Blacha czołowa						
	Żebro wzmacniające górne - blacha	Belka Blacha wzmacniaj	jąca góma Żebro wzmacniające dolne				
	Żebro wzmacniające dolne - teownik	Grubość a _{bw} = 5 mm Grubość a _{stp}	= 5 mm Grubosc a _{sbt,w} = 5 mm Grubosc a _{sbt,w} = 8 mm				
-	Parametry spoin		SDLT SDLT				
	Parametry śrub						
	Wzmocnienie środnika słupa						
	Sztywność połączenia						
•	•						

5.6 Parametry spoin

W panelu *Parametry spoin* użytkownik może wybrać automatyczny dobór przybliżonej i wystarczającej grubości spoiny na bazie nośności elementów przekroju belki. Po wybraniu automatycznego doboru grubości spoiny sekcja *Belka* zostaje dezaktywowana i wypełniona wyliczoną wartością.

5.6.1 Belka

W polu Belka należy podać grubości spoin:

 a_{bw} – grubość spoiny łączącej środnik belki ze słupem (lub blachą czołową) [mm],

 a_{tf} – grubość spoiny łączącej pasy belki ze słupem (lub blachą czołową) [mm].

5.6.2 Rodzaj spoiny

W polu *Rodzaj spoiny* należy podać rodzaj spoiny łączącej belkę ze słupem lub blachą czołową:

- *Pachwinowa* w przypadku wyboru spoiny pachwinowej możliwy jest automatyczny dobór przybliżonej wartości grubości spoiny na bazie nośności przekroju belki,
- *Czołowa* w przypadku wyboru spoiny czołowej możliwy jest wybór spoiny z niepełnym przetopem; spoina czołowa z pełnym przetopem przyjmuje grubość dochodzącej blachy.

5.6.3 Sposób wymiarowania spoin

W sekcji *Sposób wymiarowania spoin* moduł automatycznie zaznacza pole *Na nośność elementu*, jeżeli w zakładce *Dane wejściowe* wybrano globalny sposób wymiarowania nośności *Na nośność elementu* (opcja dotyczy jedynie połączenia typu spawanego).

W przypadku globalnego wymiarowania *Na siły obliczeniowe* (dla połączenia typu spawanego) istnieje możliwość indywidualnego sprawdzania nośności spawów dla procedury takiej jak dla wymiarowania *Na nośność elementów*. Wynika to z ograniczeń normowych, która dla pewnych konfiguracji modelu wymaga właśnie takiego podejścia do obliczania spawów. Pozostałe części podstawowe węzła mogą być wtedy nadal obliczane *Na siły obliczeniowe*.

5.6.4 Blacha wzmacniająca żebra górna (dolna)

W polu należy podać zgodnie z rysunkiem (opcja pojawia się w zależności od wyboru typu wzmocnienia):

 a_{stp} – grubość spoiny łączącej blachę wzmacniającą żebra górną (dolną) z belką i słupem [mm].

5.6.5 Żebro wzmacniające górne (dolne)

W polu należy podać zgodnie z rysunkiem (opcja pojawia się w zależności od wyboru typu wzmocnienia):

 $a_{sbt,w}$ – grubość spoiny łączącej środnik żebra górnego (dolnego) z belką i słupem [mm],

 $a_{sbt,f}$ – grubość spoiny łączącej półkę żebra górnego (dolnego) z belką i słupem [mm].
5.7 Parametry śrub

Zakładka pojawia się w przypadku wyboru w zakładce *Dane wejściowe* opcji *Poprzez blachę czołową (spawane i śrubowe)*.

÷	EuroZł	ącza 2.0 - WEWNĘTRZNA L	ICENCJA - INTERSOFT [L01]	_ 🗆 🗙		
Plik	Ustawienia Pomoc					
P	Model połączenia	Geometria połączenia	Kategoria połączenia D 🔹	Rozstawy pionowe śrub		
	Model sił		Liczba wierszy w =4	▶e1 80 mm p1 180 mm		
ħ	Wyniki wymiarowania	$\begin{pmatrix} + & 0 & 0 \\ p_1 & 0 & 0 \\ + & 0 & 0 \end{pmatrix} w$	s ₁ = 120 mm	p2 80 mm p3 200 mm		
-	Wydruki					
	Typ połączenia	* ^S 1 *		0 0		
	Dane ogólne					
	Blacha czołowa	Odległość blachy czołowej / pien	wszego szeregu śrub od krawędzi —			
	Żebro wzmacniające górne - teownik	and pu	e _{cep} =0 mm			
	Parametry spoin	e _{1,c} e _{cep}		e _{end} = 80.00 mm		
	Parametry śrub					
	Wzmocnienie środnika słupa			Liczba szeregów rozciąganych		
	Sztywność połączenia			Dobierz automatycznie		
		□	e _{1,c} = 80 mm	Dla M+ (od góry): 3 ~		
		Baza materiałowa				
			Noma PN-EN 1993-1-8 -			
		6	Klasa 8.8 -			
		Cześć	ć ścinana Gwintowana 🔹			
4	•					

5.7.1 Kategoria połączenia

Zgodnie z zasadami modelowania połączenia według normy **PN-EN 1993:1-8:2006**, należy wybrać jedną z kategorii połączenia doczołowego: *D* lub *E*.

UWAGA: Dla konstrukcji narażonej na oddziaływanie udarowe i wibracyjne automatycznie wybierana jest kategoria połączenia E bez możliwości jej zmiany.

5.7.2 Geometria połączenia

W polu *Liczba wierszy* należy wpisać liczbę wierszy śrub użytych w połączeniu belka-słup typu doczołowego. Po wybraniu odpowiedniej liczby wierszy pojawi się automatycznie lista, w której należy wpisać odległości między wierszami śrub:

 e_1 – dla pierwszej śruby – liczone od krawędzi górnej blachy do osi pierwszego wiersza śrub [mm],

 p_1 – dla każdej kolejnej śruby – liczone w pionie od osi (wiersza) śruby poprzedniej do osi (wiersza) śruby kolejnej [mm].

 s_1 – odległość między kolumnami śrub, liczona w poziomie.

Opcja *Centruj w pionie* pozwala na wycentrowania szeregów śrub (nadanie tej samej wartości p_1 każdemu szeregowi).

Dla połączenia kategorii *E* należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

UWAGA: Po stronie zewnętrznej rozciąganego pasa belki (skosu) nie powinien znajdować się więcej niż jeden (rozciągany) szereg śrub. W przypadku użycia po tej stronie blachy wzmacniającej można zastosować większą liczbę szeregów, jednak wszystkie one powinny się znajdować poniżej zewnętrznej krawędzi blachy. Należy przez to rozumieć także spełnienie warunku minimalnego zagłębienia szeregu śrub poniżej tej krawędzi.

UWAGA (dotyczy aplikacji w wersji 1.0): W przypadku zastosowania szeregu śrub po stronie zewnętrznej rozciąganego pasa skosu teowego lub szeregu śrub po stronie zewnętrznej rozciąganego pasa belki bez użycia dodatkowego usztywnienia po stronie rozciąganej - rozstaw śrub s1 nie powinien być większy od dwukrotności odległości tegoż szeregu od lica pasa rozciąganego."

5.7.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

5.7.4 Liczba szeregów rozciąganych

Należy wybrać ilość szeregów śrub rozciąganych.

Po wstawieniu znacznika *Dobierz automatycznie* algorytm dobierze szeregi śrub rozciąganych.

UWAGA (dotyczy aplikacji w wersji 1.0): Użytkownik powinien dokonać sprawdzenia wyników działania aplikacji w zakresie finalnej nośności połączenia na ścinanie. W niektórych sytuacjach może dojść do niepoprawnego uznania za wartość krytyczną wartości nośności śrub na docisk (wartość niepoprawna), zamiast wartości nośności śrub na ścięcie (wartość poprawna). Może to doprowadzić do przeszacowania nośności połączenia

5.7.5 Odległość blachy czołowej oraz pierwszego szeregu śrub o krawędzi słupa

 e_{cep} –oznacza odległość od krawędzi górnej słupa ostatniej kondygnacji do krawędzi górnej blachy czołowej,

 $e_{1,c}$ –suma odległości $e_{cep} + e_1$.

5.8 Wzmocnienia środnika słupa

5.8.1 Brak

Wybór opcji *Brak* oznacza brak wzmocnienia środnika słupa dodatkowymi żebrami lub nakładkami.

5.8.2 Zdwojone żebra poprzeczne

5.8.2.1 Parametry żeber usztywniających poprzecznych

Żebra zostaną zastosowane w słupie na przedłużeniu skrajnych pasów dochodzących półek belki lub skosów teowych.

Po wyborze *Zastosuj wzmocnienia dla pasów skrajnych* należy podać odpowiednie grubości (dla aktywnych elementów) w sekcji *Parametry żeber usztywniających poprzecznych*:

 t_{sstc} – grubość wzmocnienia górnego (na przedłużeniu półki teowego skosu górnego) [mm],

- t_{sbtc} grubość wzmocnienia górnego (na przedłużeniu górnej półki belki) [mm],
- t_{sbbc} grubość wzmocnienia górnego (na przedłużeniu dolnej półki belki) [mm],
- t_{ssbc} grubość wzmocnienia dolnego (na przedłużeniu półki teowego skosu dolnego) [mm].

5.8.2.2 Baza materiałowa

W tej sekcji należy podać rodzaj stali użytej dla żeber usztywniających poprzecznych słupa.

Po zaznaczeniu opcji *Dobierz automatycznie bazę materiałową taką jak słup* do żeber usztywniających poprzecznych zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla słupa.

5.8.3 Nakładki środnika

5.8.3.1 Parametry nakładki środnika słupa – Wymiary

₽	EuroZ	ącza 2.0 - WEWNĘTRZ	NA LICENCJA - INTERSOFT [L(D1] — 🗆 🗙
Plik	Ustawienia Pomoc			
P	Model połączenia	Typ wzmocnienia O Bra	ak 🔿 Zdwojone żebra poprzeczne	⊙ Nakładka środnika słupa
5	Model sił	Parametry nakładki środni	ka	Rodzaj spoiny
E.	Wyniki wymiarowania		Jednostronna	Pachwinowa O Czołowa
÷	Wydruki	tsd	l _{ef} = 200 mm	Grubośćspoinya _s = 10 mm
	Typ połączenia	h _{set}	h _{ef} = 500 mm	
	Dane ogólne	+	t c = 10 mm	
	Blacha czołowa		'st i io mm	
	Żebro wzmacniające górne - teownik			
	Parametry spoin			
	Parametry śrub	Baza materiałowa		
	Wzmocnienie środnika słupa	Norma	PN-EN 1993-1-1 *	
	Sztywność połączenia	Materiał	S 355 (EN_10025_2) *	Dobierz automatycznie bazę materiałową taką jak słup
$\square \triangleleft$	•			

Należy podać zgodnie z rysunkiem umieszczonym w sekcji *Parametry nakładki środnika*:

 l_{sf} – długość nakładki [mm],

h_{sf} – wysokość nakładki [mm],

 t_{sf} – grubość nakładki [mm].

Należy określić, czy nakładka jest jedno-, czy dwustronna.

5.8.3.2 Parametry nakładki środnika słupa – Rodzaj spoiny

W sekcji *Rodzaj spoiny* należy określić rodzaj spoiny oraz jej grubość dla połączenia nakładki wzmacniającej środnik słupa z tym słupem:

- Pachwinowa,
- Czołowa.

 a_s – grubość spoiny łączącej nakładki środnika słupa z środnikiem tego słupa [mm].

5.8.3.3 Parametry nakładki środnika słupa – Baza materiałowa

W sekcji tej należy podać rodzaj stali użyty dla nakładki wzmacniającej środnik słupa.

Po zaznaczeniu opcji *Dobierz automatycznie bazę materiałową taką jak słup* do nakładki wzmacniającej środnik słupa zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla słupa.

5.9 Sztywność połączenia

5.9.1 Klasyfikacja węzła ze względu na sztywność

Wybranie tej opcji skutkuje przeprowadzeniem procedury wyznaczania sztywności połączenia.

5.9.2 Parametry sztywności

Parametr *Zamierzona sztywność węzła* określa jeden z trzech wariantów:

- *Węzeł sztywny* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł sztywny,
- *Węzeł podatny* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł podatny,
- *Węzeł nominalnie przegubowy* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł nominalnie przegubowy,

₽	EuroZł	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	☑ Klasyfikacja węzłów ze względu na sztywność
5	Model sił	Parametry sztywności
5	Wyniki wymiarowania	⊙ węzeł sztywny
e	Wydruki	węzeł podatny węzeł nominalnie przegubowy
	Typ połączenia	
	Dane ogólne	rozpiętość belki w osiach słupów L _b = 3800 mm
	Blacha czołowa	k _b = 8 v
	Żebro wzmacniające górne - teownik	
	Parametry spoin	
	Parametry śrub	
	Wzmocnienie środnika słupa	
	Sztywność połączenia	
•	•	

Należy podać parametry niezbędne do wyznaczenia sztywności i dokonania klasyfikacji:

 L_b –rozpiętość belki w osiach słupów [mm],

 k_b -parametr powiązany z ogólną sztywnością konstrukcji.

6 Połączenie EuroZłącza PODCIĄG-BELKA

Algorytm dotyczy połączenia EuroZłącza PODCIĄG-BELKA, w którym oba główne elementy połączone są za pośrednictwem przykładek środnika lub żebra podciągu. Połączenie jest jednostronne (dla jednej belki dochodzącej z jednej strony podciągu), z możliwymi konfiguracjami:

- a) Ogólnie:
- dopuszczalne przekroje dla belki oraz podciągu obejmują dwuteowniki,
- siły V oraz M obciążające belkę dwuteownika w silniejszych osiach jej przekroju (orientacja pionowa),
- połączenie wykonane za pomocą przykładek środnika lub bezpośrednio do żebra podciągu,
- belka dochodząca do środnika podciągu,
- belka z wycięciami półki lub półek pod pasy podciągu.
- b) Przykładki:

÷	E	uroZłącza 2.0 - V	vewnętrzna lice	NCJA - INTERSOFT [L	01]	_ 🗆 🗡
Plik	Ustawienia Pomoc					
P	Model połączenia	Podciąg	IPE 40	0 (S 235)	Belka	IPE 220 (S 235)
55	Model sił	Ogólny spo	sób wymiarowania	Na siły obliczeniowe	O Na nośr	ność elementów
R.	Wyniki wymiarowania	Elementy łą	czące		-Geometria p	rzy styku
e	Wydruki					
	Typ połączenia					
	Dane ogólne					
	Parametry przykładki					
	Połączenie belka-blacha (przykładka)	Pertile	tka plaskownikowa		Murówa	ni da aśmej krzwadzi padejzau
	Połączenie podciąg-blacha (przykładka)	O Połącze	nie do żebra podciągu		Wyrówn	aj pośrodku podciągu
					☐ Wyrówn	aj do dolnej krawędzi podciągu
		Przykład Stolik mo	lka po obu stronach ontażowy		s =	15 mm r = 0 mm
		Globalne pa	rametry połączenia			
		Kategoria po	ołączenia śrubowego	A - Kor	nstrukcja naraż	ona na wpływy atmosferyczne lub korozyjne
		Wycięcia pr	zykońcowe 5	1		
			∓ [
				¦- ∽i=[30 mm	°2 =30 mm
			91 	4		
4	(

- użycie przykładek (w formie płaskowników),
- przykładki połączone są ze środnikiem belki oraz środnikiem podciągu,
- przykładki mogą występować pojedynczo (po jednej stronie środnika belki) lub podwójnie (po obu stronach środnika belki),

- w przypadku zastosowania dwóch przykładek są one symetryczne względem środnika belki,
- połączenie belka-przykładka może być realizowane poprzez spoinę pachwinową bądź poprzez śruby,
- połączenie podciąg-przykładka może być realizowane dla płaskownika poprzez spoinę czołową lub pachwinową (spoina tylko po zewnętrznej stronie blachy bądź po zewnętrznej oraz wewnętrznej).
- c) Żebra podciągu:

-	EuroZł	ącza 2.0 - W	ewnętrzna licencja - interso	FT [L01]]	_ 🗆 🗙
Plik	Ustawienia Pomoc					
ця,	Model połączenia	Podciąg	IPE 400 (S 235)		Belka	IPE 220 (S 235)
	Model sił	Ogólny spos	ób wymiarowania 💿 Na siły obliczenio	owe	O Na nośność elementów	
1	Wyniki wymiarowania	Elementy rac	22qCe		Geometria p	T T
÷	Wydruki					
	Typ połączenia					
	Dane ogólne					s
	Parametry użebrowienia podciągu					
	Połączenie belka-blacha (żebro)				A Westwa	ni da afarai kanundri nadainan.
		Polaczer	na praskownikowa			aj do gomej krawędzi podciągu
		O reiques			Wyrównaj posłodka podciągu	
		Przykładka po obu stronach				
		Stolik mor	ntażowy		s =	15 mm r = 0 mm
		Globalne par	ametry połączenia			
		Kategoria po	łączenia śrubowego A 🔻	Konstr	ukcja naraż	ona na wpływy atmosferyczne lub korozyjne
		Wycięcia prz	ykońcowe			
				ਮ =	30 mm	c ₂ = 30 mm I = 80 mm
4	•					

- połączenie belka-żebro może być realizowane poprzez spoinę pachwinową bądź poprzez śruby,
- połączenie podciąg-żebro nie jest sprawdzane,
- połączenie belka-żebro może być realizowane na spoiny bądź śruby.
- d) Stolik montażowy:
- użycie stolika montażowego nie jest możliwe w przypadku użycia połączenia do żebra podciągu,
- parametry stolika montażowego podawane są jako konstrukcyjne jest on umieszczany na rysunku, ale nie podlega obliczeniom ani weryfikacji.

6.1 Typ połączenia

₽	Euro	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖 💌
Plik	Ustawienia Pomoc	
P		Wybór połączenia
11	Model sił	
5	Wyniki wymiarowania	
e	Wydruki	
	Dane ogólne	
	Parametry użebrowienia podciągu	EuroZłącza PODCIAG-BELKA EuroZłącza SŁUP-BELKA EuroZłącza SŁUP-BELKA
	Połączenie belka-blacha (żebro)	DOCZOŁOWE
		EuroZłącza BELKA-BELKA
•	•	V Dostępny X Niedostępny - Demo

6.2 Dane ogólne

6.2.1 Podciąg

W opcji *Podciąg* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil podciągu oraz z listy rozwijalnej rodzaj stali.

Manadżer profili			x
IPE 120 IPE 140 IPE 160 IPE 180 IPE 200 IPE 300 IPE 400 IDE 4E0 IDE 4E0	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość IPE 400 h = 400.00 br = 180.00 tw = 8.60 tr = 13.50 Rt = 21.00 A = 8450.00 OK	<

6.2.2 Belka

W opcji *Belka* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil belki oraz z listy rozwijalnej rodzaj stali.

Manadżer profili			x
	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość IPE 220 h = 220.00 br = 110.00 tw = 5.90 tr = 9.20 R1 = 12.00 A = 3340.00 OK	< .

6.2.3 Globalne parametry połączenia

W przypadku połączenia belki do podciągu za pomocą przykładki lub żebra na śruby zgodnie z zasadami modelowania połączenia należy wybrać *Kategorię połączenia śrubowego*:

- A,
- **B** (należy dodatkowo podać siły charakterystyczne w panelu **Model sił**),
- *C*.

Opcja ta jest dostępna tylko wówczas, gdy dla połączenia belka-blacha lub belka-żebro ustawiono wcześniej *Typ połączenia*: *śrubowy*.

W przypadku zaznaczenia opcji *Konstrukcja narażona na wpływy atmosferyczne lub korozyjne* aplikacja uwzględni ten parametr w obliczeniach.

6.2.4 Elementy łączące

W sekcji można wybrać następujące opcje:

- Przykładka po obu stronach oznacza, że w styku są dwie przykładki; odznaczenie tej opcji oznacza, że w styku jest jedna przykładka,
- *Stolik montażowy* w połączeniu zastosowany jest stolik montażowy w formie kątownika (przyjęty konstrukcyjnie nie wpływa na obliczenia),
- rodzaj połączenia belki z podciągiem: Przykładka płaskownikowa lub Połączenie do żebra podciągu.

UWAGA: W przypadku wybrania konfiguracji modelu z użyciem przykładki środnika belki procedura obliczeniowa nie zawiera sprawdzenia sztywności środnika podciągu w kierunku bocznym. Na potrzeby obliczeń sprawdza się jedynie przybliżone warunki, po spełnieniu których zakłada się, że siły poprzeczne są przenoszone poprzez podciąg.

Warunki te opierają się na założeniu przybliżonym i nie można ich traktować jako założenia definitywnego. Dlatego w przypadku konstruowania styku z wykorzystaniem przykładki środnika belki zaleca się zastosowanie dodatkowego usztywnienia środnika podciągu (np. belka dochodząca z drugiej strony podciągu, żebro środnika podciągu na przedłużeniu belki lub innego rodzaju stężenie).

6.2.5 Geometria przy styku

s –odsunięcie pomiędzy krawędzią środnika podciągu a krawędzią czoła belki [mm],

r –odsunięcie pomiędzy krawędzią zewnętrzną pasa górnego belki a krawędzią zewnętrzną pasa górnego podciągu [mm],

Dostępne są także opcje:

 a) Wyrównaj do górnej krawędzi podciągu – oznacza, że krawędź zewnętrzna pasa górnego belki jest na identycznym poziomie co górna krawędź pasa górnego podciągu,

Wyrównaj pośrodku podciągu – oznacza, że oś belki pokrywa się z osią podciągu,

Wyrównaj do dolnej krawędzi podciągu – oznacza, że krawędź dolna pasa dolnego belki jest na identycznym poziomie co dolna krawędź pasa dolnego podciągu.

6.2.6 Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

6.2.7 Wycięcia przykońcowe

 c_1 – wycięcie belki od krawędzi pasa górnego w pionie [mm],

 c_2 – wycięcie belki od krawędzi pasa dolnego w pionie [mm],

l –długość wycięć od krawędzi czołowej środnika belki w poziomie [mm].

6.3 Parametry przykładki

6.3.1 Typ elementu

Możliwy do wykorzystania element łączący to płaskownik.

6.3.2 Parametry przykładki – Wymiary

Należy podać wymiary przykładki, gdzie:

 l_{sip} – szerokość blachy przykładki [mm],

 h_{sip} – wysokość blachy przykładki [mm],

t_{sip} –grubość blachy przykładki [mm].

W przypadku wyboru przykładki po obu stronach wymiary przykładki są identyczne dla obu przykładek.

6.3.3 Parametry przykładki – Położenie

 d_{sip} – odległość krawędzi górnej przykładki do krawędzi górnej pasa belki [mm].

Opcja Wycentruj centruje położenie przykładki względem osi belki dochodzącej do podciągu.

6.3.4 Parametry przykładki – Baza materiałowa

W polu *Baza materiałowa* należy podać rodzaj zastosowanej stali. Po wybraniu opcji *Dobierz automatycznie bazę materiałową taką jak belką* do przykładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

6.4 Połączenie belka-blacha (przykładka)

Zakładka pojawi się w przypadku wyboru połączenia podciąg-belka typu płaskownikowego.

6.4.1 Typ połączenia – Spawane

 a_{sipb} – grubość spoiny łączącej płaskownik przykładki do belki [mm].

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza PODCIĄG-BELKA

₽	EuroZ	lącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	Typ połączenia 💿 Spawane 🔿 Śrubowe
點	Model sił	Parametry spoiny
E.	Wyniki wymiarowania	
e	Wydruki	
	Typ połączenia	
	Dane ogólne	
	Parametry przykładki	a _b
	Połączenie belka-blacha (przykładka)	
	Połączenie podciąg-blacha (przykładka)	Grubość a _{sipb} = 3 mm
4	•	

6.4.2 Typ połączenia – śrubowe

₽		EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA	- INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc		
P		Typ połączenia 🔿 Spawane 💿 Śrub	owe
5 5	Model sił	Parametry ogólne	Geometria połączenia
囁	Wyniki wymiarowania	k	Liczba wierszy w = 3
-	Wydruki		e ₁ = 28 mm
	Typ połączenia	$ \begin{array}{c} P_1 \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \uparrow \\ \downarrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \uparrow \\ \uparrow$	W e2 = 40 mm
	Dane ogólne		Centruj w pionie P1 - ""0 mm
	Parametry przykładki		
	Połączenie belka-blacha (przykładka)	1 2 2 2	
	Połączenie podciąg-blacha (przykładka)	Kategoria połączenia 🛛 A 🗸 👻	
		Baza materiałowa	
		Norma PN-E	IN 1993-1-8 ~
		Klasa 8.8	•
		Średnica d M16	•
		Część ścinana Gwin	towana 👻
4		•	

6.4.2.1 Geometria połączenia

w – oznacza liczbę wierszy śrub,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – odległość w pionie od osi śruby umieszczonej w pierwszym wierszu do krawędzi górnej płaskownika przykładki [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej płaskownika przykładki [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie-odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii B lub C należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

UWAGA: Jeżeli dla konfiguracji połączenia wybrane zostanie połączenie śrubowe na pojedynczą śrubę (jeden wiersz i jedna kolumna), zostanie ono uznane za przegubowe. W takim wypadku odpowiadający moment w panelu *Model sił* powinien być równy zeru. W przeciwnym razie obliczenia zostaną zablokowane.

6.4.2.2 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

6.5 Połączenie podciąg-blacha (przykładka)

6.5.1 Rodzaj spoiny – Pachwinowa

Tylko spoiny zewnę**trzne** – oznacza, że płaskownik jest przyspawany do podciągu pojedynczą spoiną wykonaną po zewnętrznej krawędzi płaskownika (dla pojedynczej przykładki) lub parą spoin, po jednej dla każdej przykładki (dla przykładki podwójnej).

Odznaczenie tego pola spowoduje, że płaskownik będzie przyspawany parą spoin wykonanych po obu krawędziach płaskownika lub płaskowników.

UWAGA: Wykonanie spoiny czołowej pełnej typu K może być niemożliwe z punktu widzenia technologicznego ze względu na brak wystarczającego odstępu pomiędzy przykładkami. Użytkownik może obejść problem poprzez umieszczenie na rysunku konstrukcyjnym projektowanego węzła spoiny typu V.

Automatyczny dobór spoiny– grubość spoiny pachwinowej [mm] obliczona na pełną nośność blachy zostanie automatycznie wyznaczona i umieszczona w polu a_{gsip} .

6.5.2 Rodzaj spoiny – Czołowa

 a_{gsip} – grubość spoiny czołowej [mm].

W przypadku wyboru spoiny z niepełnym przetopem należy podać grubość spoiny czołowej.

Automatyczny dobór spoiny – grubość spoiny czołowej [mm] obliczona na pełną nośność blachy zostanie automatycznie wyznaczona i umieszczona w polu a_{gsip} .

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza PODCIĄG-BELKA

₽	Euro	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	Typ połączenia 💿 Spawane
	Model sił	Rodzaj spoiny 🔿 Pachwinowa 💿 Czołowa
1	Wyniki wymiarowania	Parametry spoiny
e	Wydruki	
	Typ połączenia	va
	Dane ogólne	
	Parametry przykładki	
	Połączenie belka-blacha (przykładka)	
	Połączenie podciąg-blacha (przykładka)	
		Z niepełnym przetopem 🛛 Automatyczny dobór spoiny
		Grubość a _{gsip} = 5 mm
- 4		
	•	

6.6 Parametry użebrowania podciągu

÷	Euro	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🛛 🗕 🗖 🗙
Plik	Ustawienia Pomoc	
P		Typ elementu 💿 Płaskownik
55	Model sił	Wymiary
	Wyniki wymiarowania	
e	Wydruki	
	Typ połączenia Dane ogólne	h_{cs}
	Połączenie belka-błacha (żebro)	$l_{cs} = $ 86 mm $h_{cs} = $ 373 mm $t_{cs} = $ 10 mm
		Baza materialowa Norma PN-EN 1993-1-1 *
		Materiał S 235 (EN_10025_2)
4	•	

Zakładka pojawi się w przypadku wyboru dla złącza podciąg-belka *Połączenia do żebra podciągu* w panelu *Dane wejściowe*.

 l_{cs} – szerokość żebra ustalona automatycznie przez algorytm: wyznaczona od krawędzi środnika podciągu do krawędzi półki podciągu, liczona w poziomie,

 h_{cs} – wysokość żebra ustalona automatycznie przez algorytm: wysokość środnika podciągu pomniejszona o grubości półek podciągu,

 t_{cs} – grubość żebra [mm].

6.6.1 Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wybraniu opcji *Dobierz automatycznie bazę materiałową taką jak podciąg* do żebra zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla podciągu.

6.7 Połączenie belka-blacha (żebro)

6.7.1 Typ połączenia – Spawane

 a_{cs} – grubość spoiny łączącej belkę do żebra podciągu [mm].

6.7.2 Typ połączenia – Śrubowe

₽	EuroZ	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	_ 🗆 ×
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 🔿 Spawane 💿 Śrubowe	
5	Model sił	Parametry ogólne	Geometria połączenia
F.	Wyniki wymiarowania	e,†	Liczba wierszy w = 2 Liczba kolumn k = 1
6	Wydruki	P ₁ + +	e ₁ = 35 mm
	Typ połączenia	+ + +	$e_2 = 40 \text{ mm}$
	Dane ogólne		✓ Centruj w pionie P1 = 30 mm
_	Parametry użebrowienia podciągu	<u>p₂, , e₂</u>	
	Połączenie belka-blacha (żebro)		
		Kategoria połączenia 🦷 👻	
		Baza materiałowa	
		Noma PN-EN 1993-1-8	
		Klasa 6.8 🗸	
		Średnica d M16 👻	
		Część ścinana Nienagwintowana 🔻	

6.7.2.1 Geometria połączenia

w – oznacza liczbę wierszy śrub,

k – oznacza liczbę kolumn śrub,

 e_1 – odległość w pionie od osi śruby umieszczonej w pierwszym wierszu do krawędzi górnej dochodzącej belki, uwzględniająca podane wcięcia belki [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej zewnętrznej żebra usztywniającego podciągu [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii \mathbf{B} lub \mathbf{C} należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

UWAGA: Jeżeli dla konfiguracji połączenia wybrane zostanie połączenie śrubowe na pojedynczą śrubę (jeden wiersz i jedna kolumna), zostanie ono uznane za przegubowe. W takim wypadku odpowiadający moment w panelu *Model sił* powinien być równy zeru. W przeciwnym razie obliczenia zostaną zablokowane.

6.7.2.2 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

7 Połączenie EuroZłącza SŁUP-BELKA

Algorytm dotyczy połączenia słup-belka (rygiel), w którym oba główne elementy połączone są za pośrednictwem przykładek środnika oraz ew. nakładek półek belek. Połączenie jest jednostronne (dla jednej belki dochodzącej z jednej strony słupa), z możliwymi konfiguracjami:

- a) Ogólnie:
- dopuszczalne przekroje dla belki oraz słupa obejmują dwuteowniki,
- siły V oraz M obciążające belkę dwuteownika w silniejszych osiach jej przekroju (orientacja pionowa),
- połączenie wykonane za pomocą przykładek środnika oraz ew. nakładek pasów górnych i dolnych,
- belka dochodząca do półki słupa,
- belka dochodząca do słupa pod kątem innym niż prosty.
- b) Przykładki:
- użycie przykładek (w formie płaskowników),
- przykładki połączone są z półką słupa,
- przykładki mogą występować pojedynczo (po jednej stronie środnika belki) lub podwójnie (po obu stronach środnika belki),
- w przypadku zastosowania dwóch przykładek są one symetryczne względem środnika belki,
- połączenie belka-przykładka może być realizowane poprzez spoinę pachwinową bądź poprzez śruby,
- połączenie słup-przykładka może być realizowane dla płaskownika poprzez spoinę czołową lub pachwinową (spoina tylko po zewnętrznej stronie blachy bądź po zewnętrznej oraz wewnętrznej).
- c) Nakładki:
- użycie nakładek (w formie płaskowników),
- połączenie za pomocą nakładek obejmuje występowanie jednocześnie nakładki górnej oraz dolnej i nie może wystąpić samodzielnie, bez obecności przykładki (przykładek),
- połączenie belka-nakładka może być realizowane poprzez spoinę pachwinową bądź poprzez śruby,
- połączenie słup-nakładka może być realizowane dla płaskownika poprzez spoinę czołową lub pachwinową (spoina tylko po zewnętrznej stronie blachy bądź po zewnętrznej oraz wewnętrznej),

- w razie użycia nakładek istnieje możliwość zastosowania usztywnienia środnika słupa żebrami: górnym (na przedłużeniu nakładki górnej) oraz dolnym (na przedłużeniu nakładki dolnej).
- d) Stolik montażowy:
- parametry stolika montażowego podawane są jako konstrukcyjne jest on umieszczany na rysunku, ale nie podlega obliczeniom ani weryfikacji,
- użycie stolika montażowego wyklucza możliwość użycia nakładek, i odwrotnie.

7.1 Typ połączenia

7.2 Dane wejściowe

÷	F EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌					
Plik	Ustawienia Pomoc					
P	Model połączenia	Słup	HE 300	B (S 355)	Belka	IPE 400 (S 355)
#	Model sił	Ogólny spo	osób wymiarowania	 Na siły obliczeniowe 	🔿 Na noś	ność elementów
r.	Wyniki wymiarowania	- Elementy k	ączące	przy styku		
÷	Wydruki		Т			Teeer
	Typ połączenia					
	Dane ogólne					
	Parametry przykładki					
	Połączenie belka-blacha (przykładka)			s′		
	Połączenie słup-blacha (przykładka) Parametry nakładek (symetria) Połaczenie bolke blache (symetriczne pokładki)	Nakładki Stolik montażowy N Przykładka po obu stronach				telkiα =000 deg s =5 mm
	Polaczenie beika biacha (symetryczne nakładki)	Globalne p	arametry połączenia			
	Połączenie słup-blacha (symetryczne nakładki) Wzmocnienie środnika słupa Symetria I Parametry połączenia nakładki dolnej symetryczne względem prametrów nakładki gómej					
		Sposób łąc	czenia		Rodzaj węz	
•	*					

7.2.1 Słup

W opcji *Słup* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil słupa oraz z listy rozwijalnej rodzaj stali.

M	lanadżer profili	×
	Nazwa V Typ profilu HE Wysokość przekroju [mm] h = Szerokość półek przekroju br = [mm] Grubość środnika przekroju tw = Grubość półek przekroju [mm] tr = Promień wewnętrzny [mm] R 1 Pole powierzchni przekroju A = Anuluj [m]	Wartość E 300 B = 300.00 = 300.00 = 11.00 = 19.00 1 = 27.00 = 14910.00 ¥ OK

7.2.2 Belka

W opcji *Belka* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil belki oraz z listy rozwijalnej rodzaj stali.

Image: IPE 120 IPE 140 Image: IPE 140 IPE 140 Image: IPE 160 IPE 400 Image: IPE 200 IPE 400 Image: IPE 200 IPE 200 Image: IPE 200 Image: IPE 200 Image: IPE 300 Image: IPE 300 Image: IPE 300 Image: IPE 300 Image: IPE 400 Image: IPE 400 Image: IPE 400	Manadżer profili			×
Materiał: S 355 (EN_10025_2) Pole powierzchni przekroju A = 8450.00 Anuluj OK	Image: Provinition of the second s	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość IPE 400 h = 400.00 br = 180.00 tw = 8.60 tr = 13.50 R1 = 21.00 A = 8450.00 OK	

7.2.3 Globalne parametry połączenia

Zgodnie z zasadami modelowania połączenia, jeśli dla połączenia belka-blacha przykładki lub belka-blacha nakładki wybrano połączenie na śruby, wówczas należy wybrać *Kategorię połączenia śrubowego*:

- A,
- **B** (należy dodatkowo podać siły charakterystyczne w panelu *Modelu sil*),
- C.

W przypadku, gdy połączenia belka-blacha przykładki i belka-blacha nakładki realizowane są jako spawane, opcja powyższa nie jest dostępna.

W przypadku zaznaczenia opcji *Konstrukcja narażona na wpływy atmosferyczne lub korozyjne* aplikacja uwzględni ten parametr w obliczeniach.

7.2.4 Sposób łączenia

Aplikacja umożliwia jedynie przeprowadzenie analizy połączenia belki dochodzącej do półki słupa.

7.2.5 Rodzaj węzła

W sekcji należy wybrać odpowiedni rodzaj węzła dla połączenia montażowego belki ze słupem.

UWAGA: Aby dokonać wymiarowania węzła środkowego (dwustronnego) dla obu stron połączenia, należy sekwencyjnie wykonać model dla połączenia dla belki prawej oraz oddzielnie (w oddzielnym projekcie) dla połączenia dla belki lewej, traktując belkę obliczaną jako belkę główną (w przyjętej konwencji – umieszczoną po prawej stronie rysunku poglądowego).

7.2.6 Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

7.2.7 Geometria przy styku

Użytkownik podaje kąt nachylenia belki względem słupa. Kąt podawany jest w stopniach. Obliczenia są prawidłowe dla małych wartości kąta pochylenia belki.

7.2.8 Symetria

Po wstawieniu znacznika *Parametry połączenia nakładki dolnej symetryczne względem nakładki górnej* wszystkie zadane przez użytkownika parametry dla nakładki górnej są automatycznie przypisane do nakładki dolnej, przy jednoczesnym braku możliwości zmiany parametrów dla nakładki dolnej.

Po wstawieniu znacznika w sekcji *Symetria* użytkownik podaje parametry dla nakładek symetrycznych w następujących panelach wyświetlonych po lewej stronie okna:

- Parametry nakładek (symetria),
- Połączenia belka-blacha (symetryczne nakładki),
- Połączenia słup-blacha (symetryczne nakładki).

Brak wstawienia znacznika w sekcji *Symetria* oznacza, że należy zadać parametry dla nakładki dolnej i górnej niezależnie.

7.2.9 Elementy łączące

Nakładki – w połączeniu zastosowano nakładkę górną i dolną,

₽	EuroZł	ącza 2.0 - \	VEWNĘTRZNA LI	Cencja - Intersoft [L	01]	_ 🗆 ×	
Plik	Ustawienia Pomoc						
ця,	Model połączenia	Słup	HE 3	00 B (S 355)	Belka	IPE 400 (S 355)	
15	Model sił	Ogólny spo	sób wymiarowania	 Na siły obliczeniowe 	O Na nośność element	ów	
F	Wyniki wymiarowania	Elementy ła	czące		Geometria przy styku		
÷	Wydruki		Teeet		Т		
	Typ połączenia		-				
	Dane ogólne					7	
	Parametry przykładki		-				
	Połączenie belka-blacha (przykładka)						
	Połączenie słup-blacha (przykładka)	☑ Nakładł	ci				
	Parametry nakładek (symetria)	Stolik m	ontażowy		Nachylenie belki α =	Nachylenie belkiα = 0.00 deg s = 5 mm	
	Połączenie belka-blacha (symetryczne nakładki)						
	Połączenie słup-blacha (symetryczne nakładki)	Konstruk	cja narażona na wpływ	vy atmosferyczne lub korozyjne	Kategoria poł	ączenia śrubowego 🛛 🗸 🔻	
	Wzmocnienie środnika słupa	Sumotria					
		Parame	try połączenia nakładk	i dolnej symetryczne względem	prametrów nakładki górnej		
		Sposób łąc	zenia		Rodzaj węzła		
4	•						
÷	EuroZ	ącza 2.0 - \	VEWNĘTRZNA LI	CENCJA - INTERSOFT [L	01]	_ 🗆 ×	
Plik	Ustawienia Pomoc						
P	Model połączenia	• •	🗅 🖪 🖶 🖴				

Stolik montażowy – w połączeniu zastosowano stolik montażowy,

÷	Ŧ EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖					
Plik	Ustawienia Pomoc					
P	Model połączenia	Słup	HE 3	00 B (S 355)	Belka	IPE 400 (S 355)
	Model sił	Ogólny spo	osób wymiarowania	 Na siły obliczeniowe 	O Na no	śność elementów
F	Wyniki wymiarowania	Elementy I	ączące		Geometria	a przy styku
e	Wydruki		теет			терет
	Typ połączenia			_		
	Dane ogólne					1
	Parametry przykładki					
	Połączenie belka-blacha (przykładka)					
	Połączenie słup-blacha (przykładka)	Nakład	ki			
	Stolik montażowy	Stolik m	ontażowy dka po obu stronach		Nachylen	ie belkiα =0.00 deg s =5 mm
	Wzmocnienie srodnika słupa	Globalne p	arametry połączenia			
		Konstru	kcja narażona na wpływ	vy atmosferyczne lub korozyjne		Kategoria połączenia śrubowego 🛛 A 🔻
		Symetria				
		✓ Parame	try połączenia nakładki	dolnej symetryczne względem	Padasi w	akładki gómej
			zenia			
			N-I			
	<u> </u>					
	· · · · · · · · · · · · · · · · · · ·					
41-1						
45	EuroZł	ącza 2.0 - \	WEWNĘTRZNA LIC	CENCJA - INTERSOFT [L	01]	
Plik	Ustawienia Pomoc					

Plik Ustawienia Pomoc		
🛃 Model połączenia		
👫 Model sił	A RECEIPTION AND A RECE	4-1,100 x 10 x 10
📆 Wyniki wymiarowania		
🖶 Wydruki		
Rysunek		
Raport wytężeń		
Raport skrócony	A 100	
Raport pełny		A LINAMAN
		/
	3-36.000x304	3-8,20 x 300 x 12
	AC-IN-INCOMPANY ALL INCOMPANY	
		1
• •	There	

Przykładka po obu stronach – zastosowano przykładkę po obu stronach środnika dochodzącej belki (dwie przykładki).

7.3 Parametry przykładki

÷	EuroZ	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	- • ×
Plik	Ustawienia Pomoc		
P		Typ elementu	
	Model sił	Wymiary Położenie	
i.	Wyniki wymiarowania		
8	Wydruki	$h_{sip} = 200 \text{ mm}$	
	Typ połączenia	h _{sip} = 300 mm	
	Dane ogólne		d _{sip} = 50 mm
-	Parametry przykładki		Mucanta i
	Połączenie belka-blacha (przykładka)		
	Połączenie słup-blacha (przykładka)		
	Stolik montażowy	Baza materiałowa	
	Wzmocnienie środnika słupa	Norma PN-EN 1993-1-1	
		Materiali S 300 (EN_10020_2)	natenałową taką jak beika
4			

7.3.1 Typ elementu

Możliwy do wykorzystania element łączący to płaskownik.

7.3.2 Parametry przykładki – Wymiary

Należy podać wymiary przykładki zgodnie z rysunkiem umieszczonym w sekcji *Wymiary*, gdzie:

lsip – szerokość przykładki [mm],

h_{sip} – wysokość przykładki [mm],

t_{sip} – grubość przykładki [mm].

7.3.3 Parametry przykładki – Położenie

 d_{sip} – odległość krawędzi górnej przykładki od krawędzi górnej pasa górnego belki [mm].

Wycentruj- powoduje wycentrowanie przykładki względem osi symetrii belki.

7.3.4 Parametry przykładki – Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak belka* do przykładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

7.4 Połączenie belka-blacha (przykładka)

7.4.1 Typ połączenia – Spawane

Należy podać grubość spoiny łączącej przykładkę ze środnikiem belki.

 a_{sipb} – grubość spoiny łączącej przykładkę ze środnikiem belki [mm].

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza SŁUP-BELKA

÷	EuroZ	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	. 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 💿 Spawane 🔿 Śrubowe	
5 5	Model sił	Wymiary	
F	Wyniki wymiarowania		
÷	Wydruki		
	Typ połączenia		
	Dane ogólne		
	Parametry przykładki	a _b	
	Połączenie belka-blacha (przykładka)		
	Połączenie słup-blacha (przykładka)	Grubosc a _{sipb} = 6 mm	
	Stolik montażowy		
	Wzmocnienie środnika słupa		
•	•		

7.4.2 Typ połączenia – Śrubowe

÷	EuroZ	łącza 2.0 - WEWNĘTRZNA LICE	NCJA - INTERSOFT [LC)1] — 🗖 🗙			
Plik	Ustawienia Pomoc						
P	Model połączenia	Typ połączenia 🔿 Spawane 🤄	Śrubowe				
#	Model sił	Parametry ogólne		Geometria połączenia			
r.	Wyniki wymiarowania	k		Liczba wierszy w = 4			
e	Wydruki						
	Typ połączenia Dane ogólne Parametry przykładki Połączenie belka-blacha (przykładka) Połączenie słup-blacha (przykładka) Parametry nakładek (symetria) Połączenie belka-blacha (symetryczne nakładki) Połączenie słup-blacha (symetryczne nakładki) Wzmocnienie środnika słupa	P₁ ↔ ↔ → P₂ + e₂ Kategoria połączenia A Baza materiałowa Norma Klasa Średnica d Część ścinana	> w + PN-EN 1993-1-8 * 8.8 • M16 • Gwintowana	e ₂ = 40 mm ✓ Centruj w pionie P ₁ = 85 mm ✓ Centruj w poziomie P ₂ = 115 mm			

7.4.2.1 Parametry ogólne

Wyświetlana jest *Kategoria połączenia* śrubowego określona w panelu *Dane wejściowe*.

7.4.2.2 Geometria połączenia

w – oznacza liczbę wierszy śrub,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – odległość w pionie od osi śruby umieszczonej w pierwszym wierszu do krawędzi górnej płaskownika [mm],

 e_2 – odległośćw poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej płaskownika [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii **B** lub **C** należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

UWAGA: Jeżeli dla konfiguracji połączenia bez nakładek (połączenie jedynie na przykładki) wybrane zostanie połączenie śrubowe na pojedynczą śrubę (jeden wiersz i jedna kolumna), zostanie ono uznane za przegubowe. W takim wypadku odpowiadający moment na zakładce *Model sił* powinien być równy zeru. W przeciwnym razie obliczenia zostaną zablokowane.

Ograniczenie to nie występuje dla konfiguracji modelu z użyciem nakładek.

7.4.2.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.
7.5 Połączenie słup-blacha (przykładka)

7.5.1 Rodzaj spoiny – Pachwinowa

*Tylko spoiny zewn*ę*trzne* – oznacza, że spoina jest prowadzona jedynie po zewnętrznej krawędzi przykładki(ek), licząc od strony środnika belki. Odznaczenie tego pola spowoduje, że spoiny prowadzone są po obu stronach połączenia teowego przykładki do słupa.

Sytuacja jest analogiczna w przypadku zastosowania dwóch przykładek. Jednak wtedy należy pamiętać o tym, że technologiczne wykonanie spoiny dwustronnej może być uniemożliwione z powodu braku wystarczającego miejsca do wykonania linii spawu.

*Automatyczny dob*ó*r spoiny* – algorytm określa przybliżoną wystarczającą grubość spoiny pachwinowej.

7.5.2 Rodzaj spoiny – Czołowa

Należy podać:

acsip – grubość spoiny czołowej [mm].

÷	EuroZł	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	- 🗆 ×
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 💿 Spawane	
	Model sił	Rodzaj spoiny 🔿 Pachwinowa 💿 Czołowa	
E.	Wyniki wymiarowania	Parametry spoin	
e	Wydruki	va	
	Typ połączenia		
	Dane ogólne		
	Parametry przykładki		
	Połączenie belka-blacha (przykładka)	►	
	Połączenie słup-blacha (przykładka)	Automatyczny dobór spoiny 🖌 Z niepełnym przetopem	
	Parametry nakładek (symetria)	Grubość a _{csin} = 7 mm	
	Połączenie belka-blacha (symetryczne nakładki)	,	
	Połączenie słup-blacha (symetryczne nakładki)		
	Wzmocnienie środnika słupa		
- 4	•		

UWAGA: Wykonanie spoiny czołowej pełnej typu K może być niemożliwe z punktu widzenia technologicznego ze względu na brak wystarczającego odstępu pomiędzy przykładkami. Użytkownik może obejść problem poprzez umieszczenie na rysunku konstrukcyjnym projektowanego węzła spoiny typu V.

7.6 Parametry nakładki

Panele powiązane z opisem parametrów nakładki zostaną przedstawione na przykładzie nakładki symetrycznej, wynikającej z zaznaczenia opcji *Parametry połączenia nakładki dolnej symetryczne względem parametrów nakładki górnej*. W przypadku braku symetrii parametry są podawane dla górnej i dolnej nakładki niezależnie w oddzielnych zestawach formularzy.

Opcja pojawia się w przypadku wstawienia znacznika *Nakładki* w panelu *Dane wejściowe*.

₽	EuroZ	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖	×
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ elementu 💿 Płaskownik	
5	Model sił	Wymiary	
F.	Wyniki wymiarowania	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 	
e	Wydruki	tsetp	
	Typ połączenia		
	Dane ogólne	setp	
	Parametry przykładki	h _{setp}	
	Połączenie belka-blacha (przykładka)		
	Połączenie słup-blacha (przykładka)		
	Parametry nakładek (symetria)	Baza materialowa	
	Połączenie belka-blacha (symetryczne nakładki)	Norma PN-EN 1993-1-1 *	
	Połączenie słup-blacha (symetryczne nakładki)	Materiał S 355 (EN_10025_2) V Dobierz automatycznie bazę materiałową taką jak b	elka
	Wzmocnienie środnika słupa		
4	•		

Należy podać wymiary nakładki, gdzie:

lsetp – długość nakładki [mm],

hsetp – szerokość nakładki [mm],

t_{setp} – grubość nakładki [mm].

7.6.1 Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak belka* do nakładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

7.7 Połączenie belka-blacha

Opcja pojawia się w przypadku wstawienia znacznika *Nakładki* w panelu *Dane wejściowe*.

7.7.1 Typ połączenia – Spawane

Należy podać grubość spoiny łączącej nakładkę z półką belki:

 a_{setpb} – grubość spoiny łączącej nakładkę z półką belki [mm].

7.7.2 Typ połączenia-Śrubowe

÷	EuroZ	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖 🗙
Plik	Ustawienia Pomoc	
P	Model połączenia	Typ połączenia 🔿 Spawane 💿 Śrubowe
#	Model sił	Parametry ogólne Geometria połączenia
i i	Wyniki wymiarowania Wydruki Typ połączenia	$ \begin{array}{c} k \\ p_1 \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \downarrow \\ e_2 \end{array} \begin{array}{c} \downarrow \\ e_1 \end{array} \begin{array}{c} \bullet \\ e_1 \end{array} \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \begin{array}{c} \bullet \\ e_1 \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} $
	Dane ogólne Parametry przykładki Połączenie belka-blacha (przykładka) Połączenie słup-blacha (przykładka) Parametry nakładek (symetria)	p_1 p_2 p_2 p_2 e_2
	Połączenie bełka-blacha (symetryczne nakładki) Połączenie słup-blacha (symetryczne nakładki) Wzmocnienie środnika słupa	Baza materiałowa Noma PN-EN 1993-1-8 8.8 Średnica d Część ścinana Gwintowana
4	•	

7.7.2.1 Parametry ogólne

Wyświetlana jest *Kategoria połączenia* śrubowego określona w panelu *Dane wejściowe*.

7.7.2.2 Geometria połączenia

w – oznacza liczbę wierszy śrub znajdujących się po jednej stronie osi podłużnej belki,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – rozstaw osiowy pomiędzy wewnętrznymi wierszami śrub po przeciwnych stronach środnika belki [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej nakładki górnej [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii B lub C należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

k_s – współczynnik rodzaju otworów [-].

7.7.2.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

7.8 Połączenie słup-blacha

Opcja pojawia się w przypadku wstawienia znacznika *Nakładki* w panelu *Dane wejściowe*.

÷	EuroZ	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🦳 🗖 💌
Plik	Ustawienia Pomoc	
P		Typ połączenia 💿 Spawane
5 5	Model sił	Rodzaj spoiny 💿 Pachwinowa 🔿 Czołowa
E.	Wyniki wymiarowania	r arameuy spon
÷	Wydruki	//a
	Typ połączenia	
	Dane ogólne	
	Parametry przykładki	
	Połączenie belka-blacha (przykładka)	
	Połączenie słup-blacha (przykładka)	☑ Tylko spoiny zewnętrzne □ Automatyczny dobór spoiny
	Parametry nakładek (symetria)	Grubość a _{cseto} = 9 mm
	Połączenie belka-blacha (symetryczne nakładki)	
	Połączenie słup-blacha (symetryczne nakładki)	
	Wzmocnienie środnika słupa	
- 4		

7.8.1 Rodzaj spoiny – Pachwinowa

*Tylko spoiny zewn*ę*trzne* – oznacza, że nakładka jest przyspawana na jedną spoinę pachwinową do słupa po zewnętrznej krawędzi. Odznaczenie tego pola spowoduje, że nakładka przyspawana będzie na dwie spoiny pachwinowe do słupa po zewnętrznej i wewnętrznej stronie.

Automatyczny dobór spoiny – algorytm określi grubość spoiny pachwinowej.

7.8.2 Rodzaj spoiny – Czołowa

#	EuroZł	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	- 🗆 ×
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 💿 Spawane	
#	Model sił	Rodzaj spoiny O Pachwinowa O Czołowa	
Fia	Wyniki wymiarowania	Parametry spoin	
÷	Wydruki		
	Typ połączenia	Va	
	Dane ogólne		
	Parametry przykładki		
	Połączenie belka-blacha (przykładka)		
	Połączenie słup-blacha (przykładka)	Z niepełnym przetopem 🔲 Automatyczny dobór spoiny	
	Parametry nakładek (symetria)	Grubość a _{csetp} = 9 mm	
	Połączenie belka-blacha (symetryczne nakładki)		
	Połączenie słup-blacha (symetryczne nakładki)		
	Wzmocnienie środnika słupa		
	•		

a_{csetp} – grubość spoiny czołowej [mm].

7.9 Stolik montażowy

Opcja pojawia się w przypadku wstawienia znacznika *Stolik montażowy* w panelu *Dane wejściowe*.

÷	EuroZł	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L	01] — 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 💿 Spawane 🔿 Śrubowe	
	Model sił	Parametry spoin	Przekrój stolika montażowego
F.	Wyniki wymiarowania		L 150 x 90 x 10 (S 355)
e	Wydruki		Orientacja stolika
	Typ połączenia		_
	Dane ogólne	аь	L.J
	Parametry przykładki		
	Połączenie belka-blacha (przykładka)	Grubość a _{csa} = 6 mm	
	Połączenie słup-blacha (przykładka)		
	Stolik montażowy	Wymiary	
	Wzmocnienie środnika słupa		
		Długość stolika I _{sa} = 100 mm	
•	*	 	1

7.9.1 Przekrój stolika montażowego

W opcji *Przekrój stolika montażowego* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil stolika montażowego (kątownik) oraz z listy rozwijalnej rodzaj stali.

Manadżer profili			x
Image: constraint of the system of the sy	Nazwa Typ profilu Długość dłuższego ramienia [mm] Długość krótszego ramienia [mm] Grubość ścianki przekroju [mm] Promień wewnętrzny [mm] Promień zewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość L 150 x 90 x 10 h = 150.00 b = 90.00 n]t = 10.00 R1 = 12.00 R2 = 6.00 A = 2320.00 OK	<

Wymiary:

l_{sa} – długość stolika montażowego liczona wzdłuż półek słupa [mm].

7.9.2 Typ połączenia – Śrubowy

Połączenie dotyczy mocowania stolika montażowego do pasa słupa.

Należy podać:

w – oznacza liczbę wierszy śrub znajdujących się po jednej stronie osi podłużnej słupa,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – rozstaw osiowy pomiędzy wewnętrznymi wierszami śrub po przeciwnych stronach środnika słupa [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej kątownika (stolika) [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrubliczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same,

d – średnica śrub.

÷	EuroZła	ącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L	01] — 🗆 🗙
Plik	Ustawienia Pomoc		
1 2 -	Model połączenia	Typ połączenia 💿 Spawane 🔿 Śrubowe	
::: 1	Model sił	Parametry spoin	Przekrój stolika montażowego
Б 1	Wyniki wymiarowania		L 150 x 90 x 10 (S 355)
ا ا	Wydruki		Orientacja stolika
1	Typ połączenia		
[Dane ogólne	a _b	
F	Parametry przykładki Połaczenie belka-blacha (przykładka)	Grubość a _{csa} = 6 mm	
F	Połączenie słup-blacha (przykładka)		
ç	Stolik montażowy	Wymiary	
N	Wzmocnienie środnika słupa		
		Długość stolika I _{sa} = 100 mm	
•	+	23 convert entruitations include indicate indicated and fact and]

7.9.3 Typ połączenia – Spawany

Należy podać:

 a_{csa} –grubość spoiny łączącej stolik montażowy ze słupem [mm].

7.10 Wzmocnienie środnika słupa

		· · · · · · · · · · · · · · · · · · ·	
Plik	Ustawienia Pomoc		
12	Model połączenia	Wymiary	
	Model sił Wyniki wymiarowania Wydruki Typ połączenia Dane poślne.	Parametry żeber poprzecznych słupa	c = 12 mm c = 12 mm c = 12 mm
1 1 1 2	Parametry przykładki Połączenie belka-blacha (przykładka) Połączenie słup-blacha (przykładka) Stolik montażowy	Baza materiałowa Norma PN-EN 1993-1-1 ✓ Materiał S 355 (EN_10025_2) ✓ ✓ Dobierz automatycznie bazę mate	eriałową taką jak słup
4	Wzmocnienie środnika słupa		

7.10.1 Parametry żeber poprzecznych słupa – Wymiary

Należy podać:

 t_{sstc} – grubość żebra górnego (na poziomie pasa górnego belki) [mm],

 t_{ssbc} – grubość żebra dolnego (na poziomie pasa dolnego belki) [mm].

7.10.2Parametry żeber poprzecznych słupa – Baza materiałowa

Po zaznaczeniu opcji *Dobierz automatycznie bazę materiałową taką jak słup* do żeber usztywniających poprzecznych zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla słupa.

8 Połączenie EuroZłącza BELKA-BELKA

Algorytm dotyczy połączenia EuroZłącza BELKA-BELKA, w którym oba główne elementy połączone są za pośrednictwem przykładek środnika oraz ewentualnych nakładek półek belek. Połączenie obejmuje możliwość konfiguracji:

- a) Ogólnie:
- dopuszczalne przekroje dla belek obejmują dwuteowniki dochodzące do siebie w tej samej orientacji osi głównych, równolegle,
- siły V oraz M obciążające belki dwuteowników w silniejszych osiach ich przekrojów,
- belki połączone są za pomocą przykładek środnika (pojedyncza lub podwójna) oraz ewentualnych nakładek pasów górnych i dolnych.
- b) Przykładki:
- przykładki oraz nakładki w formie płaskowników dołączone są odpowiednio do środników i półek belek poprzez połączenie zakładkowe śrubowe lub spawane.
- c) Nakładki:
- użycie nakładek jest możliwe tylko w przypadku, gdy obie łączone belki mają równą wysokość.

8.1 Typ połączenia

8.2 Dane wejściowe

÷	EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 🗙			
Plik	Ustawienia Pomoc			
P	Model połączenia	Belka lewa IPE 550 (S 235)	Belka prawa IPE 550 (S 235)	
	Model sił	Ogólny sposób wymiarowania 💿 Na siły obliczeniowe	○ Na nośność elementów	
E.	Wyniki wymiarowania	Bementy łączące	Geometria przy styku	
÷	Wydruki			
	Typ połączenia			
	Dane ogólne			
	Parametry przykładki	ilenen energi	s	
	Połączenie belka-przykładka (symetria pionowa)			
	Parametry nakładek (symetria pozioma)	Vakładki	Wyrównaj do górnej krawedzi belki prawej	
	Połączenie belka-nakładki (symetria pionowa i poziom	Przykładka po obu stronach	Centruj belki osiowo	
			Wyrównaj do dolnej krawędzi belki prawej	
			s = 5 mm r = 0 mm	
		Globalne parametry połączenia		
		Konstrukcja narażona na wpływy atmosferyczne lub korozyjne	Kategoria połączenia śrubowego 🛛 A 🔻	
		Symetria		
		Parametry połączenia belki lewej symetryczne względem prametrów belki prawej	Parametry połączenia nakładki dolnej symetryczne względem prametrów nakładki górnej	
4	•			

8.2.1 Belka lewa

W opcji *Belka lewa* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil belki lewej oraz z listy rozwijalnej rodzaj stali.

N	Aanadżer profili	x
IPE 180	Nazwa Wartość Typ profilu IPE 550	^
IPE 240 IPE 270 IPE 300	Wysokość przekroju [mm] h = 550.00	
IPE 330 IPE 360 IPE 400	Szerokość półek przekroju b _t = 210.00 [mm]	
IPE 450 IPE 500	Grubość środnika przekroju tw = 11.00 [mm]	
Baza materiałowa	Grubošč pôłek przekroju [mm] tr = 17.00	
Norma: PN-EN 1993-1-1	Promień wewnętrzny [mm] R1 = 24.00	
Material 2233 (EIT_10023_2)	Pole powierzchni przekroju A = 13400. Anuluj OK	0 🗸

8.2.2 Belka prawa

W opcji *Belka prawa* znajduje się *Menadżer profili*, w którym należy wybrać odpowiedni profil belki prawej oraz z listy rozwijalnej rodzaj stali.

	Manadżer profili			x
	Manadžer profili	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm]	Wartość IPE 550 h = 550.00 br = 210.00 tw = 11.00 tr = 17.00 R1 = 24.00	×
Matenar: S 235 (EN_10025_2)		Pole powierzchni przekroju Anuluj	A = 13400.00 OK	~

8.2.3 Globalne parametry połączenia

Zgodnie z zasadami modelowania połączenia, jeśli dla połączenia belka-blacha przykładki lub belka-blacha nakładki wybrano połączenie na śruby, wówczas należy wybrać *Kategorię połączenia śrubowego*:

- A,
- **B** (należy dodatkowo podać siły charakterystyczne w panelu *Modelu sił*),
- C.

W przypadku, gdy połączenia belka-blacha przykładki i belka-blacha nakładki realizowane są jako spawane, opcja powyższa nie jest dostępna.

W przypadku zaznaczenia opcji *Konstrukcja narażona na wpływy atmosferyczny lub korozyjne* aplikacja uwzględni ten parametr w obliczeniach.

8.2.4 Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

Podręcznik użytkownika dla programu EuroZłącza

Połączenie EuroZłącza BELKA-BELKA

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

8.2.5 Geometria przy styku

Użytkownik podaje:

r – odsunięcie pomiędzy krawędzią pasa górnego belki prawej do krawędzi pasa górnego belki lewej [mm],

s – odsunięcie pomiędzy belkami [mm].

Dodatkowe opcje:

Wyrównaj do górnej krawędzi belki prawej – obie belki zostaną wyrównane względem pasa górnego belki prawej.

• *Centruj belki osiowo* – belki zostaną wycentrowane względem silniejszej osi.

4 Euro2	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik Ustawienia Pomoc	
🏳 Model połączenia	
Model sił	
🙀 Wyniki wymiarowania	2-55 - 2-
🚽 Wydruki	
Rysunek	
Raport wytężeń	
Raport skrócony	
Raport pełny	
♦ ►	

Wyrównaj do dolnej krawędzi belki prawej – belki zostaną wyrównane względem krawędzi pasa dolnego belki prawej.

Ŧ EuroZ	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🛛 📃 🗙
Plik Ustawienia Pomoc	
🏳 Model połączenia	
Model sił	
📆 Wyniki wymiarowania	
🚽 Wydruki	
Rysunek	
Raport wytężeń	
Raport skrócony	AARONY CALL
Raport pełny	
• •	

8.2.6 Symetria

W przypadku wstawienia znacznika *Parametry połączenia belki lewej symetryczne względem parametrów belki prawej* wszystkie zadane przez użytkownika parametry dla belki prawej są automatycznie przypisane do belki lewej, przy jednoczesnym braku możliwości dodatkowej edycji parametrów dla belki lewej.

W przypadku wstawienia znacznika *Parametry połączenia nakładki dolnej symetryczne względem parametrów nakładki górnej* wszystkie zadane przez użytkownika parametry dla nakładki górnej są automatycznie przypisane do nakładki dolnej, przy jednoczesnym braku możliwości dodatkowej edycji parametrów dla nakładki dolnej.

Powyższe opcje można z sobą łączyć.

8.2.7 Elementy łączące

Nakladki – w połączeniu stosuje się nakładkę górną i dolną – opcja dostępna tylko w przypadku dwóch profili o takiej samej wysokości,

Przykładka po obu stronach – zastosowano przykładkę po obu stronach środnika belki (dwie przykładki).

Jeżeli różnica grubości pomiędzy środnikami obu belek jest duża, należy użyć podkładek dystansujących (nieuwzględnionych na rysunku).

8.3 Parametry przykładki

₽ -	EuroZł	ącza 2.0 - WEWNĘTRZ	NA LICEN	CJA - INTERSOFT [L	.01]	- 🗆 ×
Plik	Ustawienia Pomoc					
P	Model połączenia	Typ elementu 💿 Pł	askownik			
11	Model sił	Wymiary			Położenie	
	Wyniki wymiarowania		 			
-	Wydruki		h _{sip}	l _{sip} = 500 mm		
	Typ połączenia		1	h _{sip} = 400 mm		
	Dane ogólne	isip /	1 +	t.:. = 10 mm		d _{sip} = 75 mm
	Parametry przykładki		_sip _≠_	sip		
	Połączenie belka-przykładka (symetria pionowa)					
	Parametry nakładek (symetria pozioma)					
	Połączenie belka-nakładki (symetria pionowa i poziom	Baza materiałowa				
		Noma	PN-EN 1993	H1-1	*	
		Materiał	S 235 (EN_1	10025_2)	 Dobierz automatycznie bazę r 	nateriałową taką jak belka
4						

8.3.1 Typ elementu

Możliwy do wykorzystania element łączący to płaskownik.

8.3.2 Parametry przykładki – Wymiary

Należy podać wymiary przykładki zgodnie z rysunkiem umieszczonym w sekcji *Wymiary*, gdzie:

l_{sip} – szerokość przykładki [mm],

h_{sip} – wysokość przykładki [mm],

t_{sip} – grubość przykładki [mm].

8.3.3 Parametry przykładki – Położenie

 d_{sip} – odległość krawędzi górnej przykładki od krawędzi górnej pasa górnego belki [mm].

Wycentruj – funkcja powoduje wycentrowanie przykładki względem osi symetrii belki lewej.

8.3.4 Parametry przykładki – Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak belka* do przykładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

8.4 Połączenie belka-przykładka

Panele powiązane z opisem parametrów połączenia przykładki zostaną przedstawione na przykładzie parametrów symetrycznych, wynikającej z zaznaczenia opcji *Parametry połączenia belki lewej symetryczne względem parametrów belki prawej*. W przypadku braku symetrii parametry są podawane dla połączenia z belką prawą i połączenia z belką lewą niezależnie w oddzielnych zestawach formularzy.

8.4.1 Typ połączenia – Spawane

Należy podać grubość spoiny łączącej przykładkę ze środnikiem belki:

 a_{sipb} – grubość spoiny łączącej przykładkę ze środnikiem belki[mm].

8.4.2 Typ połączenia – Śrubowe

÷	EuroZł	iącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] – [×
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 🔿 Spawane 💿 Śrubowe	
5	Model sił	Parametry ogólne Geometria połączenia	
Fi	Wyniki wymiarowania	k Liczba wierszy w = 4	
e	Wydruki		m
	Typ połączenia	P_1 $e_2 = 50 \text{ m}$	m
	Dane ogólne		m
	Parametry przykładki	→ P ₂ → e ₂ →	m
	Połączenie belka-przykładka (symetria pionowa)		
	Parametry nakładek (symetria pozioma)	Katanata a Januaria - Alara a	
	Połączenie belka-nakładki (symetria pionowa i poziom	Nategona porquizerila A	
		Baza materialowa	
		Kasa 8.8 ×	
		Średnica d M16 -	
		Część ścinana Gwintowana 🔹	
4	•		

8.4.2.1 Parametry ogólne

Wyświetlana jest *Kategoria połączenia śrubowego* określona w panelu *Dane wejściowe*.

8.4.2.2 Geometria połączenia

w – oznacza liczbę wierszy śrub,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – odległość w pionie od osi śruby umieszczonej w pierwszym wierszu do krawędzi górnej płaskownika przykładki [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej płaskownika przykładki [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii **B** lub **C** należy także wybrać z listy rozwijalnej (lub podać ręcznie):

- μ współczynnik tarcia [-],
- k_s współczynnik rodzaju otworów [-].

UWAGA: Jeżeli dla konfiguracji połączenia bez nakładek (połączenie jedynie na przykładki) wybrane zostanie połączenie śrubowe na pojedynczą śrubę (jeden wiersz i jedna kolumna), zostanie ono uznane za przegubowe. W takim wypadku odpowiadający moment w panelu *Model sił* powinien być równy zeru. W przeciwnym razie obliczenia zostaną zablokowane.

8.4.2.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

8.5 Parametry nakładki

Panele powiązane z opisem parametrów nakładki zostaną przedstawione na przykładzie nakładki symetrycznej (symetria pozioma), wynikającej z zaznaczenia opcji *Parametry połączenia nakładki dolnej symetryczne względem parametrów nakładki górnej*. W przypadku braku symetrii parametry są podawane dla górnej i dolnej nakładki niezależnie w oddzielnych zestawach formularzy.

Powyższy rodzaj symetrii jest w poniższej instrukcji łączony z symetrią pionową, czyli dotyczącą parametrów połączenia nakładki do belki lewej i prawe, która jest stosowana w przypadku zaznaczenia opcji *Parametry połączenia belki lewej symetryczne względem parametrów belki prawej*.

Opcja pojawi się w przypadku wstawienia znacznika *Nakładki* w panelu *Dane wejściowe*.

÷	EuroZł	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] 🛛 🗕 🗖 🗙
Plik	Ustawienia Pomoc	
P	Model połączenia	Typ elementu 💿 Płaskownik
11	Model sił	Wymiary
i.	Wyniki wymiarowania	Ť.
÷	Wydruki	l setp = 500 mm
	Typ połączenia	$\frac{1}{1-1} = 210 \text{ mm}$
	Dane ogólne	
	Parametry przykładki	mm ^{setp} t _{setp} = 16 mm
	Połączenie belka-przykładka (symetria pionowa)	
	Parametry nakładek (symetria pozioma)	
	Połączenie belka-nakładki (symetria pionowa i poziom	Baza materiałowa
		Noma PN-EN 1993-1-1 ~
		Materiał S 235 (EN_10025_2) 🔹 🗹 Dobierz automatycznie bazę materiałową taką jak belka
•	•	

Należy podać wymiary nakładki, gdzie:

lsetp – długość nakładki [mm],

h_{setp} – szerokość nakładki [mm],

t_{setp} – grubość nakładki [mm].

8.5.1 Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak belka* do nakładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla belki.

8.6 Połączenie belka-nakładka

Opcja pojawi się w przypadku wstawienia znacznika Nakładki w panelu Dane wejściowe.

8.6.1 Typ połączenia – Spawane

Należy podać grubość spoiny łączącej nakładkę z półką belki.

a_{setpb} – grubość spoiny łączącej nakładkę z półką belki [mm].

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza BELKA-BELKA

₽	EuroZłącz	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	. 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia	Typ połączenia 💿 Spawane 🔿 Śrubowe	
#	Model sił	Parametry spoiny	
E.	Wyniki wymiarowania		
e	Wydruki		
	Typ połączenia		
	Dane ogólne		
	Parametry przykładki	a _b	
	Połączenie belka-przykładka (symetria pionowa)		
	Parametry nakładek (symetria pozioma)	Grubość a _{setpb} = 7 mm	
	Połączenie belka-nakładki (symetria pionowa i pozioma)		
•	•		

8.6.2 Typ połączenia – Śrubowe

Ŧ	EuroZłąc	za 2.0 - WEWNĘTRZNA LICENO	JA - INTERSOFT [L01]	- 🗆 ×				
Plik	Ustawienia Pomoc							
P	Model połączenia	Typ połączenia 🔿 Spawane 🤅) Śrubowe					
5 5	Model sił	Parametry ogólne		Geometria połączenia				
囁	Wyniki wymiarowania	k		Liczba wierszy w = 1				
-	Wydruki		$e_1 = 110 \text{ mm}$					
	Typ połączenia							
	Dane ogólne		Centruj w poziomie P2 = 63 mm					
	Parametry przykładki	$\frac{p_2 + p_2 + e_2}{p_2 + e_2 + e_2}$						
	Połączenie belka-przykładka (symetria pionowa)							
	Parametry nakładek (symetria pozioma)	Kategoria połączenia A						
	Połączenie belka-nakładki (symetria pionowa i pozioma)	Baza materiałowa						
		Noma	PN-EN 1993-1-8 *					
		Klasa	8.8 -					
		Średnica d	M20 -					
		Częsc scinana	Gwintowana 👻					
	•							

8.6.2.1 Parametry ogólne

Wyświetlana jest Kategoria połączenia śrubowego określona w panelu Dane wejściowe.

8.6.2.2 Geometria połączenia

w – oznacza liczbę wierszy śrub znajdujących się po jednej stronie osi podłużnej belki,

 \boldsymbol{k} – oznacza liczbę kolumn śrub,

 e_1 – rozstaw osiowy pomiędzy wewnętrznymi wierszami śrub po przeciwnych stronach środnika belki [mm],

 e_2 – odległość w poziomie od osi śruby umieszczonej w ostatniej kolumnie do krawędzi bocznej nakładki górnej [mm],

 p_1 – odległość pomiędzy osiami śrub liczona w pionie [mm],

 p_2 – odległość pomiędzy osiami śrub liczona w poziomie [mm],

Centruj w pionie – odległości pomiędzy osiami śrub liczone w pionie są takie same,

Centruj w poziomie – odległości pomiędzy osiami śrub liczone w poziomie są takie same.

Dla połączenia śrubowego kategorii **B** lub **C** należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

8.6.2.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

9 Połączenie EuroZłącza BELKA-BELKA DOCZOŁOWE

Algorytm dotyczy połączenia typu EuroZłącza BELKA-BELKA DOCZOŁOWE, w którym dwa dwuteowniki pracujące jako belki (rygle, podciągi) połączone są za pośrednictwem własnych blach czołowych. Możliwe konfiguracje obejmują:

- a) Ogólnie:
- dopuszczalne przekroje dla belek obejmują dwuteowniki,
- orientacja przekroju belki dwuteownika jest pionowa (półki przekroju jako elementy podlegające ściskaniu/rozciąganiu w wyniku działania na przekrój momentu zginającego),
- dopuszczalne jest dochodzenie do siebie belek pod kątem nieznacznie odbiegającym od 180°.
- b) Żebra wzmacniające półki belek dolne i (lub) górne, w postaci:
- skosów teownikowych (zamodelowanych jako teownik standardowy, połówka dwuteownika standardowego bądź spawanych) lub płaskowników,
- połączenie blacha czołowa-żebro może być realizowane poprzez spoinę pachwinową bądź czołową.

9.1 Typ połączenia

9.2 Dane ogólne

÷	Euro	pZłącza 2.0 - WEWNĘTRZNA LICENCJA	- INTERSOFT [L01]	- • ×		
Plik	Ustawienia Pomoc					
P		Ogólny sposób wymiarowania	Na siły obliczeniowe Na nośność elementów			
** *	Model sił		Globalne parametry połączenia Monstrukcja narażona na wpływy atmosferyczne lub korozyjne			
	Wyniki wymiarowania		Konstrukcja narażona na oddziaływania udarowe i wibracyjne			
F	Wydruki		🗌 Traktuj jako cięgno			
	Typ połączenia	***				
	Belka: przekrój	Symetria Parametry połaczenia belki lewei sym	etryczne wzgledem prametrów bełki prawei			
	Blacha czołowa: przekrój	- Znak momentu zginajacego belki				
	Skos teowy dolny	M(+) - dodatni	M(-) - ujemny			
	Parametry spoin					
	Parametry śrub					
	Sztywność połączenia					
•						

9.2.1 Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

9.2.2 Znak momentu zginającego

Aktywne w przypadku wybrania obliczeń na nośność elementów. Możliwe są:

- M(+) dodatni,
- M(-) ujemny.

Konieczność wybrania kierunku zginania wynika z logiki procedury wymiarowania połączenia doczołowego, gdzie kierunek ten ma znaczenie. W przypadku wybrania wymiarowania na siły obliczeniowej kierunek zginania jest wyznaczany na podstawie wartości podanych sił obliczeniowych.

UWAGA: Jeżeli połączenie może być obciążone momentem o przeciwnym znaku – wtedy w przypadku wybrania wymiarowania na nośność elementów wymiarowanie należy przeprowadzić dla każdego ze znaków oddzielnie.

9.2.3 Globalne parametry połączenia

Użytkownik może zaznaczyć następujące opcje:

- Konstrukcja narażona na wpływy atmosferyczne lub korozyjne,
- Konstrukcja narażona na oddziaływania udarowe i wibracyjne.

Po wstawieniu odpowiedniego znacznika parametr ten zostanie uwzględniony w obliczeniach.

9.2.4 Symetria

Zaznaczenie opcji *Parametry połączenia belki lewej symetryczne względem parametrów belki prawej* powoduje, że wszystkie zadane przez użytkownika parametry dla belki prawej są automatycznie przypisane także do belki lewej, przy jednoczesnej redukcji formularza tylko do jednej belki.

9.2.5 Cięgno

W przypadku wybrania opcji *Traktuj jako cięgno* obliczenia zostaną wykonane z pominięciem wpływu momentów zginających (inna procedura obliczeniowa).

9.3 Belka

Panele powiązane z opisem parametrów belki zostaną przedstawione na przykładzie belki symetrycznej, wynikającej z zaznaczenia opcji *Parametry połączenia belki lewej symetryczne względem parametrów belki prawej*. W przypadku braku symetrii parametry są podawane dla prawej i lewej belki niezależnie w oddzielnych formularzach.

÷	EuroZłą	cza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] – 🗖 📑	K
Plik	Ustawienia Pomoc		
P	Model połączenia		
5	Model sił	Przekroj belka: IPE 550 (S 235)	
R.	Wyniki wymiarowania	Geometria przy styku	
÷	Wydruki	*	
	Typ połączenia		
	Dane ogólne		
	Blacha czołowa: przekrój		
	Skos teowy dolny	Nachylenie belkiα = 5.00 deg	
	Parametry spoin	Żebra wzmacniające półki	
	Parametry śrub	☐ Góme	
	Sztywność połączenia		
4	•		

9.3.1 Przekrój

Po kliknięciu w kontrolkę *Belka* ukaże się *Menadżer profili*, za pomocą którego należy wybrać odpowiedni profil belki oraz rodzaj stali.

			Manadżer profili			×
	IPE 180 IPE 200 IPE 220	^		Nazwa Typ profilu	Wartość IPE 550	^
	IPE 240 IPE 270 IPE 300			Wysokość przekroju [mm]	h = 550.00	
	IPE 330 IPE 360 IPE 400			Szerokość półek przekroju [mm]	br = 210.00	
	- IPE 450 IPE 500			Grubość środnika przekroju [mm]	tw = 11.00	
Para mate		~		Grubość półek przekroju [mm]	tr = 17.00	
Norma:	PN-EN 1993-1-1	Ŧ		Promień wewnętrzny [mm]	R1 = 24.00	
Materiał:	S 235 (EN_10025_2)	-		Pole powierzchni przekroju	A = 13400.00	~
				Anuluj	ОК	

9.3.2 Geometria przy styku

Użytkownik podaje kąt nachylenia belki względem płaszczyzny blachy czołowej. Kąt podawany jest w stopniach. Pochylenie belki nie powinno mieć dużej wartości.

P	Eu	roZłącza 2	.0 - WEWNĘT	RZNA LICE	NCJA - INTERSOFT [L01]	- ×
Plik	Ustawienia Pomoc					
ця,	Model połączenia				105 550 (0.000)	1
55	Model sił	ŀ	Przekroj belki:		IPE 550 (5 235)	
R.	Wyniki wymiarowania		Geometria przy st	/ku		Wzajemna orientacja belek
-	Wydruki				ŧ	
	Typ połączenia			α		×
	Dane ogólne				/	
	Belka prawa: przekrój		1			
	Blacha czołowa prawa: przekrój				£ '	
	Belka prawa: skos teowy dolny		Nach	ylenie belki α =	5.00 deg	r = 0.00 mm
	Belka prawa: parametry spoin		Żebra wzmacniaja	ace półki		
			Góme		✓ Dolne	Odstęp własny
	Blacha czołowa lewa: przekrój					🔿 Wyrównaj dla osi pasów górnych
	Belka lewa: skos teowy dolny					 Wyrównaj dla osi pasów dolnych
	Belka lewa: parametry spoin					
	Parametry śrub					
	Sztywność połączenia					
4		•				

9.3.3 Wzajemna orientacja belek

Użytkownik wskazuje zamierzoną wartość przesunięcia pomiędzy górnymi krawędziami blach czołowych. Wartość tą podaje się w formularzu danych powiązanych z belką lewą dla sytuacji, gdy nie wybrano symetrii belek. Jeżeli symetria została wybrana – wartość ta jest zerowana i niemożliwa do edycji.

Wymagane jest, aby parametr r przyjmował wartość taką, aby ściskane pasy obu belek znajdowały się na tej samej wysokości (ze względu na sytuacje praktyczne dopuszcza się przesunięcie ich osi o niedużą wartości).

Użytkownik może wybrać jeden z automatycznych sposobów wyliczania wartości *r*:

- Odstęp własny (brak automatyzacji wyliczenia),
- Wyrównaj do osi pasów górnych,
- Wyrównaj do osi pasów dolnych.

9.3.4 Żebra wzmacniające półki

Aby zastosować żebra wzmacniające półki, należy zaznaczyć pole *Górne* (i/lub *Dolne*) oraz wybrać typ żebra.

UWAGA: Użycie usztywnienia w postaci żebra z płaskownika jest możliwe tylko po stronie rozciąganej połączenia, tzn. wszystkie podane w panelu sił momenty zginające dla żebra górnego belki prawej muszą być nieujemne.

÷	EuroZłącz	a 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] - 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	
11	Model sił	Wymiary
I.	Wyniki wymiarowania	e _{nt} l _p = 240 mm
÷	Wydruki	$t_p = \frac{1}{40}$ mm
	Typ połączenia	$e_{pb} = 40 \text{ mm}$
	Dane ogólne	e_{pb} $t = 18 mm$
	Blacha czołowa: przekrój	
	Skos teowy dolny	
	Parametry spoin	Baza materialowa
	Parametry srub Sztywność połączenia	Materiał S 235 (EN_10025_2) V Dobierz automatycznie bazę materiałową taką jak belki
- 4		
	•	

9.4 Blacha czołowa

9.4.1 Blacha czołowa – Wymiary

W panelu *Wymiary* należy podać parametry blachy czołowej zgodnie z rysunkiem poglądowym, gdzie:

 l_P – szerokość blachy czołowej [mm],

 $\mathbf{e_{pt}}$ – odległość od krawędzi górnej blachy czołowej do krawędzi górnej pasa górnego belki [mm],

 $\mathbf{e_{pb}}$ – odległość od krawędzi dolnej blachy czołowej do krawędzi dolnej pasa dolnego belki [mm],

 $\mathbf{h_p}$ – wysokość blachy czołowej (wartość nieedytowalna, wyliczana automatycznie i podawana informacyjnie) [mm],

 t_p – grubość blachy czołowej [mm].

9.4.2 Blacha czołowa – Baza materiałowa

W polu *Baza materiałowa* należy podać rodzaj stali. Wybranie opcji *Dobierz automatycznie bazę materiałową taką jak belka* spowoduje przypisanie do blachy czołowej rodzaju stali odpowiadającego temu użytemu dla powiązanej belki.

9.5 Żebro wzmacniające górne (dolne) – blacha

Zakładka *Wzmocnienie górne (dolne)* pojawi się po wyborze odpowiedniej ikony w zakładce *Belka: przekrój*.

9.5.1 Blacha żebra – Wymiary

W polu *Wymiary* należy podać wymiary żebra zgodnie z rysunkiem umieszczonym w polu *Wymiary*, gdzie:

l_{stp} – szerokość blachy [mm],

h_{stp} – wysokość blachy [mm],

t_{stp} – grubość blachy [mm],

 c_{stp} – wcięcie przypołączeniowe [mm] (wyliczane automatycznie na bazie wymagań normy **PN-B-06200**).

9.5.2 Blacha żebra – Baza materiałowa

W polu *Baza materiałowa* należy podać rodzaj stali. Wybranie opcji *Dobierz automatycznie bazę materiałową taką jak belka* spowoduje przypisanie do blachy czołowej rodzaju stali odpowiadającego temu użytemu dla powiązanej belki.

9.6 Skos teowy górny (dolny)

Aby zastosować żebra wzmacniające półki, należy zaznaczyć pole *Górne (Dolne)* oraz wybrać typ żebra.

9.6.1 Skos teowy – sposób wytworzenia

Należy wybrać typ teownika, z którego wykonany jest skos:

- *Teownik standardowy* (wybór teownika z katalogu),
- Połówka dwuteownika standardowego (wybór połówki dwuteownika z katalogu),
- Spawany z blach.

W opcji *Dwuteownik (standardowy)* i *Teownik* dostępny jest *Menadżer profili*, z którego należy wybrać odpowiedni profil żebra wzmacniającego oraz wybrać rodzaj stali.

Wybranie opcji *Dobierz automatycznie bazę materiałową taką jak belka* spowoduje przypisanie rodzaju stali odpowiadającego temu użytemu dla powiązanej belki.

9.6.2 Wymiary

Skos wzmacniający teowy można skonstruować na bazie teownika tablicowego, dwuteownika tablicowego lub blachownicy teowej.

÷	EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 🗙						
Plik	Ustawienia Pomoc						
P	Model połączenia						
	Model sił	O Teownik standardowy	Wycięty z dwuteow	wnika standardowego	Spawany z blach		
R.	Wyniki wymiarowania	Wymiary		Wymiary			
e	Wydruki	μ	Ť				
	Typ połączenia	l stt h' u	l _{stt} = 562 mm	St			
	Dane ogólne	T Stt	b = 198 mm	- sst			
	Belka: przekrój	C _{stt}	**stt				
	Blacha czołowa: przekrój	1 1 ,⊱stt∤	t _{stt,f} = 17.00 mm		s _{stt} = 611.92 mm		
	Skos teowy górny	Wcięcie przyłączeniowe	h' _{stt} = 129.92 mm		t _{stt,w} = 11.00 mm		
	Wzmocnienia dolne	min c _{stt} = 56 mm	α = 23.80 deg		b _{stt} = 210.00 mm		
	Parametry spoin						
	Parametry śrub						
	Sztywność połączenia	Dwuteownik IPE 550 (S 235)					
				1			
	☑ Dobierz automatycznie bazę materiałową taką jak belka						
•	•						

W polu *Wymiary* należy podać wymiary żebra zgodnie z opisem na rysunkach (możliwość wpisania odpowiednich wymiarów uzależniona jest od rodzaju wzmocnienia), gdzie:

l_{stt} – szerokość teownika liczona na rzucie poziomym [mm],

 \mathbf{h}_{stt} – wysokość teownika liczona na rzucie pionowym [mm],

t_{stt.f} – grubość pasa górnego teownika [mm],

 h'_{stt} – automatycznie wyznaczona wysokość przekroju teownika [mm],

 α – wyznaczony automatycznie kąt nachylenia teownika względem normalnej do belki, liczony w stopniach dziesiętnych [°],

 c_{stt} – wcięcie przypołączeniowe [mm] (wyliczane automatyczne na bazie wymagań normy **PN-B-06200**),

s_{stt} – długość teownika liczona na rzucie z góry [mm],

t_{stt,w} – grubość środnika teownika [mm],

b_{stt} – szerokość teownika liczona na rzucie z góry [mm].

9.7 Parametry spoin

Ŧ	EuroZłącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌						
Plik	Ustawienia Pomoc						
P	Model połączenia						
55	Model sił	rarametry spoin ✓ Z niepełnym przetopem Automatyczny dobór przybliżonej wystarczając grubości spoiny na bazie nośności przekroju b					
5	Wyniki wymiarowania	Rodzaj spoiny					
÷	Wydruki	Pachwinowa O Czorowa					
	Typ połączenia Dane ogólne Belka: przekrój Błacha czołowa: przekrój Skos teowy górny	<u>⊿</u> ^a _{bf} 	<u>⊿</u> ^a _{stt,f}	 			
	Wzmocnienia dolne	Belka	Żebro wzmacniające góme	Blacha wzmacniająca dolna			
	Parametry spoin Parametry śrub Sztywność połączenia	Grubość a _{bw} = <u>7</u> mm Grubość a _{bf} = <u>8</u> mm	Grubość a _{stt.} w = <u>6</u> mm Grubość a _{stt.f} = <u>8</u> mm	Grubość a _{sbp} = <u>6</u> mm			
4							

W panelu *Parametry spoin* użytkownik może wybrać automatyczny dobór przybliżonej wystarczającej grubości spoiny na bazie nośności elementów przekroju belki. Po wybraniu automatycznego doboru grubości spoiny kontrolki grubości poszczególnych spoin zostają dezaktywowane i wypełnione wyliczonymi wartościami.

9.7.1 Belka

W polu Belka należy podać grubości spoin:

 a_{bw} – grubość spoiny łączącej środnik belki z blachą czołową [mm],

 a_{tf} – grubość spoiny łączącej pasy belki z blachą czołową [mm].

9.7.2 Rodzaj spoiny

W polu *Rodzaj spoiny* należy podać rodzaj spoiny łączącej belkę z blachą czołową:

• *Pachwinowa* – w przypadku wyboru spoiny pachwinowej możliwy jest automatyczny dobór przybliżonej wartości grubości spoiny na bazie nośności przekroju belki,
Czołowa – w przypadku wyboru spoiny czołowej możliwy jest wybór spoiny z niepełnym przetopem; spoina czołowa z pełnym przetopem przyjmuje grubość dochodzącej ścianki belki.

9.7.3 Blacha wzmacniająca żebra górna (dolna)

W polu należy podać zgodnie z rysunkiem (opcja pojawia się w zależności od wyboru typu wzmocnienia):

 a_{sbp} – grubość spoiny łączącej blachę wzmacniającą żebra górną (dolną) z blachą czołową [mm].

9.7.4 Żebro wzmacniające górne (dolne)

W polu należy podać zgodnie z rysunkiem (opcja pojawia się w zależności od wyboru typu wzmocnienia):

 $a_{stt,w}$ – grubość spoiny łączącej środnik żebra górnego (dolnego) z blachą czołową [mm],

 $a_{stt,f}$ – grubość spoiny łączącej półkę żebra górnego (dolnego) z blachą czołową [mm].

EuroZłąc	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L0	D1] — 🗆 🗙
Ustawienia Pomoc		
Nodel połączenia Nodel sił Vyniki wymiarowania	Baza materiałowa Norma PN-EN 1993-1-8 V Kasa 8.8 V Średnica d M20 V Część ścinana Gwintowana V	Geometria połączenia Kategoria połączenia $E \vee$ k k Liczba wierszy w = 6 s ₁ = 90 mm
Vydruki Typ połączenia Dane ogólne	Liczba szeregów rozciąganych ✓ Dobierz automatycznie Dia M- (od dołu): 5 ∨	$\begin{array}{c} p_2 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $
Selka: przekrój Słacha czołowa: przekrój Skos teowy górny Wzmocnienia dolne Parametry spoin Parametry śrub Sztywność połączenia	Blacha czołowa lewa $e_{1L} \neq e_{endL} \neq e_{endR}$ $e_{end,L} = 100 \text{ mm}$ $e_{end,L} = 108.10 \text{ mm}$	Rozstawy pionowe śrub Blacha czołowa prawa e1 100 mm p1 80 mm p2 220 mm p3 220 mm p4 220 mm p5 80 mm eend, R = 108.10 mm
•		

9.8 Parametry śrub

9.8.1 Kategoria połączenia

Zgodnie z zasadami modelowania połączenia według normy **PN-EN 1993:1-8:2006**, należy wybrać jedną z kategorii połączenia doczołowego: *D* lub *E*.

UWAGA: Dla konstrukcji narażonej na oddziaływanie udarowe i wibracyjne automatycznie wybierana jest kategoria połączenia E bez możliwości jej zmiany.

9.8.2 Geometria połączenia

W polu *Liczba wierszy* należy wpisać liczbę wierszy śrub użytych w połączeniu. Po wybraniu odpowiedniej liczby wierszy pojawi się automatycznie lista, w której należy wpisać odległości między wierszami śrub:

 s_1 – rozstaw między kolumnami śrub, liczona w poziomie,

 e_1 – dla pierwszej śruby – liczone od krawędzi górnej blachy prawej do osi pierwszego wiersza śrub [mm],

 $e_{1,L}$ – automatycznie wyznaczona odległość pierwszego szeregu śrub od górnej krawędzi blachy czołowej lewej [mm],

 $e_{end,R}$ – automatycznie wyznaczona odległość ostatniego szeregu śrub od dolnej krawędzi blachy czołowej prawej [mm],

 $e_{end,L}$ – automatycznie wyznaczona odległość ostatniego szeregu śrub od dolnej krawędzi blachy czołowej lewej [mm],

 p_i – dla każdej kolejnej śruby – liczone w pionie od osi (wiersza) śruby poprzedniej do osi (wiersza) śruby kolejnej [mm].

Opcja *Centruj w pionie* pozwala na wycentrowania szeregów śrub (nadanie tej samej wartości p_1 każdemu szeregowi).

Dla połączenia kategorii *E* należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

UWAGA: Po stronie zewnętrznej rozciąganego pasa belki (skosu) nie powinien znajdować się więcej niż jeden (rozciągany) szereg śrub. W przypadku użycia po tej stronie blachy wzmacniającej można zastosować większą liczbę szeregów, jednak wszystkie one powinny się znajdować poniżej zewnętrznej krawędzi blachy. Należy przez to rozumieć także spełnienie warunku minimalnego zagłębienia szeregu śrub poniżej tej krawędzi.

9.8.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- część ścinaną śruby jako *Gwintowaną* lub *Nienagwintowaną*.

9.8.4 Liczba szeregów rozciąganych

Należy wybrać ilość szeregów śrub rozciąganych, oddzielnie dla każdej klasy znaku momentu zginającego (czyli szeregi liczone od góry lub od dołu) działającego na belkę [występującego w podanym zestawie sił obliczeniowych].

Po wstawieniu znacznika *Dobierz automatycznie* ich liczba zostanie dobrana automatycznie (zawsze poprzez zarezerwowanie jedynie ostatniego szeregu do przenoszenia ścinania).

9.9 Sztywność połączenia

9.9.1 Klasyfikacja węzła ze względu na sztywność

Wybranie tej opcji skutkuje przeprowadzeniem procedury wyznaczania sztywności połączenia.

9.9.2 Parametry sztywności

Parametr Zamierzona sztywność węzła dopuszcza jeden z trzech wariantów:

- *Węzeł sztywny* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł sztywny,
- *Węzeł podatny* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł podatny,
- *Węzeł nominalnie przegubowy* wskazuje, że wynikiem klasyfikacji węzła ze względu na sztywności powinien być węzeł nominalnie przegubowy.

EuroZłąc	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	– 🗆 ×
Ustawienia Pomoc		
Nodel połączenia		
Nodel sił	Klasyfikacja węzła ze względu na sztywność	
Wyniki wymiarowania	Parametry sztywności	
Wydruki	Zamierzona sztywność węzła	
.,	 węzeł sztywny 	
Typ połączenia	 węzeł podatny 	
Dane ogólne	 węzeł nominalnie przegubowy 	
Belka: przekrój		
3lacha czołowa: przekrój		
Skos teowy górny	rozpietość helki prawej I. – – 5770 mm	
Vzmocnienia dolne		
^o arametry spoin	rozpiętość belki lewej L _{b,L} = 4800 mm	
Parametry śrub	k _b = 8.00 ∨	
Sztywność połączenia		
•		

Należy podać parametry niezbędne do wyznaczenia sztywności i dokonania klasyfikacji:

 $L_{b,R}$ – długość belki prawej [mm],

L_{b,L} – długość belki lewej [mm],

 ${\pmb k}_{{\pmb b}}$ – parametr powiązany z ogólną sztywnością konstrukcji.

10 Połączenie EuroZłącza KRATOWE Z BLACHĄ WĘZŁOWĄ

Algorytm dotyczy wymiarowanie konstrukcji węzła kratownicy z użyciem blachy węzłowej. Możliwe konfiguracje obejmują:

- a) Ogólnie:
- obliczenia można przeprowadzić dla węzłów typu T i Y oraz K, N i KT,
- jeżeli w węźle zbiegają się więcej niż dwa pręty skratowania (węzły KT) ich osie winny zbiegać się w jednym punkcie.
- b) Blacha węzłowa:
- blacha węzłowa o dowolnych wymiarach prostokątnych,
- połączona wzdłużnie z pasem kratowym za pomocą spoiny [teowej].
- c) Pas kratowy:
- dopuszczalne przekroje dla pasów kratowych obejmują: dwuteowniki,
- orientacja przekroju pasa z dwuteownika jest pionowa (blacha węzłowa połączona z pasem, w płaszczyźnie wyznaczone przez oś środnika dwuteownika).
- d) Pręty skratowania:
- dopuszczalne przekroje dla słupków i krzyżulców obejmują: rury kwadratowe bądź prostokątne, kątowniki, ceowniki,
- dopuszczalna konfiguracja dla rur kwadratowych bądź prostokątnych obejmuje: styk z blachą poprzez ścianki łączone teowo wzdłuż symetrycznego rozcięcia przekroju pręta, połączenie z blachą spawane,
- dopuszczalna konfiguracja dla kątowników obejmuje: stosowanie prętów zdwojonych (symetria przekrojów), połączenie z blachą spawane lub śrubowe, styk z blachą wzdłuż ramienia kątownika,
- dopuszczalna konfiguracja dla ceowników obejmuje: stosowanie prętów zdwojonych (symetria przekrojów), styk z blachą wzdłuż środnika ceownika, połączenie z blachą spawane lub śrubowe.

10.1 Typ połączenia

÷	EuroZł	łącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	×	
Plik	Ustawienia Pomoc			
P	Model połączenia	Wybór połączenia		
	Model sił			
Fi	Wyniki wymiarowania			
-	Wydruki		-	
	Typ połączenia			
	Dane ogólne			
	Blacha węzłowa: przekrój	EuroZiacza PODCIAG-BELKA EuroZiacza St.UP-BELKA EuroZiacza St.UP-BELKA	~	
	Blacha węzłowa: połączenie	DOCZOŁOWE		
	Pręt 1: przekrój			
	Pręt 1: połączenie przylegające			
	Pręt 2: przekrój			
	Pręt 2: połączenie przylegające			
	Pręt 3: przekrój			
	Pręt 3: połączenie przylegające		~	
		EuroZłącza BELKA-BELKA EuroZłącza BELKA-BELKA EuroZłącza KRATOWE Z BLAC DOCZOŁOWE WĘZŁOWĄ	ΉĄ	
•	•	Dostępny X Niedostępny - Demo		

10.2 Dane ogólne

10.2.1 Pas kratowy

Przekrój pasa kratowego wskazywany jest za pomocą *Menadżera profili*, w którym należy wybrać odpowiedni profil słupa oraz rodzaj stali.

IPE 80 IPE 100 IPE 120 IPE 330 IPE 140 IPE 330 IPE 160 IPE 330 IPE 200 IPE 200 IPE 300 IPE 300 I		Manadżer profili			x
Anuluj OK	IPE 80 IPE 100 IPE 120 IPE 140 IPE 140 IPE 160 IPE 180 IPE 200 IPE 220 IPE 240 IPE 270 IPE 270 IPE 300 IDE 260 Baza materiałowa V Noma: PN-EN 1993-1-1 Materiał: S 355 (EN_10025_2)		Nazwa Typ profilu Wysokość przekroju [mm] Szerokość półek przekroju [mm] Grubość środnika przekroju [mm] Grubość półek przekroju [mm] Promień wewnętrzny [mm] Pole powierzchni przekroju Anuluj	Wartość IPE 330 h = 330.00 br = 160.00 tw = 7.50 tr = 11.50 R1 = 18.00 A = 6260.00 OK	<

10.2.2 Globalne parametry połączenia

Zgodnie z zasadami modelowania połączenia, jeśli dla któregoś połączenia składowe w modelu wybrano połączenie śrubowe, wówczas należy wybrać *Kategorię połączenia śrubowego* (ta sama kategoria będzie obowiązywać dla wszystkich połączeń składowych typu śrubowego w ramach liczonego węzła):

- A,
- **B** (należy dodatkowo podać siły charakterystyczne w panelu *Modelu sił*),
- C.

W przypadku, gdy wszystkie połączenia składowe realizowane są jako spawane, opcja powyższa nie jest dostępna.

W przypadku zaznaczenia opcji *Konstrukcja narażona na wpływy atmosferyczne lub korozyjne* aplikacja uwzględni ten parametr w obliczeniach.

10.2.3Rodzaj węzła

W sekcji należy wybrać typ węzła, dla którego zostanie zbudowany model.

- Y,
- T,

- K,
- N,
- KT.

UWAGA: Aby dokonać wymiarowania węzła typu X, należy sekwencyjnie wykonać dwa oddzielne modele węzła typu Y/T (dla pręta górnego i dolnego) i przeprowadzić dla nich oddzielne procedury wymiarowania.

UWAGA: Różnica pomiędzy modelami dla par węzłów:

- Y oraz T,
- K oraz N,

są jedynie natury formalnej. Sposób obliczeń i modelowania słupków występujących w węzła T oraz N nie różni się od prętów będących formalnie krzyżulcami (tzn. oba typy prętów mogą być zarówno ściskane jak rozciągane). Zauważalną różnica występuje w zestawach kombinacji sił obliczeniowych generowanych w przypadku wybrania opcji przeprowadzania obliczeń na nośność elementów, gdzie specyfika nominalnego typu pracy poszczególnych prętów (słupki tylko ściskane) jest uwzględniana.

10.2.4Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

10.2.5Znak siły normalnej w pasie kratowym

Aktywne w przypadku wybrania obliczeń na nośność elementów. Możliwe są:

- N(+) rozciąganie,
- M(-) ściskanie.

Zestaw sił obliczeniowych do wymiarowania na nośność zostanie zbudowany z użyciem wybranego typu siły osiowej dla pasa kratowego. Zmienne może być natomiast znakowanie sił normalnych w poszczególnych prętach skratowania.

10.2.6 Przesunięcie punktu węzłowego

Wartość e(mimośród) oznacza odsunięcie punktu węzłowego względem osi pasa kratowego. Wartość ta może być istotna dla rozkładu sił we wszystkich prętach uczestniczących w węźle.

Odsunięcie skierowane w stronę prętów skratowania oznaczone jest znakiem ujemnym wartości *e*. Odsunięcie w kierunku przeciwnym jest z kolei powiązane ze znakiem dodatnim.

Wartość zerowa oznacza brak odsunięcia (punkt węzłowy prętów skratowania leżący na osi pasa skratowania).

10.2.7 Położenie węzła

Węzeł może przyjmować jedno z następujących położeń (orientacji):

- Węzeł górny,
- Węzeł dolny.

Wybrana opcja nie ma znaczenia dla obliczeń, jest ona jedynie wykorzystywany przy tworzenia rysunku poglądowego.

10.3 Blacha węzłowa: przekrój

÷	EuroZłąc	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc	
P		
11	Model sił	wymary Ustawienie prętow skratowania
F.	Wyniki wymiarowania	e _{z,g}
-	Wydruki	
	Typ połączenia	
	Dane ogólne	$t_p = 14 \text{ mm}$
	Blacha węzłowa: połączenie	e _{z.g} = 0 mm
	Pręt 1: przekrój	
	Pręt 1: połączenie przylegające	Baza materiałowa
	Pręt 2: przekrój	Material S 355 (EN 10025 2)
	Pręt 2: połączenie przylegające	
	Pręt 3: przekrój	
	Pręt 3: połączenie przylegające	
-	•	

10.3.1 Wymiary

Należy podać wymiary blachy zgodnie z rysunkiem poglądowym, gdzie:

 l_p – szerokość blachy [mm],

 h_p – wysokość blachy [mm],

 t_p – grubość blachy [mm].

10.3.2 Ustawienie prętów skratowania

 $e_{z,g}$ – przesunięcie (horyzontalne) punktu węzłowego prętów skratowania od pionowej osi symetrii blachy węzłowej [mm].

10.3.3Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak pasa kratowego* do blachy węzłowej zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla przekroju pasa kratowego.

10.4 Blacha węzłowa: połączenie

10.4.1 Rodzaj spoiny

Należy wskazać rodzaj spoiny w połączeniu teowym krawędzi blachy węzłowej z półką pasa kratowego:

- Pachwinowa,
- Czołowa.

10.4.2Parametry spoiny

Tylko spoiny zewnę**trzne** – dotyczy spoiny pachwinowej; oznacza, że spoina jest prowadzona jedynie wzdłuż jednej krawędzi blachy węzłowej. Odznaczenie tego pola spowoduje, że spoiny prowadzone są po obu stronach połączenia teowego blachy do półki pasa kratowego.

₽	EuroZłąc	za 2.0 - WEWNĘT	RZNA LICENCJA - INTERSOFT [L01]	_ 🗆 🗙
Plik	Ustawienia Pomoc			
P	Model połączenia			
-	Model sił	Typ połączenia	Spawane	
E.	Wyniki wymiarowania	Rodzaj spoiny	Pachwinowa O Czołowa	
÷	Wydruki	Parametry spoiny		
	Typ połączenia			
	Dane ogólne		h	Tylko spojny zewnetrzne
	Blacha węzłowa: przekrój			
	Blacha węzłowa: połączenie			_
	Pręt 1: przekrój			Automatyczny dobór spoiny
	Pręt 1: połączenie przylegające			Grubość a = 8 mm
	Pręt 2: przekrój			
	Pręt 2: połączenie przylegające			
	Pręt 3: przekrój			
	Pręt 3: połączenie przylegające			
•	>			

Z niepełnym przetopem – dotyczy spoiny czołowej; użytkownik wskazuje rodzaj spoiny czołowej.

÷	EuroZłącz	a 2.0 - WEWNĘT	RZNA LICENCJA - INTERSOFT [L01]		 ×
Plik	Ustawienia Pomoc				
ЦР.	Model połączenia				
	Model sił	Typ połączenia	Spawane		
E.	Wyniki wymiarowania	Rodzaj spoiny	O Pachwinowa 💿 Czołowa		
-	Wydruki	Parametry spoiny			
	Typ połączenia				
	Dane ogólne		h		
	Blacha węzłowa: przekrój		va		
	Blacha węzłowa: połączenie			Z niepełnym przetopem	
	Pręt 1: przekrój			Automatyczny dobór spoiny	
	Pręt 1: połączenie przylegające			Grubość a = 8 mm	
	Pręt 2: przekrój				
	Pręt 2: połączenie przylegające				
	Pręt 3: przekrój				
	Pręt 3: połączenie przylegające				
-	•				

*Automatyczny dob*ó*r spoiny* – algorytm określa przybliżoną wystarczającą grubość spoiny pachwinowej oraz spoiny czołowej z niepełnym przetopem.

a – grubość spoiny [mm].

Grubość spoiny dobierana jest automatycznie dla spoiny czołowej pełnej (ustawiana na równą grubości blachy węzłowej) oraz przez użytkownika dla spoiny czołowej z niepełnym przetopem lub spoiny pachwinowej.

10.5 Pręty skratowania

Panele powiązane z opisem parametrów prętów skratowania tworzone są oddzielnie dla każdego pręta skratowania. Może ich być: jeden (dla węzłów Y, T), dwa (węzły K, N) lub trzy (węzły KT). Niżej omówiony zostanie pojedynczy zestaw formularzy, gdyż są one powtarzalne.

10.5.1 Typ przekroju

÷	EuroZłąc	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	- 🗆 ×
Plik	Ustawienia Pomoc		
P	Model połączenia		
	Model sił	Typ przekroju rura prostokątna 	Geometria przy styku
5	Wyniki wymiarowania) ceownik	
-	Wydruki		S
	Typ połączenia	przekrój: L 150 x 100 x 14 (S 275)	•
	Dane ogólne		
	Blacha węzłowa: przekrój	Dobierz automatycznie bazę materiałową taką jak pasa Orientacja przekroju	
	Blacha węzłowa: połączenie		
		╶╁╴╺┷╸╺	Nachyleniepręta ϕ = 49.00 deg
	Pręt 1: połączenie przylegające	₩ ₩ ₩ -₩-	s = 170 mm
	Pręt 2: przekrój		s _x = 47.56 mm
	Pręt 2: połączenie przylegające		
	Pręt 3: przekrój	Mnożność przekroju	
	Pręt 3: połączenie przylegające	 pojedynczy i zdwojony / przykrańcowo rozcięty 	
	•		

Pręt skratowania może być wykonany z jednego z następujących typów przekrojów:

- rura prostokątna (lub kwadratowa),
- ceownik,
- kątownik.

Po dokonaniu wyboru przebudowana zostanie baza dostępnych przekrojów, z której należy wskazać wybrany rodzaj sekcji.

10.5.2 Mnożność przekroju

Określa występowanie bądź brak przekroju złożonego. Dostępne opcje obejmują:

- pojedynczy,
- zdwojony / przykrańcowo rozcięty.

W razie wybrania mnożności pojedynczej jako finalny przekrój przyjmowany jest ten wskazany w polu *przekrój*.

W przypadku wybrania mnożności zdwojonej przekrój ten jest traktowany jako bazowy. Finalny przekrój zdwojony powstaje poprzez lustrzane odbicie przekroju bazowego wskazanego w polu *przekrój*.

Opcja *przykrańcowo rozcięty* jest domyślna (jedyna dostępna) dla profili zamkniętych.

10.5.3Orientacja przekroju

Parametr określa orientację wybranego przekroju pręta skratowania z uwzględnieniem jego kształtu. Lista możliwych opcji zmienia się wraz ze zmianą *Typu przekroju* oraz *Mnożności przekroju*.

10.5.4Geometria przy styku

s – odległość krańca pręta skratowania od punktu węzłowego prętów, liczona w osi pręta [mm],

 s_x –odległość w rzucie pomiędzy ścianką półki pasa kratowego a najbliższą krawędzią pręta skratowania [mm],

*Nachylenie pr*ę $ta \phi$ – kąt nachylenia pręta skratowania względem pasa kratowego [deg].

UWAGA: Rola każdego pręta (pręt 1, ew. pręt 2, ew. pręt 3) niesie ze sobą konsekwencje geometryczne dla poprawności modelu węzła, ich oznaczenie (numer porządkowy) nie pełni wyłącznie roli etykiety. Informuje on względem którego z prętów logicznych pasa kratowego (01 lub 02) należy podać nachylenie ϕ . Należy przestrzegać następujących reguł:

- pręt skratowania nr 1 nachylenie ϕ liczone względem pasa kratowego nr 01,
- pręt skratowania nr 2 nachylenie ϕ liczone względem pasa kratowego nr 02,
- pręt skratowania nr 3 nachylenie ϕ liczone względem pasa kratowego nr 01.

UWAGA: Zaleca się, aby w węźle N jako słupek (pręt o nachyleniu względem pasa ϕ równym 90 stopni lub niewiele mniej) modelować pręt skratowania nr 2.

W takim ujęciu krzyżulcem jest pręt skratowania nr 1, a więc na rysunku poglądowym jest on widoczny jako dochodzący do węzła od lewej stronie. Jeżeli w modelu statyki w programie **R3D3/R2D2** krzyżulec dochodzi do węzła od prawej strony - można zastosować następującą technikę myślową ułatwiająca stworzenie modelu: należy na węzeł myślowo spojrzeć od drugiej strony (od tyłu) i zamodelować połączenie uwzględniając występowanie symetrii pionowej węzła i wynikającą z niej specyfikę oraz pamiętając o ograniczeniach co do możliwych wartości nachylenie $\boldsymbol{\phi}$.

UWAGA: Gdy w dalszej części dokumentu występuje sformułowanie "nad [osią] pręta skratowania" należy przez to rozumieć umiejscowienie po stronie kontynuacji narastania kąta

nachylenia (czyli po stronie przeciwnej niż znajduje się półka pasa kratowego, względem którego liczone jest to nachylenie).

UWAGA: W przypadku węzłów K, N i KT – należy zwrócić szczególną uwagę na sprawdzenie poprawności obliczeń jeżeli wartość **nachylenia** pręta ϕ dla pręta 1 lub pręta 2 wynosi więcej niż 90 stopni [przy spełnieniu wszystkich pozostałych ograniczeń co do ich wartości]. Procedura obliczeniowa nie jest przeznaczona dla takich sytuacji i może prowadzić do nie w pełni poprawnych wyników.

10.6 Pręty skratowania – połączenie przylegające

Połączenie przylegające pomiędzy prętem skratowania a blachą czołową występuje, gdy ścianka pręta przylega powierzchniowo do boku blachy węzłowej, np. dla kątowników lub ceownika przylegającego środnikiem. Możliwe są wtedy dwa rodzaje realizacji takiego styku:

- Spawane,
- Śrubowe.

10.6.1 Połączenie śrubowe

÷	Eu	Złącza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	. 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia		
	Model sił	Typ połączenia 🔿 Spawane 💿 Śrubowe	
Fin 1	Wyniki wymiarowania	Parametry ogólne Geometria polączenia	
e	Wydruki	Centruj wzdłużnie Centruj w	v poprzek
	Typ połączenia Dane ogólne Blacha węzłowa: przekrój Blacha węzłowa: połączenie Pręt 1: przekrój	Liczba wierszy w =	3 2 35 mm
	Pręt 1: połączenie przylegające Pręt 2: przekrój	e2 = Kategoria połączenia B v p1 =	60 mm
	Pręt 2: połączenie przylegające Pręt 3: przekrój Pręt 3: połączenie przylegające	Baza materiałowa P2 = Norma PN-EN 1993-1-8 ✓ Klasa 10.9 ✓	60 mm 25 mm
		Średnica d M20 ∨ Współczynnik tarcia µ = 0.5 Część ścinana Gwintowana ∨ Współczynnik rodzaju otworów k _s = 1.0	i0 v J0 v
4			

10.6.1.1 Parametry ogólne

Informacyjnie wyświetlana jest *Kategoria połączenia* śrubowego, która wybierana jest w panelu *Dane ogólne*.

10.6.1.2 Geometria połączenia

w – oznacza liczbę wierszy śrub (narasta w kierunku wzdłużnym pręta),

 \boldsymbol{k} – oznacza liczbę kolumn śrub (narasta w kierunku poprzecznym pręta),

 e_1 – odległość osiowa pomiędzy krawędzią poprzeczną (krańcową) pręta a pierwszym szeregiem śrub [mm],

 e_2 –odległość osiowa pomiędzy krawędzią podłużną zlokalizowaną powyżej osi pręta a pierwszą kolumną śrub [mm],

 p_1 –rozstaw wzdłużny śrub (pomiędzy wierszami) [mm],

 p_2 –rozstaw poprzeczny śrub (pomiędzy kolumnami) [mm],

Centruj wzdłuiżnie – odległość wzdłużna pomiędzy osiami śrub p_1 ustawiane jest z taką wartością, aby najmniejsza odległość wzdłużna pomiędzy śrubami ostatnim wierszem oraz wartość e_1 były takie same,

Centruj w poprzek – odległość poprzeczna pomiędzy osiami śrub p_2 ustawiane jest z taką wartością, aby e_2 było równe odległości osiowa pomiędzy krawędzią podłużną zlokalizowaną poniżej osi pręta a ostatnią kolumną śrub.

Dla połączenia śrubowego kategorii B i lub C należy także wybrać z listy rozwijalnej (lub podać ręcznie):

 μ – współczynnik tarcia [-],

 k_s – współczynnik rodzaju otworów [-].

10.6.1.3 Baza materiałowa

Należy wybrać z listy rozwijalnej:

- *Klasę* użytych śrub,
- *Średnicę* użytych śrub **d**,
- czy część ścinana śruby jest *Gwintowana*, czy *Nienagwintowana*.

10.6.2Połączenie spawane

Należy podać grubość spoiny obwodowej łączącej pręt skratowania z blachą węzłową.

#	EuroZłąc	za 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01] — 🗖 💌
Plik	Ustawienia Pomoc	
P	Model połączenia	
	Model sił	Typ połączenia 🖲 Spawane 🔿 Śrubowe
Fia	Wyniki wymiarowania	Parametry spoiny
÷	Wydruki	
	Typ połączenia	
	Dane ogólne	
	Blacha węzłowa: przekrój	
	Blacha węzłowa: połączenie	
	Pręt 1: przekrój	
		Grubość a = 8 mm
	Pręt 2: przekrój	
	Pręt 2: połączenie przylegające	
	Pręt 3: przekrój	
	Pręt 3: połączenie przylegające	
	•	

a – grubość spoiny [mm].

10.7 Pręty skratowania – połączenie teowe

Połączenie teowe pomiędzy prętem skratowania a blachą czołową występuje, gdy ścianka pręta dochodzi prostokątnie do powierzchni blachy węzłowej, np. dla ceownika stykającego się z blachą półkami lub rury kwadratowej bądź prostokątnej przykrańcowo rozciętej. Taki styk realizuje się poprzez spoinę pachwinową lub czołową.

Formularz przyjmuje formę analogiczną jak dla połączenia blachy węzłowej z półką pasa kratowego.

Podręcznik użytkownika dla programu EuroZłącza Połączenie EuroZłącza KRATOWE Z BLACHĄ WĘZŁOWĄ

÷	Euro	acza 2.0 - WEWNĘTRZNA LICENCJA - INTERSOFT [L01]	_ 🗆 🗙
Plik	Ustawienia Pomoc		
P	Model połączenia		
**	Model sił	Typ połączenia 💿 Spawane	
F.	Wyniki wymiarowania	Rodzaj spoiny 💿 Pachwinowa 🔿 Czołowa	
H	Wydruki	Parametry spoiny	
	Typ połączenia	Łączenie ścianki przekroju pręta skratowania z blachą:	
	Dane ogólne		
	Blacha węzłowa: przekrój	I lyiko s	poiny zewnętrzne
	Blacha węzłowa: połączenie	a 🗠	
	Pręt 1: przekrój	Automa	tyczny dobór spoiny
	Pręt 1: połączenie przylegające	Grubość a	u = 6 mm
	Pręt 2: przekrój		
	Pręt 2: połączenie przylegające		
	Pręt 3: przekrój		
	Pręt 3: połączenie teowe		

11 Połączenie EuroZłącza KRATOWO-RUROWE SPAWANE

Algorytm dotyczy wymiarowanie konstrukcji węzła spawanego kratownicy z rur. Możliwe konfiguracje obejmują:

- a) Ogólnie:
- dopuszczalne przekroje dla pasów obejmują rury kwadratowe bądź prostokątne,
- dopuszczalne przekroje dla słupków i krzyżulców obejmują rury kwadratowe bądź prostokątne,
- dopuszcza się dodatni, minusowy bądź zerowy mimośród węzła,
- obliczenia można przeprowadzić dla węzłów typu T, Y i X oraz K, N i KT z odstępem lub zakładem,
- jeżeli w węźle zbiegają się więcej niż jeden pręt skratowania (węzły X, K, N, KT) ich osie winny zbiegać się w jednym punkcie.
- b) Nakładki:
- dla pasa kratownicy z rur kwadratowych bądź prostokątnych możliwe jest zastosowanie: nakładki wzmacniającej górnej (na ściance pasa kratownicy, do której łączone jest skratowanie) bądź nakładek (przykładek) wzmacniających bocznych;.

11.1 Typ połączenia

11.2 Dane ogólne

11.2.1Pas kratowy

Typ przekroju pasa kratowego może zostać wybrany spośród następujących opcji:

- rura prostokątna (lub kwadratowa),
- rura z ceowników,

Po dokonaniu wyboru przebudowana zostanie baza dostępnych przekrojów, z której należy wskazać wybrany rodzaj sekcji.

Przekrój wskazywany jest za pomocą *Menadżera profili*, w którym należy wybrać odpowiedni profil pasa kratowego oraz rodzaj stali.

Manadżer profili		×
Manadžer profili	Nazwa Typ profilu Wysokość przekroju [mm] Szerokość przekroju [mm] Grubość ścianki przekroju [m Promień wewnętrzny [mm] Promień zewnętrzny [mm] Pole powierzchni przekroju	× Wartość ^ RK 180x180x12,5 a = 180.00 b = 180.00 m]t = 12.50 R1 = 18.80 R2 = 12.50 A = 8210.00 ×
	Anuluj	ОК

UWAGA: Rura z ceowników modelowana (i obliczana) jest jak zastępcza rura prostokątna, zgodna z wymiarami obrysu zdwojonego ceownika oraz o grubości ścianek takiej jak bazowego ceownika, tzn. t_w oraz t_f (równe na długości całej ścianki).

W przypadku wybrania przekroju pasa jako rury z ceowników zaleca się stosowanie nakładki lub przykładek wzmacniających [zależnie od orientacji przekroju; tak, aby wzmocniona została ścianka gdzie przebiega styk półek ceowników].

11.2.2 Pręty pasa

Należy podać osiowe długości prętów pasa (rozpiętości pomiędzy sąsiednimi węzłami): L_{01} oraz L_{02} (indeksy prętów zgodne z rysunkiem poglądowym w panelu sił).

11.2.3Rodzaj węzła

W sekcji należy wybrać typ węzła, dla którego zostanie zbudowany model.

- Y,
- T,
- X,
- K,
- N,
- KT.

UWAGA: Różnica pomiędzy modelami dla par węzłów:

• Y oraz T,

• K oraz N,

są jedynie natury formalnej. Sposób obliczeń i modelowania słupków występujących w węzła T oraz N nie różni się od prętów będących formalnie krzyżulcami (tzn. oba typy prętów mogą być zarówno ściskane jak rozciągane). Zauważalną różnica występuje w zestawach kombinacji sił obliczeniowych generowanych w przypadku wybrania opcji przeprowadzania obliczeń na nośność elementów, gdzie specyfika nominalnego typu pracy poszczególnych prętów (słupki tylko ściskane) jest uwzględniana.

UWAGA: Z uwagi na brak wyraźnie opisanej procedury normowej jak postępować z przypadkami, gdy pręty skratowania w węzłach **K**, **N** i **KT** pracują w ten sam sposób (jednocześnie ściskane lub jednocześnie rozciągane) w obliczeniach skorzystano z metody zastępczego śladu skratowania zaproponowanej w przewodniku projektowym *Tata Steel* - *Design of welded joints*.

11.2.4Przesunięcie punktu węzłowego

Parametrem wiodącym może być:

- mimośród **e**,
- odstęp g1-2 (dla węzłów K lub N),
- odstęp g1-3 (dla węzłów KT),
- odstęp g2-3 (dla węzłów **KT**).

Wartość *e* (mimośród) oznacza odsunięcie punktu węzłowego względem osi pasa kratowego. Wartość ta może być istotna dla rozkładu sił we wszystkich prętach uczestniczących w węźle.

Odsunięcie skierowane w stronę prętów skratowania oznaczone jest znakiem ujemnym wartości *e*. Odsunięcie w kierunku przeciwnym jest z kolei powiązane ze znakiem dodatnim.

Wartość zerowa oznacza brak odsunięcia (punkt węzłowy prętów skratowania leżący na osi pasa skratowania).

Wartości g1-2, g1-3 oraz g2-3 oznaczają odstępy pomiędzy odciskami (na powierzchni pasa kratowego) odpowiednich prętów skratowania.

Wszystkie te wartości są wzajemnie matematycznie zależne, zmiana jednej z nich (wybranego jako parametr wiodący) powoduje zmianę pozostałych.

UWAGA: Przy zmianie parametrów wpływających na geometrię węzła węzła (np. przekroju prętów, ich orientacji, parametrów blach wzmacniających) następuje przeliczenie wszystkich wartości ze względu na zachowanie aktualnej wartości wybranego parametru wiodącego.

11.2.5 Orientacja przekroju pasa

Parametr określa orientację wybranego przekroju pasa kratowego [względem płaszczyzny połączenia] z uwzględnieniem jego kształtu.

Wybrana wartość parametru jest nieistotna w przypadku zastosowania przekroju z rury kwadratowej.

11.2.6 Hierarchia prętów skratowania

Parametr określa orientację hierarchię nachodzenia prętów skratowania. Jest aktywny dla węzłów **K**, **N** oraz **KT** gdy brak jest odstępu pomiędzy prętami (nachodzą na siebie, $g_{1-2} < 0$).

11.2.7Opcje spawania

Opcja *Zakryta ścianka (styk) pręta skratowania zakrywanego przyspawana do pasa kratowego* dotyczy ścianki pręta zakrywanego [prostopadłej do osi pasa kratowego, od strony pręta zakrywającego] na styku z pasem kratowym.

Opcja istotna jedynie dla węzłów K, N oraz KT gdy brak jest odstępu pomiędzy prętami (nachodzą na siebie, $g_{1-2} < 0$).

11.2.8Cechy konstrukcji

W przypadku wybrania opcji *Zastosowano konstrukcję zapobiegającą dystorsyjnemu zniszczeniu pasa* podczas obliczeń pomijane jest sprawdzenie dystorsyjnego zniszczenia pasa.

Takimi środkami mogą być: stosowanie żeber, stężeń bocznych i przeciwskrętnych, połączeń z tarczą sztywną dachu / płytą stropową itp.

11.2.9Ogólny sposób wymiarowania

Użytkownik wybiera sposób wymiarowania nośności połączenia:

- Na siły obliczeniowe,
- Na nośność elementów.

W przypadku wybrania obliczeń *Na nośność elementów* następuje dobór kombinacji sił uznanych za możliwe do wystąpienia w praktyce dla typowych konstrukcji kratownic [dla węzła danego typu], przy założeniu, że na kratownicę działają jedynie siły normalne [równe nośności prętów].

UWAGA: Prawidłowe zaprojektowanie połączenia *Na nośność elementów* dochodzących wymaga dużego doświadczenia zarówno zawodowego, jak i w obsłudze programu, a w niektórych konfiguracjach modelu może być niemożliwe.

W przypadku wybrania obliczeń *Na nośność elementów* siły podane w panelu *Model sił* są ignorowane.

11.2.10 Znak siły normalnej w pasie kratowym

Aktywne w przypadku wybrania obliczeń na nośność elementów. Możliwe są:

- N(+) rozciąganie,
- N(-) ściskanie.

Zestaw sił obliczeniowych do wymiarowania na nośność zostanie zbudowany z użyciem wybranego typu siły osiowej dla pasa kratowego. Zmienne może być natomiast znakowanie sił normalnych w poszczególnych prętach skratowania.

11.2.11 Cechy używanych sił

Opcji *Siły wewnętrzne wyznaczono z zamodelowaniem mimośrodu e* dotyczy sił obliczeniowych oraz charakterystycznych wyznaczonych z obliczeń statycznych i podanych w panelu sił (lub przekazanych z programu **R3D3/R2D2**). W zaznaczenia tej opcji podczas obliczeń nie zostanie uwzględniony (nie nastąpi zmiana wartości używanych sił) wpływ mimośrodu węzła na momentu obliczeniowej występujące w prętach węzła.

Opcja aktywna w przypadku wybrania obliczeń na siły obliczeniowe.

11.2.12 Położenie węzła

Węzeł może przyjmować jedno z następujących położeń (orientacji):

- Węzeł górny,
- Węzeł dolny.

Wybrana opcja nie ma znaczenia dla obliczeń, jest ona jedynie wykorzystywany przy tworzenia rysunku poglądowego.

11.3 Pręty skratowania

Panele powiązane z opisem parametrów prętów skratowania tworzone są oddzielnie dla każdego pręta skratowania. Może ich być: jeden (dla węzłów Y, T), dwa (węzły X, K, N) lub trzy (węzły KT). Niżej omówiony zostanie pojedynczy zestaw formularzy, gdyż są one powtarzalne.

11.3.1Typ przekroju

🖶 EuroZłącza 3.0 -		za 3.0 - WEWNĘTRZNA, NIEKOMERCYJNA LICENCJA - INTERSOFT [L01] — 🗖 🗙
Plik	Ustawienia Pomoc	
P	Model połączenia	
55	Model sił	Typ przekroju pręta skratowania (krzyżulec) Geometria przy styku
R.	Wyniki wymiarowania	💿 rura prostokątna / kwadratowa 🕴 🗍 🐇
-	Wydruki	O rura z ceowników
	Typ połączenia	0/7ek//ś/ BK 150/150//9 (\$ 235)
	Dane ogólne	
		Dobierz automatycznie baze materiałowa taka jak pasa
	Pręt 2: przekrój	Orientacja przekroju pręta skratowania (krzyżulec)
	Wzmocnienia węzła	Nachylenie pręta ¢ = 45.00 deg spoina a = 6 mm długość pręta w osiach węzła L = 1450 mm s = 169.71 mm
4		•

Pręt skratowania (krzyżulec lub słupek) może być wykonany z jednego z następujących typów przekrojów:

- rura prostokątna (lub kwadratowa),
- rura z ceowników.

Po dokonaniu wyboru przebudowana zostanie baza dostępnych przekrojów, z której należy wskazać wybrany rodzaj sekcji.

11.3.2Orientacja przekroju pręta skratowania

Parametr określa orientację wybranego przekroju pręta skratowania z uwzględnieniem jego kształtu. Lista możliwych opcji może zmienić się wraz ze zmianą *Typu przekroju*.

11.3.3Geometria przy styku

*Nachylenie pr*ę $ta \phi$ – kąt nachylenia pręta skratowania względem pasa kratowego [deg],

spoina a – grubość spoiny [mm],

długość pręta w osiach węzła L – podawane w [mm],

s – odległość krańca pręta skratowania od punktu węzłowego prętów, liczona w osi pręta [mm].

UWAGA: Rola każdego pręta (pręt 1, ew. pręt 2, ew. pręt 3) niesie ze sobą konsekwencje geometryczne dla poprawności modelu węzła, ich oznaczenie (numer porządkowy) nie pełni wyłącznie roli etykiety. Informuje on względem którego z prętów logicznych pasa kratowego (01 lub 02) należy podać nachylenie $\boldsymbol{\phi}$. Należy przestrzegać następujących reguł:

- pręt skratowania nr 1 nachylenie ϕ liczone względem pasa kratowego nr 01,
- pręt skratowania nr 2 nachylenie ϕ liczone względem pasa kratowego nr 02,
- pręt skratowania nr 3 nachylenie ϕ liczone względem pasa kratowego nr 01.

UWAGA: Zaleca się, aby w węźle N jako słupek (pręt o nachyleniu względem pasa ϕ równym 90 stopni lub niewiele mniej) modelować pręt skratowania nr 2.

W takim ujęciu krzyżulcem jest pręt skratowania nr 1, a więc na rysunku poglądowym jest on widoczny jako dochodzący do węzła od lewej stronie. Jeżeli w modelu statyki w programie **R3D3/R2D2** krzyżulec dochodzi do węzła od prawej strony - można zastosować następującą technikę myślową ułatwiająca stworzenie modelu: należy na węzeł myślowo spojrzeć od drugiej strony (od tyłu) i zamodelować połączenie uwzględniając występowanie symetrii pionowej węzła i wynikającą z niej specyfikę oraz pamiętając o ograniczeniach co do możliwych wartości nachylenie ϕ .

UWAGA: W przypadku węzłów K, N i KT – należy zwrócić szczególną uwagę na sprawdzenie poprawności obliczeń jeżeli wartość **nachylenia** prę $ta \phi$ dla pręta 1 lub pręta 2 wynosi więcej niż 90 stopni [przy spełnieniu wszystkich pozostałych ograniczeń co do ich wartości]. Procedura obliczeniowa nie jest przeznaczona dla takich sytuacji i może prowadzić do nie w pełni poprawnych wyników.

UWAGA: Spoina sprawdzana jest ze względu na warunek spoiny o pełnej nośności. Użytkownik jest informowany, jeżeli parametry geometryczne węzła wymuszają (zgodnie z zapisami normowymi) użycie spoiny czołowej.

11.4 Blachy wzmacniające węzła

W panelu należy podać parametry wybranych wzmocnień obliczanego węzła kratowego rurowego:

- Nakładka,
- Przykładki boczne,
- Żebro poprzeczne (węzły K i N),
- Żebro poprzeczne 1 (węzły KT),
- Żebro poprzeczne 2 (węzły KT).

Dla każdego elementu należy ten sam zestaw parametrów geometrycznych. Ich dokładnie opis zostanie podany na przykładzie *Nakładki* (dla pozostałych blach jest on analogiczny).

👎 EuroZłącza 3.) - Wewnętrzna, Niekomercyjna Licencja - Inte	ERSOFT [L01] — 🗆 🗙
Plik Ustawienia Pomoc		
🏳 Model połączenia	Nakładka	Przykładki boczne
Model sił		t _{vp_++} * l _{vp_+} Użyj przykładek bocznych
🛗 Wyniki wymiarowania	□ Dobierz wymiary automatycznie I _{hp} = 727 mm	Lobierz wymiary automatycznie Lyp = 727 mm
🗎 Wydruki	b _{hp} = 155 mm	h _{vp} = 155 mm t _{vp} = 16 mm
Typ połączenia		
Dane ogólne	Noma PN-EN 1993-1-1 ~	Noma PN-EN 1993-1-1 ~
Pręt 1: przekrój	Materiał S 355 (EN_10025_2) •	Materiał S 355 (EN_10025_2)
Pręt 2: przekrój	Dobierz bazę materiałową taką jak dla pasa	Dobierz bazę materiałową taką jak dla pasa
Wzmocnienia węzła	Żebro poprzeczne	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} Uyj \ zebra\\ poprzecznego\end{array}\\ \hline Dobierz \ wymiary\\ automatycznie\end{array}\\ \begin{array}{c} D_{sp} = \\ \end{array} \begin{array}{c} \hline 136 \\ mm \\ h_{sp} = \\ \end{array} \begin{array}{c} \hline 50 \\ mm \\ h_{p} = \\ \end{array} \begin{array}{c} \hline 10 \\ mm \end{array}$	
	Norma PN-EN 1993-1-1	
	🗌 Dobierz bazę materiałową taką jak dla pasa	
• •		_

11.4.1Użycie nakładki

Wybranie tej opcji skutkuje uaktywnieniem kontrolek parametrów blachy oraz dodanie zamodelowanego wzmocnienia do modelu węzła.

11.4.2Wymiary

Należy podać wymiary blachy zgodnie z rysunkiem poglądowym, gdzie:

 l_{hp} – długość blachy [mm],

b_{hp} – szerokość blachy [mm],

 t_{hp} – grubość blachy [mm].

Użytkownik może wybrać automatyczny dobór przybliżonych wystarczających (spełniających minimalne warunki normowe) wymiarów blachy na bazie parametrów geometrycznych węzła. Po wybraniu doboru automatycznego kontrolki poszczególnych dobieranych wielkości zostają dezaktywowane i wypełnione wyliczonymi wartościami.

11.4.3Baza materiałowa

W sekcji *Baza materiałowa* należy podać rodzaj stali. Po wstawieniu znacznika *Dobierz automatycznie bazę materiałową taką jak pasa kratowego* do blachy nakładki zostanie przypisany rodzaj stali odpowiadający rodzajowi stali użytej dla przekroju pasa kratowego.

11.4.4Informacje dodatkowe

Żebra poprzeczne definiuje się niezależnie dla węzłów K/N (blacha Żebro poprzeczne) oraz KT (blachy Żebro poprzeczne 1 oraz Żebro poprzeczne 2). Są one dodawane do modelu węzła jedynie, gdy występuje odstęp pomiędzy istotnymi prętami skratowania (bez zakładu) oraz oba istotne pręty mają kąt nachylenia ϕ mniejszy niż 90 stopni.

Raport przykładowy: połączenie EuroZłącza SŁUP-BELKA DOCZOŁOWE

2. Obciążenia Mi.1.Ed Vi.2,Ed 🖌 Mi.2,Ed Ni.2,Ed MEd [kNm] Nr Seria NEd [kN] VEd [kN] 1.1 seria 1 20.00 90.00 90.00 1.2 seria 1 20.00 20.00 90.00 3. Geometria Słup Typ profilu HE 300 B Wysokość przekroju [mm] h_c = 300.00 Szerokość półek przekroju [mm] b_{fc} = 300.00 Grubość środnika przekroju $t_{wc} = 11.00$ [mm] Grubość półek przekroju [mm] t_{fc} = 19.00 Promień wewnętrzny [mm] $R_{1c} = 27.00$ Pole powierzchni przekroju $A_c = 14910.00$ poprzecznego [mm²] Moment bezwładności $I_{yc} = 8563.00$ względem osi y-y [cm4] Moment bezwładności $I_{zc} = 25170.00$ względem osi z-z [cm4] Stal S 355 Granica plastyczności [MPa] | fyc = 355.00

	Wytrzymałość na rozciąganie [MPa]	$f_{uc} = 510.00$
	3	0.81
Belka		
	Orientacja względem słup	a do półki
	Kąt obrotu [²] α = 0.00
	Tvp profilu	IPE 400
	Wysokość przekroju [mm]	$h_{\rm b} = 400.00$
	Szerokość półek przekroju [mm]	b _{fb} = 180.00
	Grubość środnika przekroju [mm]	t _{wb} = 8.60
	Grubość półek przekroju [mm]	t _{fb} = 13.50
	Promień wewnętrzny [mm]	R _{1b} = 21.00
	Pole powierzchni przekroju poprzecznego [mm²]	A _b = 8450.00
	Moment bezwładności względem osi y-y [cm ⁴]	I _{yb} = 23130.00
	Moment bezwładności względem osi z-z [cm ⁴]	I _{zb} = 1318.00
	Stal	S 355
	Granica plastyczności [MPa]	$f_{yb} = 355.00$
	Wytrzymałość na rozciąganie [MPa]	$f_{ub} = 510.00$
	3	0.81
Blacha czołowa		
	Typ profilu	BL 220 x 440 x 20
	Wysokość [mm]	$h_p = 440.00$
	Długość [mm]	$I_p = 220.00$
	Grubość [mm]	$t_p = 20.00$

	Stal	S 355					
	Granica plastyczności [MPa]	f _{yp} = 355.00					
	Wytrzymałość na rozciąganie [MPa]	$f_{up} = 510.00$					
	3	0.81					
4. Parametry połączenia							
4.1. Konfiguracja ogólna węzła							
	Typ węzła <mark>je</mark>	zczytowy dnostronny					
4.2. Spawanego							
Typ połączenia spawanego							
Rodzaj	czołowa						
Przetop	pełen						
Sposób wymiarowania	na nośność elementów						
Spoiny blacha czołowa - belka							
	Grubość spoiny środnika [mm]	$a_{b,w} = 5.00$					
	Grubosc spoiny połek [mm]	$a_{b,f} = 8.00$					
V ^a bw							
4.3. Śrubowego							
	Klasa śruby	3.8					
e'ı	atmosferyczne lub korozyjne	nie					
$\begin{array}{c c} p_1 \\ \hline \\ $	Konstrukcja narażona na oddziaływania udarowe i	nie					
Wiersz	Kolumn łącznie	e1 / pi [mm]					
--------	----------------	--------------	--				
1	2 x 1	60.00					
2	2 x 1	320.00					

5. Sprawdzenie warunków normowych

Liczba niespełnionych warunków geometrycznych lub normowych: 0 z 12

5.1. słup (dwuteownik) (wymiary)

smukłość środnika słupa

$$d/t_{w,c} \le 69 \cdot \varepsilon$$

$$\varepsilon = \sqrt{\left(235/f_{y}\right)} = \sqrt{\left(235/355.00\right)} = 0.81$$

 $208.0/11.0 = 18.9 \le 69 \cdot 0.8 = 56.140 [mm]$

Warunek spełniony

5.2. blacha czołowa (wymiary)

wydłużenie blachy czołowej ponad krawędź górną elementu dochodzącego - e_{pt} [warunek literaturowy]

 $e_{pt}^{\geq t} \geq t_{p}$

20.0≥ 20.0[mm]

Warunek spełniony

5.3. blacha czołowa (wymiary)

wydłużenie blachy czołowej ponad krawędź dolną elementu dochodzącego - epb [warunek literaturowy]

 $e_{pb} \ge t_p$

20.0≥ 20.0[mm]

Warunek spełniony

5.4. Połączenie słup-blacha czołowa (płaskownik) (śruby)

odległość śrub od krawędzi elementu e11,ep (blacha czołowa)

```
e_{11,ep} \ge 1.2 + d_0
```

```
60.0 \ge 1.2 + 22 = 26.4 [mm]
```

Warunek spełniony

5.5. Połączenie słup-blacha czołowa (płaskownik) (śruby)

odległość śrub od przeciwnej krawędzi elementu e12,ep (blacha czołowa)

```
e_{12,ep} \ge 1.2 \cdot d_{0}
e_{12,ep} = 440.0 - (60.0 + 320.0)
60.0 \ge 1.2 \cdot 22 = 26.4 [mm]
```

Warunek spełniony

5.6. Połączenie słup-blacha czołowa (płaskownik) (śruby)

odległość śrub od krawędzi elementu e2,ep (blacha czołowa)

$$e_{2,ep} \ge 1.2 \cdot d_0$$

 $e_{2,ep} = 220.0/2 - 120.0/2 = 50.0$
 $50.0 \ge 1.2 \cdot 22 = 26.4 [mm]$

Warunek spełniony

5.7. Połączenie słup-blacha czołowa (płaskownik) (śruby)

dopuszczalny rozstaw śrub s1,ep (blacha czołowa)

 $s_{l,ep} \ge 2.4 + d_0$

 $s_{l,ep} = 120.0$

```
120.0≥2.4 · 22 = 52.8[mm ]
```

Warunek spełniony

5.8. Połączenie słup-blacha czołowa (płaskownik) (śruby)

dopuszczalny rozstaw śrub p_{i,ep,max} (blacha czołowa)

 $p_{i,ep,max} \ge 2.4 + d_0$

```
p_____= 320.0
320.0 \ge 2.4 + 22 = 52.8 [mm]
Warunek spełniony
5.9. Połączenie słup-blacha czołowa (płaskownik) (śruby)
odległość śrub od krawędzi elementu e1,c (słup)
e_{1e} \geq 1.2 \cdot d_0
60.0 \ge 1.2 + 22 = 26.4 [mm]
Warunek spełniony
5.10. Połączenie słup-blacha czołowa (płaskownik) (śruby)
odległość śrub od krawędzi elementu e2,c (słup)
e_{2,c} \ge 1.2 \cdot d_0
e_==300.0/2-120.0/2=90.0
90.0 \ge 1.2 + 22 = 26.4 [mm]
Warunek spełniony
5.11. Połączenie słup-blacha czołowa (płaskownik) (śruby)
dopuszczalny rozstaw śrub s<sub>1,c</sub> (słup)
s_{l,c} \ge 2.4 \cdot d_0
s ____ = 120.0
120.0 \ge 2.4 + 22 = 52.8 [mm]
Warunek spełniony
5.12. Połączenie słup-blacha czołowa (płaskownik) (śruby)
dopuszczalny rozstaw śrub p<sub>i,c,max</sub> (słup)
p_{ic,max} \ge 2.4 + d_0
p<sub>ic,max</sub>=320.0
```

 $320.0 \ge 2.4 + 22 = 52.8 [mm]$

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 5 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.84

Sprawdzany element	War.	Siła
Smukłość panelu środnika słupa: warunek stosowania metody obliczania nośności	OK	-
Warunek nośności przy zginaniu	0.77	1
Warunek nośności na ścinanie: grupy łączników	0.48	1
Warunek nośności panelu środnika słupa	0.26	1
Warunek interakcji zginania ze ściskaniem	0.84	1

7. Obliczenia wstępne

7.1.1. Obliczenia wspólne

7.1.1.1. Spoiny do blachy czołowej

Spoiny dla elementów rozciąganych wymiarowane są na nośność tych elementów. Jeżeli dla różnych zestawów sił dany pas jest rozciągany oraz ściskany - spoina jest obliczana jak dla pasa rozciąganego.

rozciągany pas górny belki

Bez konieczności przeprowadzania dodatkowych obliczeń - nośność spoiny zależy od nośności elementu łączonego.

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

ściskany pas dolny belki

Bez konieczności przeprowadzania dodatkowych obliczeń - nośność spoiny zależy od nośności elementu łączonego.

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

rozciągany środnik belki

Bez konieczności przeprowadzania dodatkowych obliczeń - nośność spoiny zależy od nośności elementu łączonego.

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

7.1.2. Obliczenia dla M(+) (środek obrotu w pasie dolnym belki/skosu)

7.1.2.1. Nośność rozciąganych szeregów śrub - zginany pas słupa (szeregi rozpatrywane indywidualnie)

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Ogólne

Szereg nr	e1	m	е	m ₂	λ1	λ2	α	n
[-]	[mm]	[mm]	[mm]	[mm]	[-]	[-]	[-]	[mm]
1	60.00	32.90	90.00	-	-	-	-	41.12
2	-	-	-	-	-	-	-	-

Szereg nr 1 typ: Skrajny szereg śrub

$$\begin{split} l_{ql^{2}cp,l} &= 2 \cdot \pi \cdot m = 2 \cdot \pi \cdot 32.90 = 206.72 \, [mm] \\ l_{ql^{2}cp,l} &= \pi \cdot m + 2 \cdot e_{l} = \pi \cdot 32.90 + 2 \cdot 60.00 = 223.36 \, [mm] \\ l_{ql^{2}cp} &= \min \left(-l_{ql^{2}cp,l}; l_{ql^{2}cp,l} \right) = \min \left(-206.72; 223.36 \right) = 206.72 \, [mm] \\ l_{ql^{2}cp} &= \min \left(-l_{ql^{2}cp,l}; l_{ql^{2}cp,l} \right) = \min \left(-206.72; 223.36 \right) = 206.72 \, [mm] \\ l_{ql^{2}cp,l} &= 4 \cdot m + 1.25 \cdot e = 4 \cdot 32.90 + 1.25 \cdot 90.00 = 244.10 \, [mm] \\ l_{ql^{2}cp,l} &= 2 \cdot m + 0.625 \cdot e + e_{l} = 2 \cdot 32.90 + 0.625 \cdot 90.00 + 60.00 = 182.05 \, [mm] \\ l_{ql^{2}cp,l} &= \min \left(-l_{ql^{2}cp,l}; l_{ql^{2}cp,l} \right) = \min \left(-244.10; 182.05 \right) = 182.05 \, [mm] \\ l_{ql^{2}cp,l} &= \min \left(-l_{ql^{2}cp,l}; l_{ql^{2}cp,l} \right) = \min \left(-182.05; 206.72 \right) = 182.05 \, [mm] \\ l_{ql^{2}cp,l} &= 182.05 \, [mm] \\ l_{ql^{2}cp,l} &= 182.05 \, [mm] \\ \\ M_{pl,l,Rd} &= \frac{0.25 \cdot l_{ql^{2},l}; l_{f}^{2} \cdot f_{g} \cdot 10^{-5}}{\gamma_{M0}} = \frac{0.25 \cdot 182.05 \cdot 19.00^{2} \cdot 355.00 \cdot 10^{-5}}{1.00} = 5832.65 \, [kNmm] \\ \\ M_{pl,l,Rd} &= \frac{0.25 \cdot l_{ql^{2},l}; l_{f}^{2} \cdot f_{g} \cdot 10^{-5}}{\gamma_{M0}} = \frac{0.25 \cdot 182.05 \cdot 19.00^{2} \cdot 355.00 \cdot 10^{-5}}{1.00} = 5832.65 \, [kNmm] \\ \\ F_{Llfe,Rd} &= \frac{4 \cdot M_{pl,l,Rd}}{m} = \frac{4 \cdot 5832.65}{32.90} = 709.14 \, [kN] \\ \\ F_{Llfe,Rd} &= \frac{k_{2} \cdot f_{ub} \cdot A_{s}}{\gamma_{M2}} = \frac{0.90 \cdot 800.00 \cdot 10^{-5} \cdot 245.00}{1.25} = 141.12 \, [kN] \\ \\ F_{L2g,LRd} &= \frac{\left(2 \cdot M_{pl,L,Rd} + m \cdot \Sigma F_{LRd} \right)}{\left(m + n \right)} = \left(2 \cdot 5832.65 + 41.12 \cdot 2 \cdot 141.12 \right) = 314.39 \, [kN] \\ \end{split}$$

л.	$0.6 \cdot \pi \cdot d_m \cdot t_{f,c} \cdot f_u = 0.6 \cdot d_m \cdot d_m \cdot f_{f,c} \cdot f_u = 0.6 \cdot d_m $	π · 33.52 · 19.00	510.00 · 10 ⁻³	200 72 [237]
p,Rd	γ	1.25	———————————————————————————————————————	.09.73 [KIV]
ΣF_{tR}	$_{l}=2 \cdot 141.12 = 282.24 [kN]$			
$\Sigma B_{p,R}$	$d = 2 \cdot 489.73 = 979.45 [kN]$			
F I, 3,fc,	$Rd = min\left(\sum F_{t,Rd}; \Sigma B_{p,Rd}\right) = 0$	min (282.24;979.	$45 \models 282.24 [kN]$]
F t.fc, Re	$_{d(1)} = _{min} \left(F_{I,I,fo,Rd}; F_{I,2,fo,Rd} \right)$	$F_{I,3,fc,Rd} = min($	709.14;314.39;1	$282.24 \models 282.24 [kN]$

Szereg nr 2

typ: Wewnętrzny szereg śrub

Szereg śrub nie wskazany jako rozciągany.

7.1.2.2. Nośność rozciąganych szeregów śrub - zginany pas słupa (grupy szeregów)

Grupy szeregów śrub dla zginanego pasa słupa nie występują.

7.1.2.3. Nośność rozciąganych szeregów śrub - zginana blacha czołowa (szeregi rozpatrywane indywidualnie)

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Ogólne

Szereg	bp	w	ex	mx	m	е	m ₂	λ1	λ2	α	n	nx
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[-]	[-]	[mm]	[mm]
1	-	-	-	-	55.70	50.00	26.50	0.53	0.25	6.43	50.00	-
2	-	-	-	-	-	-	-	-	-	-	-	-

Szereg nr 1 typ: Szereg śrub w pobliżu pasa belki/skosu

$$l_{eff ep} = 2 \cdot \pi \cdot m = 2 \cdot \pi \cdot 55.70 = 349.97 [mm]$$

$$l_{eff ne,I} = \alpha \cdot m = 6.43 \cdot 55.70 = 358.18 [mm]$$

$$l_{eff ne,II} = 4 \cdot m + 1.25 \cdot e = 4 \cdot 55.70 + 1.25 \cdot 50.00 = 285.30 [mm]$$

$$l_{eff ne,II} = min \left(-l_{eff ne,II}; l_{eff ne,II} \right) = min \left(-358.18; 285.30 \right) = 285.30 [mm]$$

$$l_{eff l.ep} = min \left(-l_{eff ne,I}; l_{eff ep} \right) = min \left(-285.30; 349.97 \right) = 285.30 [mm]$$

$$l_{eff l.ep} = l_{eff ne} = 285.30 [mm]$$

$$M_{pl.l.Rd} = \frac{0.25 \cdot l_{eff l} \cdot t_{ep}^{2} \cdot f_{y} \cdot 10^{-3}}{\gamma_{M0}} = \frac{0.25 \cdot 285.30 \cdot 20.00^{2} \cdot 355.00 \cdot 10^{-3}}{1.00} = 10128.15 [kNmm]$$

$$\begin{split} & \left[M_{pl2M} = \frac{0.25 \cdot l_{dd2} \cdot l_{qd}^2 \cdot f_{g} \cdot 10^{-5}}{\gamma_{M0}} = \frac{0.25 \cdot 285.30 \cdot 20.00^2 \cdot 355.00 \cdot 10^{-5}}{1.00} = 10128.15 \left[kNmm \right] \right] \\ & F_{11,q,RM} = \frac{4 \cdot M_{pl1,RM}}{m} = \frac{4 \cdot 10128.15}{55.70} = 727.34 \left[kN \right] \\ & F_{12,q,RM} = \frac{4 \cdot M_{pl1,RM}}{(m+n)} = \frac{4 \cdot 10128.15 + 50.00 \cdot 2 \cdot 141.12}{(55.70 + 50.00)} = 325.15 \left[kN \right] \\ & F_{12,q,RM} = \frac{26 \cdot \pi \cdot d_{g} \cdot t_{g} \cdot f_{u}}{(m+n)} = \frac{2(2 \cdot 10128.15 + 50.00 \cdot 2 \cdot 141.12)}{(55.70 + 50.00)} = 325.15 \left[kN \right] \\ & B_{p,RM} = \frac{26 \cdot \pi \cdot d_{g} \cdot t_{g} \cdot f_{u}}{\gamma_{MQ}} = \frac{26 \cdot \pi \cdot 33.52 \cdot 20.00 \cdot 510.00 \cdot 10^{-5}}{1.25} = 515.50 \left[kN \right] \\ & ZF_{1,RM} = 2 \cdot 141.12 = 282.24 \left[kN \right] \\ & ZB_{p,RM} = 2 \cdot 515.50 = 1031.00 \left[kN \right] \\ & F_{1.5q,RM} = min \left(- ZF_{1,RM} \cdot F_{12,q,RM} \cdot F_{1.5q,RM} \right) = min \left(- 727.34 \cdot 325.15 \cdot 282.24 \right) = 282.24 \left[kN \right] \\ & Szereg nr n \left(- F_{1,1q,RM} \cdot F_{12,q,RM} \cdot F_{1.5q,RM} \right) = min \left(- 727.34 \cdot 325.15 \cdot 282.24 \right) = 282.24 \left[kN \right] \\ & Szereg sirub nie wskazany jako rozciągany. \\ & 7.1.2.4. Nośność rozciąganych szeregów śrub - zginana blacha czołowa (grupy szeregów) \\ & Grupy szeregów śrub dla zginanej blachy czołowej nie występują. \\ & 7.1.2.5. Nośność rozciąganych szeregów śrub - środnik słupa rozciągany w kierunku poprzecznym (szeregi rozpatrywane indywidualnie) \\ & Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu. \\ \end{array}$$

Ogólne

$$t_{w,eff} = t_{wc} = 11.00 [mm]$$

$$A_{vy0,c,1} = A_c - 2 + b_{fc} + t_{fc} + (t_{wc} + 2 + R_{1c}) = 14910.00 - 2 + 300.00 + 19.00 + 19.00 + (11.00 + 2 + 27.00) = 4745.00 [mm^2]$$

$$A_{vy0,c,2} = \eta + h_{wc} + t_{wc} = 1.2 + 262.00 + 11.00 = 3458.40 [mm^2]$$

$$A_{vy0,c} = max \left(-A_{vy0,c,1}; A_{vy0,c,2} \right) = max \left(-4745.00; 3458.40 \right) = 4745.00 [mm^2]$$
Szereg nr 1
$$b_{efft,wc,(1)} = min \left(-l_{eff,1,fc,(1)}; l_{eff,2,fc,(1)} \right) = min \left(-182.05; 182.05 \right) = 182.05 [mm]$$
Szereg nr 2

Szereg śrub nie wskazany jako rozciągany.

7.1.2.6. Nośność rozciąganych szeregów śrub - środnik słupa rozciągany w kierunku poprzecznym (grupy szeregów)

Grupy szeregów śrub dla środnika słupa rozciąganego w kierunku poprzecznym nie występują.

7.1.2.7. Nośność rozciąganych szeregów śrub - środnik belki/skosu rozciągany w kierunku podłużnym (szeregi rozpatrywane indywidualnie)

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Szereg nr 1

.

$$Szereg min f$$

$$b_{eff \, l.\, wb, (l)} = \min\left(l_{eff \, l.\, ep, (l)}; l_{eff \, 2.\, ep, (l)}\right) = \min\left(285.30; 285.30\right) = 285.30 [mm]$$

$$F_{t \, wb, Rd(l)} = \frac{b_{eff \, t \, wb, (l)} + t_{wb} + f_{y, wb}}{\gamma_{M0}} = \frac{285.30 + 8.60 + 355.00 + 10^{-3}}{1.00} = 871.02 [kN]$$

Szereg nr 2 Szereg śrub nie wskazany jako rozciągany.

7.1.2.8. Nośność rozciąganych szeregów śrub - środnik belki/skosu rozciągany w kierunku podłużnym (grupy szeregów)

Grupy szeregów śrub dla środnika belki/skosu rozciągnego w kierunku poprzecznym nie występują.

7.1.2.9. Środnik słupa ściskany w kierunku poprzecznym

$$\begin{split} t_{w,eff} = t_{wc} &= 11.00 [mm] \\ s_{p} = min \left(-t_{p} + c_{1}/2 + t_{p} \right) = min \left(-20.00 + 20.00, 2 - 20.00 \right) = 40.00 [mm] \\ b_{eff,c,wc} = t_{fb} + 5 \cdot \left(t_{fc} + r_{c} \right) + s_{p} = 13.50 + 5 \cdot \left(19.00 + 27.00 \right) + 40.00 = 283.50 [mm] \\ \lambda_{p}^{-} = 0.932 \cdot \sqrt{\left(\frac{b_{eff,c,wc} + d_{wc} + f_{y,wc}}{\left(E + t_{w,eff}^{2} \right)} \right)} = 0.932 \cdot \sqrt{\left(\frac{283.50 + 208.00 + 355.00 + 10^{-3}}{\left(210.00 + 11.00^{2} \right)} \right)} = 0.85 \\ \lambda_{p}^{-} = 0.85 > 0.72 \\ \rho_{c} = \frac{\left(\lambda_{p}^{-} - 0.2 \right)}{\lambda_{p}^{-2}} = \frac{\left(0.85 - 0.2 \right)}{0.85^{2}} = 0.90 \end{split}$$

7.1.2.10. Ściskany pas belki / skosu

$$F_{a,fb,Rd} = \frac{t_{fb} + b_{fb} + f_{y,fb}}{\gamma_{M0}} = \frac{13.50 + 180.00 + 355.00 + 10^{-3}}{1.00} = 862.65 [kN]$$

7.1.2.11. Panel środnika słupa

$$\varepsilon_{c} = \sqrt{(235/f_{yc})} = \sqrt{(235/355.00)} = 0.81$$
$$\frac{d_{wc}}{t_{wc}} = \frac{208.00}{11.00} = 18.91 \le 69\varepsilon_{c} = 69 \cdot 0.81 = 56.14$$

Smukłość panelu środnika słupa: warunek stosowania metody obliczania nośności Warunek spełniony

$$V_{wp,Rd} = \frac{0.9 \cdot f_{y,wo} \cdot A_{vo}}{\left(\sqrt{3} \cdot \gamma_{M0}\right)} = \frac{0.9 \cdot 355.00 \cdot 10^{-3} \cdot 4745.00}{\left(\sqrt{3} \cdot 1.00\right)} = 875.28 \left[kN\right]$$

Rodzaj połączenia - połączenie śrubowe z blachą czołową i jednym szeregiem śrub rozciąganych.

z= 353.25[mm]

7.1.2.12. Nośność ścinanych szeregów śrub

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Ogólne

$$F_{v,Rd} = \frac{\alpha_v \cdot f_{ub} \cdot A_s}{\gamma_{M2}} = \frac{0.6 \cdot 800.00 \cdot 10^{-3} \cdot 245.00}{1.25} = 94.08 [kN]$$

Szereg nr 1

typ (rozpatrywany od strony blachy czołowej): Szereg śrub nie jest rozpatrywany jako ścinany

typ (rozpatrywany od strony pasa słupa): Szereg śrub nie jest rozpatrywany jako ścinany

Szereg nr 2

typ (rozpatrywany od strony blachy czołowej): Skrajny ścinany szereg śrub oddzielony od krańca blachy czołowej pasem belki/skosu

Г

$$\begin{split} & k_{12,q,l} = \frac{l.4 \cdot s_{1}}{d_{0}} - l.7 = \frac{l.4 \cdot l20.00}{22.00} - l.7 = 5.94 \\ & k_{12,q,ll} = \frac{2.8 \cdot e_{2}}{d_{0}} - l.7 = \frac{2.8 \cdot 50.00}{22.00} - l.7 = 4.66 \\ & k_{12,q,ll} = 2.50 \\ & k_{12,q} = \min\left(k_{12,q,l}, k_{12,q,l}, k_{12,q,ll}\right) = \min\left(-5.94 ; 4.66 ; 2.50\right) = 2.50 \\ & a_{d1,q,l} = \left[\frac{e_{1}}{(3 - d_{0})}\right] = \left[\frac{60.00}{(3 - 22.00)}\right] = 0.91 \\ & a_{d2,q,ll} = \left[\frac{e_{1}}{(3 - d_{0})}\right] - 0.25 = \frac{320.00}{(3 - 22.00)} - 0.25 = 4.60 = 4.60 \\ & a_{d2,q,ll} = a_{d2,q,l} \cdot a_{d2,q,ll} \cdot a_{d2,q,ll}\right] = \min\left(-0.91 ; 4.60\right) = 0.91 \\ & a_{b2,q,ll} = a_{d2,ql} = \frac{60.00}{(3 - 22.00)} = 0.57 \\ & a_{b2,q,ll} = \frac{f_{ub}}{f_{uq}} = \frac{600.00}{50.00} = 1.57 \\ & a_{b2,q,ll} = \frac{k_{12,ql} \cdot a_{b2,ql} \cdot f_{uq} \cdot d \cdot t_{ql}}{y_{bd}} = \frac{2.50 \cdot 0.91 \cdot 510.00 \cdot 10^{-5} \cdot 20.00 \cdot 20.00}{1.25} = 370.91 [kN] \\ \end{split}$$
typ (rozpatrywany od strony pasa słupa): Pośredni ścinany szereg śrub
 $k_{12,q,l} = \frac{l.4 \cdot s_{1}}{d_{0}} - l.7 = \frac{l.4 \cdot 120.00}{22.00} - l.7 = 5.94 \\ k_{12,q,l} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{e_{12,ql}}{d_{0}} - 0.25 = 4.60 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{0}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = 1.00 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = 1.00 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57 \\ & a_{b2,ql} = \frac{f_{ud}}{d_{ud}} = \frac{300.00}{1.00} = 1.57$

Zestawienie

Szer.	ki	F _{v,Rd}	F _{b,i,ep,Rd}	F _{b,i,fc,Rd}
[-]	[-]	[kN]	[kN]	[kN]
1	2	-	-	-
2	2	94.08	370.91	387.60

7.1.2.13. Nośność grupy łączników na ścinanie

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Szer.	ki	$F_{v,Rd}$	$F_{b,i,ep,Rd}$	F _{b,i,fc,Rd}	$F_{b,i,Rd}$	F _{v,Rd} ≥ F _{b,i,Rd}	$\mathbf{F}_{V,i,Rd}$
[-]	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	2	-	-	-	-	-	-
2	2	94.08	370.91	387.60	370.91	nie	94.08

$$F_{b,i,Rd} = \min\left(-F_{b,i,ep,Rd}; F_{b,i,fb,Rd}\right)$$

Występują poprawne szeregi ścinane, dla których śrub NIE jest spełniony warunek $F_{v,M} \ge F_{b,iM}$

$$F_{gr,b,Rd} = n_{v} + \min\left(-F_{V,i,Rd}\right) = 2 + 94.08 = 188.16 \left[kN\right]$$

8. Obliczenia dla kolejnych serii sił

8.1. Zestaw sił nr 1

8.1.1. Transformacja zestawu sił do układu globalnego

8.1.1.1. Transformacja dla belki prawej

$$e_{0} = \frac{h_{c}}{2} = \frac{300.00}{2} = 150.00 [mm]$$

$$e_{N} = -e_{0} \cdot sin(-0.00^{\circ}) = -150.00 \cdot 0.000 = 0.00 [mm]$$

$$N'_{Ed} = cos(-0.00^{\circ}) \cdot N_{Ed} - sin(-0.00^{\circ}) \cdot V_{Ed} = 1.0000 \cdot 20.00 - 0.0000 \cdot 90.00 = 20.00 [kN]$$

$$V'_{Ed} = cos(-0.00^{\circ}) \cdot V_{Ed} + sin(-0.00^{\circ}) \cdot N_{Ed} = 1.0000 \cdot 90.00 + 0.0000 \cdot 20.00 = 90.00 [kN]$$

$$M'_{Ed} = M_{Ed} + e_{N} \cdot N'_{Ed} - e_{0} \cdot V'_{Ed} = 90.00 + 0.000 \cdot 20.00 - 0.150 \cdot 90.00 = 76.50 [kNm]$$
W dalszych obliczeniach wykorzystywane są siły sprowadzone do układu globalnego: N_{Ed} = N'_{Ed}, V_{Ed} = V'_{Ed} oraz M_{Ed} = M'_{Ed}.

8.1.1.2. Zestawienie

Element	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
belka prawa	seria 1	20.00	90.00	76.50
słup dolny	seria 1	20.00	20.00	90.00
belka lewa	seria 1	0.00	0.00	0.00
słup górny	seria 1	0.00	0.00	0.00

8.1.2. Obliczenia dla M(+) (środek obrotu w pasie dolnym belki/skosu)

8.1.2.1. Nośność rozciąganych szeregów śrub - środnik słupa rozciągany w kierunku poprzecznym (szeregi rozpatrywane indywidualnie)

Ogólne (dla zestawu sił)

 $\beta = 1$

Szereg nr 1

$$\omega_{I} = \left(l \neq l.3 \cdot \left(\frac{b_{efftwc,(l)} \cdot t_{w,eff}}{A_{vc}} \right)^{2} \right)^{-0.5} = \left(l \neq l.3 \cdot \left(\frac{182.05 \cdot 11.00}{4745.00} \right)^{2} \right)^{-0.5} = 0.90$$

$$\omega = \omega_{I} = 0.90$$

$$F_{twc,Rd(l)} = \frac{\omega \cdot b_{efftwc(l)} \cdot t_{w,eff} \cdot f_{y,wc}}{\gamma_{M0}} = \frac{0.90 \cdot 182.05 \cdot 11.00 \cdot 355.00 \cdot 10^{-3}}{1.00} = 640.60 [kN]$$

Szereg nr 2

Szereg śrub nie wskazany jako rozciągany.

8.1.2.2. Nośność rozciąganych szeregów śrub - środnik słupa rozciągany w kierunku poprzecznym (grupy szeregów)

8.1.2.3. Środnik słupa ściskany w kierunku poprzecznym

$$\begin{split} & F_{tRd(1)} = \min \left(-F_{tfc,Rd(1)}, F_{tep,Rd(1)}, F_{twc,Rd(1)}, F_{twb,Rd(1)} \right) \\ & F_{tRd(1)} = \min \left(-282.24; 282.24; 640.60; 871.02 \right) = 282.24 \left[kN \right] \\ & F_{tLRd} = \min \left(-F_{tRd,(1)}, V/\beta; F_{c,wc,Rd}; F_{c,fb,Rd} \right) \\ & F_{tLRd} = \min \left(-282.24; 875.28/1.00; 799.68; 862.65 \right) = 282.24 \left[kN \right] \end{split}$$

Szereg nr 2

Szereg śrub nie wskazany jako rozciągany.

Podsumowanie

Wartości poszczególnych sił podane w [kN].

Szereg nr	F _{t,fc,Rd(r)}	Ft,ep,Rd(r)	F _{t,wc,Rd(r)}	F _{t,wb,Rd(r)}	F _{t,Rd} (r)
1	282.24	282.24	640.60	871.02	282.24
2	-	-	-	-	-

Szer.	F _{t,Rd(r)}	$V_{wp,Rd}/\beta$	F _{c,wc,Rd}	$F_{c,fb,Rd}$	$F_{c,hb,Rd}$	$F_{tt,hb,Rd}$	Σ _{r-1} F _{t,Rd(i)}	F _{t,fc/wc,} Rd(k-r,g)	Σk ^{r-1} F _{ti,Rd}	F _{t,ep/wb,} Rd(l-r,g)	Σı ^{r-1} F _{ti,Rd}	$F_{tr,Rd}$
1	282.2	875.3 / 1.0	799.7	862.6	-	-	-	-	-	-	-	282.2
2	-	-	-	-	-	-	-	-	-	-	-	-

8.1.2.6. Rozkład plastyczny sił w rozciąganych szeregach śrub

Nie zachodzi konieczność redukcji do rozkładu plastycznego sił w szeregach śrub. Redukcję przeprowadza się dla zginanych połączeń śrubowych kategorii E narażonych na oddziaływania udarowe bądź wibracyjne.

8.1.2.7. Wyznaczanie nośności Mj,Rd

Uwzględniane są te szeregi śrub, które znajdują się po rozciąganej stronie pasa ściskanego belki/skosu (środek obrotu) oraz zostały wskazane przez użytkownika jako rozciągane.

 $M_{j,Rd} = \Sigma F_{tr,Rd} + h_r = F_{tl,Rd} + h_1 = 282.24 + 353.25 = 99701.28 [kNmm]$

Szer.	F _{tr,Rd}	hr	F _{tr,Rd} * h _r	$\Sigma_r\;M_{j,\text{Rd},row}$
[-]	[kN]	[mm]	[kNmm]	[kNmm]
1	282.24	353.25	99701.28	99701.28
2	-	-	-	-

8.1.2.8. Interakcja zginania z siłą podłużną

$$\begin{split} N_{pl,Rd} &= \frac{A_b \cdot f_{yb}}{\gamma_{M0}} = \frac{8450.00 \cdot 355.00 \cdot 10^{-3}}{1.00} = 2999.75 [kN] \\ N_{Ed} &= \begin{vmatrix} 20.00 \\ \le 5\% N_{pl,Rd} = 0.05 \cdot 2999.75 = 149.99 [kN] \end{aligned}$$

Nie zachodzi konieczność sprawdzenia warunku interakcji zginania z siłą podłużną. $\Sigma F = F = 282.24 = 282.24 [km]$

$$N_{j,Rd}^{t} = min \left(N_{pl,Rd}; \Sigma F_{n,Rd} \right) = min \left(2999.75; 282.24 \right) = 282.24 \left[kN \right]$$
$$N_{j,Rd}^{t} = N_{j,Rd}^{t} = 282.24 \left[kN \right]$$

8.1.2.9. Sprawdzanie warunków nośności

Warunek nośności przy zginaniu

 $|M_{Ed}| / M_{j,Rd} = |76500.00| / 99701.28 = 0.77 \le 1.0$ Warunek spełniony

Warunki nośności przy ścinaniu siłą pionową

 $|V_{Ed}|$ / $F_{gr,b,Rd}$ = |90.00| / 188.16 = 0.48 \leq 1.0 Warunek spełniony

Warunek nośności panelu środnika słupa

 $V_{wp,Ed} / V_{wp,Rd} = 226.56 / 875.28 = 0.26 \le 1.0$ Warunek spełniony

Warunek interakcji zginania z siłą podłużną

 $|M_{Ed}|$ / $M_{j,Rd}$ + $|N_{j,Ed}|$ / $N_{j,Rd}$ = |76500.00| / 99701.28 + |20.00| / 282.24 = $0.84 \leq 1.0$ Warunek spełniony

8.1.3. Warunki nośności - podsumowanie

Model	$ M_{j,Ed} $ / M_{Rd}	$ V_{Ed} \ / \ F_{gr,b,Rd}$	$V_{wp,Ed} / V_{wp,Rd}$	interakcja M-N
M ⁽⁺⁾	0.77	0.48	0.26	0.84
I				J
-	Model M ⁽⁺⁾	Model M _{j,Ed} / M _{Rd} M ⁽⁺⁾ 0.77	Model M _{j,Ed} / M _{Rd} V _{Ed} / F _{gr,b,Rd} M ⁽⁺⁾ 0.77 0.48	Model M _{j,Ed} / M _{Rd} V _{Ed} / F _{gr,b,Rd} V _{wp,Ed} / V _{wp,Rd} M ⁽⁺⁾ 0.77 0.48 0.26

Raport przykładowy: Połączenie EuroZłącza PODCIĄG-BELKA

Raport z obliczania połączenia elementów konstrukcji stalowych wg PN-EN 1993-1-8

Rodzaj połączenia: połączenia podciąg-belka (montażowe) Tytuł: Projekt złącza Podtytuł: Złącze

Typ raportu: pełny

1. Geometria modelu (rysunek poglądowy)

	Orientacja względem podciągu	do środnika
	Odsunięcie poziome od	s = 15.00
	środnika podciągu [mm]	
	krawędzi podciągu [mm]	r = 0.00
, s		
5 .	Wcięcie poziome [mm]	I = 80.00
	Wcięcie pionowe górne [mm]	c ₁ = 30.00
	Wcięcie pionowe dolne [mm]	$c_2 = 30.00$
정 #		
	Turo profile	
	I yp prolilu Wycokość przekreju [mm]	PE 220
	Szerokość półek przekroju [mm]	$h_b = 220.00$
	Grubość środnika przekroju [mm]	$b_{fb} = 110.00$
	Grubość półek przekroju [mm]	$t_{\rm fb} = 9.20$
	Promień wewnetrzny [mm]	$R_{1b} = 12.00$
	Pole powierzchni przekroju	A 2240.00
	poprzecznego [mm ²]	$A_{\rm b} = 3340.00$
	Moment bezwładności względem osi y-y [cm ⁴]	$I_{yb} = 2772.00$
	Moment bezwładności względem osi z-z [cm ⁴]	I _{zb} = 204.90
	Stal	S 235
	Granica plastyczności [MPa]	$f_{yb} = 235.00$
	Wytrzymałość na rozciąganie [MPa]	$f_{ub} = 360.00$
	3	1.00
Żobro środnika podojazy:		
	Typ profilu	BL 86 x 373 x 10
	Wysokość [mm]	h _{cs} = 373.00
	Długość [mm]	I _{cs} = 86.00

Grubość [mm]	$t_{cs} = 10.00$
Stal	S 235
Granica plastyczności [MPa]	f _{ycs} = 235.00
Wytrzymałość na rozciąganie [MPa]	f _{ucs} = 360.00
3	1.00

4. Parametry połączenia

5. Sprawdzenie warunków normowych

Liczba niespełnionych warunków geometrycznych lub normowych: 0 z 2

5.1. Połączenie belka-żebro (blacha) (spoiny)

grubość spoiny pachwinowej acs

```
a_{cs} \ge max \left( \begin{array}{c} 0.2 + t, 3.0mm \right) \\ a_{cs} \le min \left( \begin{array}{c} 0.7 + t, 16.0mm \right) \\ t_{min} = min \left( \begin{array}{c} 10.0, 5.9 \right) = 5.9 \left[ mm \right] \\ t_{max} = max \left( \begin{array}{c} 10.0, 5.9 \right) = 10.0 \left[ mm \right] \\ 4.0 \ge max \left( \begin{array}{c} 0.2 + 10.0, 3.0mm \right) = 3.0 \left[ mm \right] \\ 4.0 \le min \left( \begin{array}{c} 0.7 + 5.9, 16.0mm \right) = 4.1 \left[ mm \right] \end{array} \right)
```

Warunek spełniony

5.2. Połączenie belka-żebro (blacha) (spoiny)

długość spoiny pachwinowej leff,cs

 $l_{eff.cs} \geq max \left(-6 \cdot a_{,30.0mm} \right)$

 $l_{eff.cs.min} = min (63.0, 152.0) = 63.0[mm]$

 $63.0 \ge max(-6 + 4.0, 30.0mm) = 30.0[mm]$

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 7 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.76

Sprawdzany element	War.	Siła
Połączenie żebro-belka (spawane): Punkt 1, naprężenie zastępcze	0.14	1
Połączenie żebro-belka (spawane): Punkt 1, naprężenie prost.	0.03	1
Połączenie żebro-belka (spawane): Punkt 2, naprężenie zastępcze	0.34	1
Połączenie żebro-belka (spawane): Punkt 2, naprężenie prost.	0.05	1
Nośność przekroju osłabionego belki na ścinanie	0.39	1
Nośność przekroju osłabionego belki na zginanie (kraniec belki)	0.15	1
Nośność przekroju osłabionego belki na zginanie (koniec wcięcia)	0.76	1

7. Obliczenia wstępne

7.1. Połączenie żebro-belka (spawane)

$$\begin{split} h_{w,out} &= h_b - c_1 - c_2 = 220.00 - 30.00 - 30.00 = 160.00 \ [mm] \\ l_{s,N} &= l_{cs} - s_{cs} - 2 \cdot a_{\pm} = 86.00 - 15.00 - 2 \cdot 4.00 = 63.00 \ [mm] \\ l_{s,V} &= h_{w,out} - 2 \cdot a_{\pm} = 160.00 - 2 \cdot 4.00 = 152.00 \ [mm] \\ A_{s,N} &= 2 \cdot l_{s,N} \cdot a_{\pm} = 2 \cdot 63.00 \cdot 4.00 = 504.00 \ [mm^2] \\ A_{s,V} &= l_{s,V} \cdot a_{\pm} = 152.00 \cdot 4.00 = 608.00 \ [mm^2] \\ A_{s} &= A_{s,N} + A_{s,V} = 504.00 + 608.00 = 1112.00 \ [mm^2] \end{split}$$

 $\beta_{Iw,2} = 1.00$ $\sigma_{xast,2,max} = \frac{\left(\beta_{Iw,2} \cdot f_{u}\right)}{\left(\beta_{w} \cdot \gamma_{M2}\right)} = \frac{\left(1.00 \cdot 360.00 \cdot 10^{-5}\right)}{\left(0.80 \cdot 1.25\right)} = 0.3600 \left[\frac{kN}{mm^{2}}\right]$ $\sigma_{L,2,max} = \frac{\left(\beta_{Iw,2} \cdot 0.9 \cdot f_{u}\right)}{\gamma_{M2}} = \frac{\left(1.00 \cdot 0.9 \cdot 360.00 \cdot 10^{-5}\right)}{1.25} = 0.2592 \left[\frac{kN}{mm^{2}}\right]$ 7.1.2. Nośność belki osłabionej wycięciami $A_{b,n} = \left(h_{b} - c_{1} - c_{2}\right) \cdot t_{wb} = \left(220.00 - 30.00 - 30.00\right) \cdot 5.90 = 944.00 [mm]$ $W_{eln} = \frac{t_{wb}}{6} \cdot \left(\frac{h_{b} - c_{1} - c_{2}}{6}\right)^{2} = \frac{5.90 \cdot \left(220.00 - 30.00 - 30.00\right)^{2}}{6} = 25173.33 [mm]$ $W_{b,n} = 0.9 \cdot A_{b,n} = 0.9 \cdot 944.00 = 849.60 [mm]$ $V_{b,n,pl,Rd} = \frac{A_{vb,n} \cdot f_{yb}}{\left(\sqrt{3} \cdot \gamma_{M0}\right)} = \frac{849.60 \cdot 235.00 \cdot 10^{-3}}{\left(\sqrt{3} \cdot 1.00\right)} = 115.27 [kN]$ $e_{0,end} = \frac{t_{wg}}{2} + s_{b} = \frac{8.60}{2} + 15.00 = 19.30 [mm]$

7.1.3. Nośność podciągu na siły podłużne

Nie przeprowadza się sprawdzenia nośności podciągu, ponieważ takie połączenia nie muszą być wymiarowane na działanie siły podłużnej równoległej do jego osi. Wymagania co do przejęcia takich sił, spełnione są wówczas przez zapewnienie ciągłości zbrojenia podłużnego płyt stropowych i przez przekazanie sił równoległych do osi podciągu, przez sąsiednie belki drugorzędne bezpośrednio na słup.

8. Obliczenia dla kolejnych serii sił

8.1. Zestaw sił nr 1

8.1.1. Bazowe wartości sił w zestawie sił.

Element	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
belka	seria 1	5.00	45.00	0.00

8.1.2. Rozdział sił

8.1.2.1. Połączenie żebro-belka (spawane)

 $N_0 = N_{Rd} = 5.00 [kN]$ $V_{p} = V_{pq} = 45.00 \left[kN \right]$ $M_{0} = M_{Ed} - N_{Ed} + e_{N} - V_{Ed} + e_{0} = 0.00 + 10^{3} - 5.00 + 0.00 - 45.00 + 34.30 = -1543.34 [kNmm]$ 8.1.3. Siły działające na poszczególne elementy połączenia 8.1.3.1. Połączenie żebro-belka (spawane) $N_{\star} = a \cdot N_{o} = 1.0 \cdot 5.00 = 5.00 [kN]$ $V_{i} = a \cdot V_{0} = 1.0 \cdot 45.00 = 45.00 [kN]$ $M_{i} = a + M_{0} = 1.0 + -1543.34 = -1543.34 [kNmm]$ 8.1.4. Warunki nośności połączenia spawanego 8.1.4.1. Połączenie żebro-belka (spawane) Punkt 1 $\tau_{NI} = \frac{N_{z}}{A_{NI}} = \frac{5.00}{504.00} = 0.0099 \left[\frac{kN}{mm^2}\right]$ $\tau_{VI} = 0.0000 \left[\frac{kN}{mm^2} \right]$ $\tau_{M_{X}I} = \frac{M_{z} \cdot z_{I}}{J_{z0}} = \frac{(-1543.34) \cdot 82.00}{6985125.38} = -0.0181 \left[\frac{kN}{m_{z0}}\right]^{2}$ $\tau_{M_{\pi},I} = \frac{M_{\pi} \cdot x_{I}}{J_{.0}} = \frac{(-1543.34) \cdot 52.00}{6985125.38} = -0.0115 \left[\frac{kN}{mm^{2}}\right]$ $\tau_{gI} = \left| \begin{array}{c} \tau_{NI} \\ + \end{array} \right| \left| \begin{array}{c} \tau_{MxI} \\ + \end{array} \right| = \left| \begin{array}{c} 0.01 \\ + -0.02 \\ - 0.0280 \\ \end{array} \right| \left| \frac{kN}{mm^2} \right|$ $\sigma_{\perp I} = \frac{\left(\begin{array}{c|c} \tau_{\nu I} \neq \tau_{MizI} \end{array} \right)}{\sqrt{2}} = \frac{\left(\begin{array}{c|c} 0.00 \neq -0.0I \end{array} \right)}{\sqrt{2}} = 0.008I \left[\frac{kN}{mm^2} \right]$ $\tau_{\perp l} = \frac{\left(\left| \begin{array}{c} \tau_{\nu,l} \neq \tau_{Mix,l} \end{array} \right| \right)}{\sqrt{2}} = \frac{\left(\left| \begin{array}{c} 0.00 \neq -0.0l \end{array} \right| \right)}{\sqrt{2}} = 0.008l \left[\frac{kN}{mm^2} \right]$ $\sigma_{\text{rank}\,l} = \sqrt{\left(\sigma_{\perp,l}^{2} + 3 \cdot \left(\tau_{\perp,l}^{2} + \tau_{kl}^{2}\right)\right)} = \sqrt{\left(0.0l^{2} + 3 \cdot \left(0.0l^{2} + 0.03^{2}\right)\right)} = 0.0512 \left[\frac{kN}{mm^{2}}\right]$ $\frac{\sigma_{\text{zast, l}}}{\sigma_{\text{sast, l, max}}} = \frac{0.0512}{0.3600} = 0.14$ $\frac{\sigma_{\perp,1}}{\sigma_{\perp,1,max}} = \frac{0.0081}{0.2592} = 0.03$ Punkt 2 $\tau_{N2} = 0.0000 \left| \frac{kN}{2} \right|$

$$\begin{aligned} \overline{v}_{1/2} = \frac{V_{s}}{A_{s,v}} = \frac{45.00}{608.00} = 0.0740 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{MA} = \frac{M_{s} \cdot \overline{z}}{J_{s0}} = \frac{(1543.34) - 76.00}{6985125.38} = -0.0168 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{MA} = \frac{M_{s} \cdot \overline{x}}{J_{s0}} = \frac{(1543.34) - 17.00}{6985125.38} = 0.0038 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{MA} = \frac{M_{s} \cdot \overline{x}}{J_{s0}} = \frac{(1543.34) - 17.00}{6985125.38} = 0.0038 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{L2} = \left[\left[\overline{v}_{R2} - \overline{v}_{MA} \right] \right] = \left[\left[0.007 - 0.00 \right] = 0.0703 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{L2} = \left[\left[\left[\overline{v}_{R2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] \right] = \left(\left[0.00 \right] + -0.02 \right] = 0.0119 \left[\frac{kN}{10m^2} \right] \\ \overline{v}_{L2} = \left(\left[\left[\overline{v}_{R2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] \right] = \left(\left[0.00 \right] + -0.02 \right] = 0.0119 \left[\frac{kN}{10m^2} \right] \\ \overline{\sigma}_{max2} = \left(\sqrt{\left(\frac{\sigma_{s2}}{2.2} + 3 \cdot \left(\frac{\sigma_{s2}}{2.2} + \frac{\sigma_{s2}}{2.2} \right) \right)} \right] = \sqrt{\left(0.01^2 + 3 \cdot \left(0.01^2 + 0.07^2 \right) \right)} = 0.1240 \left[\frac{kN}{10m^2} \right] \\ \overline{\sigma}_{max2} = \frac{0.0119}{0.2592} = 0.05 \\ 8.1.5. \text{ Nośność belki osłabionej wycięciami} \\ \frac{1}{V_{kagl}} = \frac{1}{0.2592} = 0.05 \\ 8.1.5. \text{ Nośność belki osłabionej sujeciami} \\ \frac{1}{V_{kagl}} = \frac{1}{10.00} = 0.39 \le 1.0 \\ V_{kd} = 45.00 \le 0.5 \cdot V_{hapl,Rd} = 0.5 \cdot 115.27 = 57.64 \left[kN \right] \\ M_{ha,ngl,Rd} = \frac{W_{an} \cdot f_{yh}}{Y_{h0}} = \frac{2517.33 \cdot 255.00 \cdot 10^{-5}}{1.00} = 5915.73 \left[kNmm \right] \\ M_{ha,ngl,Rd} = \frac{1}{9} \frac{(-686.50)}{5915.73} = 0.15 \le 1.0 \\ M_{ha,ngl,Rd} = \frac{1}{9} \frac{(-686.50)}{5915.73} = 0.15 \le 1.0 \\ M_{ha,ngl,Rd} = \frac{1}{9} \frac{(-4468.50)}{5915.73} = 0.76 \le 1.0 \\ M_{ha,ngl,Rd} = \frac{1}{9} \frac{(-4468.50)}{5915.73} = 0.76 \le 1.0 \\ M_{ha,ngl,Rd} = \frac{1}{5915.73} = 0.76 \le 1.0 \\ M_{ha,ngl,Rd} = \frac{1$$

9. Podsumowanie wytężeń

Kolejne kolumny w poniższych tabelach wytężeń odpowiadając poszczególnym elementom połączenia:

- 2: Połączenie żebro-belka (spawane)

Zestaw sił nr 1

Wartości poszczególnych wytężeń dla połączeń typu spawanego.

wytężenie	2
σ _{zast,1} / σ _{zast,1,max}	0.14
$\sigma_{\text{prost,1}}$ / $\sigma_{\text{prost,1,max}}$	0.03
$\sigma_{zast,2}$ / $\sigma_{zast,2,max}$	0.34
$\sigma_{\text{prost,2}}$ / $\sigma_{\text{prost,2,max}}$	0.05

Zestawienie maksymalnych wytężeń

Wartości największych wytężeń dla poszczególnych połączeń.

Siły	2
1	0.34

Raport przykładowy: Połączenie EuroZłącza SŁUP-BELKA

Raport z obliczania połączenia elementów konstrukcji stalowych wg PN-EN 1993-1-8

Rodzaj połączenia: połączenia słup-belka (montażowe) Tytuł: Projekt złącza Podtytuł: Złącze

Typ raportu: pełny

1. Geometria modelu (rysunek poglądowy)

3 - BL 200 x 300 x 12

2. Obciążenia

Nr	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
1.1	seria 1	20.00	-60.00	40.00
1.2	seria 1	60.00	-20.00	40.00

3. Geometria

Słup

	Typ profilu	HE 300 B
	Wysokość przekroju [mm]	h _c = 300.00
	Szerokość półek przekroju [mm]	$b_{fc} = 300.00$
	Grubość środnika przekroju [mm]	$t_{wc} = 11.00$
	Grubość półek przekroju [mm]	$t_{fc} = 19.00$
	Promień wewnętrzny [mm]	R _{1c} = 27.00
	Pole powierzchni przekroju poprzecznego [mm²]	A _c = 14910.00
	Moment bezwładności względem osi y-y [cm ⁴]	l _{yc} = 8563.00
	Moment bezwładności względem osi z-z [cm ⁴]	I _{zc} = 25170.00
	Stal	S 355
	Granica plastyczności [MPa]	$f_{yc} = 355.00$
	Wytrzymałość na rozciąganie [MPa]	$f_{uc} = 510.00$
	3	0.81

Belka		
		1
	Orientacja względem słupa	a do półki
	Odsunięcie od słupa [mm] s = 5.00
s	Kąt obrotu [stopn	i] α = 0.00
	Typ profilu	IPE 400
	Wysokość przekroju [mm]	$h_b = 400.00$
	Szerokość półek przekroju [mm]	b _{fb} = 180.00
	Grubość środnika przekroju [mm]	t _{wb} = 8.60
	Grubość półek przekroju [mm]	t _{fb} = 13.50
	Promień wewnętrzny [mm]	R _{1b} = 21.00
	Pole powierzchni przekroju poprzecznego [mm ²]	A _b = 8450.00
	Moment bezwładności względem osi y-y [cm ⁴]	I _{yb} = 23130.00
	Moment bezwładności względem osi z-z [cm ⁴]	I _{zb} = 1318.00
l l	Stal	S 355
	Granica plastyczności [MPa]	$f_{yb} = 355.00$
	Wytrzymałość na rozciąganie [MPa]	$f_{ub} = 510.00$
	3	0.81
Przykładka		
	Rodzaj j	ednostronna
	Wysokość elementu [mm]	si = 300.00
	Odsunięcie elementu od górnej krawędzi belki [mm]	d _{si} = 50.00

	Typ profilu	BL 200 x 300 x 12		
	Wysokość [mm]	h _{si} = 300.00		
	Długość [mm]	$I_{si} = 200.00$		
	Grubość [mm]	t _{si} = 12.00		
	Stal	S 355		
	Granica plastyczności [MPa]	f _{ysi} = 355.00		
	Wytrzymałość na rozciąganie [MPa]	f _{usi} = 510.00		
	3	0.81		
4. Parametry połączenia				
konfiguracja ogólna węzła				
Typ węzła sz		zczytowy ednostronny		
- połączenie belka-przykładka (blacha): spawane				
	Rodzaj	pachwinowa		
<u>а</u> ь	Grubość spoiny [mm]	a = 6.00		
- połączenie słup-przykładka (blacha): spawane				
	Rodzai	czołowa		
	Przetop	pełen		

5. Sprawdzenie warunków normowych

Liczba niespełnionych warunków geometrycznych lub normowych: 0 z 2

5.1. Połączenie belka-przykładka (blacha) (spoiny)

grubość spoiny pachwinowej asip

Warunek spełniony

5.2. Połączenie belka-przykładka (blacha) (spoiny)

długość spoiny pachwinowej leff,sip

$$l_{eff,sip} \ge max \left(-6 + a_{,30.0mm} \right)$$

$$l_{eff,sip,min} = min \left(-183.0,288.0 \right) = 183.0 [mm]$$

$$183.0 \ge max \left(-6 + 6.0,30.0mm \right) = 36.0 [mm]$$

.

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 5 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.85

Sprawdzany element	War.	Siła
Połączenie przykładka-belka (spawane): Punkt 1, naprężenie zastępcze	0.56	1
Połączenie przykładka-belka (spawane): Punkt 1, naprężenie prost.	0.19	1
Połączenie przykładka-belka (spawane): Punkt 2, naprężenie zastępcze	0.33	1
Połączenie przykładka-belka (spawane): Punkt 2, naprężenie prost.	0.20	1
Połączenie przykładka-słup (spawane): nośność przekroju elementu	0.85	1

7. Obliczenia wstępne

Podręcznik użytkownika dla programu EuroZłącza

Załączniki

Nośność przekroju elementu łączącego

$$W_{p} = \frac{t_{sip} \cdot h_{sip}^{2}}{6} = \frac{12.00 \cdot 300.00^{2}}{6} = 180000.00 \left[mm^{3} \right]$$

8. Obliczenia dla kolejnych serii sił

8.1. Zestaw sił nr 1

8.1.1. Bazowe wartości sił w zestawie sił.

Element	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
belka prawa	seria 1	20.00	-60.00	40.00
słup dolny	seria 1	60.00	-20.00	40.00
belka lewa	seria 1	-9.00	-10.00	-11.00
słup górny	seria 1	-9.00	-10.00	-11.00

8.1.2. Rozdział sił

8.1.2.1. Połączenie przykładka-belka (spawane)

 $N_{0} = N_{Ed} = 20.00 [kN]$ $V_{0} = V_{Ed} = -60.00 [kN]$ $M_{0} = M_{Ed} - N_{Ed} \cdot e_{N} - V_{Ed} \cdot e_{0} = 40.00 \cdot 10^{3} - 20.00 \cdot 0.00 - -60.00 \cdot 296.76 = 57805.41 [kNmm]$ 8.1.2.2. Połączenie przykładka-słup (spawane) $N_{0} = N_{Ed} = 20.00 [kN]$ $V_{0} = V_{Ed} = -60.00 [kN]$ $M_{0} = M_{Ed} - N_{Ed} \cdot e_{N} - V_{Ed} \cdot e_{0} = 40.00 \cdot 10^{3} - 20.00 \cdot -200.00 - -60.00 \cdot 150.00 = 53000.00 [kNmm]$ 8.1.3. Siły działające na poszczególne elementy połączenia

8.1.3.1. Połączenie przykładka-belka (spawane)

 $N_{p} = a \cdot N_{0} = 1.0 \cdot 20.00 = 20.00 [kN]$ $V_{p} = a \cdot V_{0} = 1.0 \cdot -60.00 = -60.00 [kN]$ $M_{p} = a \cdot M_{0} = 1.0 \cdot 57805.41 = 57805.41 [kNmm]$

8.1.3.2. Połączenie przykładka-słup (spawane)

 $N_p = a \cdot N_0 = 1.0 \cdot 20.00 = 20.00 [kN]$
Podręcznik użytkownika dla programu EuroZłącza

 $V_{v} = a \cdot V_{0} = 1.0 \cdot -60.00 = -60.00 [kN]$ $M_{p} = a \cdot M_{0} = 1.0 \cdot 53000.00 = 53000.00 [kNmm]$ 8.1.4. Warunki nośności połączenia spawanego 8.1.4.1. Połączenie przykładka-belka (spawane) Punkt 1 $\tau_{NI} = \frac{N_p}{A_{M}} = \frac{20.00}{2196.00} = 0.0091 \left[\frac{kN}{mm^2} \right]$ $\tau_{VI} = 0.0000 \left[\frac{kN}{mm^2} \right]$ $\tau_{Mx,l} = \frac{M_{p} + z_{l}}{J_{o}} = \frac{57805.41 + 153.00}{79257764.06} = 0.1116 \left[\frac{kN}{mm^{2}}\right]$ $\tau_{Mz,1} = \frac{M_p + x_1}{J} = \frac{57805.41 - 135.76}{79257764.06} = -0.0990 \left[\frac{kN}{m^2}\right]^2$ $\tau_{\ell I} = \left| \begin{array}{c} \tau_{NI} \\ + \end{array} \right| + \left| \begin{array}{c} \tau_{MXI} \\ + \end{array} \right| = \left| \begin{array}{c} 0.01 \\ + \end{array} \right| + \left| \begin{array}{c} 0.11 \\ - \end{array} \right| = 0.1207 \left| \frac{kN}{mm^2} \right|$ $\sigma_{I,I} = \frac{\left(\left| \begin{array}{c} \tau_{V,I} - \tau_{Mix} \right| \right)}{\sqrt{2}} = \frac{\left(\left| \begin{array}{c} 0.00 - -0.10 \right| \right)}{\sqrt{2}} = 0.0700 \left[\frac{kN}{mr^2} \right] \right)}{\sqrt{2}}$ $\tau_{\perp l} = \frac{\left(\left| \begin{array}{c} \tau_{\nu,l} - \tau_{Mix,l} \right| \right)}{\sqrt{2}} = \frac{\left(\left| \begin{array}{c} 0.00 - -0.10 \right| \right)}{\sqrt{2}} = 0.0700 \left[\frac{kN}{mm^2} \right] \right)}{mm^2}$ $\sigma_{\text{zast},l} = \sqrt{\left(\sigma_{\perp,l}^2 + 3 \cdot \left(\tau_{\perp,l}^2 + \tau_{kl}^2\right)\right)} = \sqrt{\left(0.07^2 + 3 \cdot \left(0.07^2 + 0.12^2\right)\right)} = 0.2516 \left[\frac{kN}{mm^2}\right]$ $\frac{\sigma_{\text{sast, I}}}{\sigma_{\text{sast, I, max}}} = \frac{0.2516}{0.4533} = 0.56$ $\frac{\sigma_{\perp,1}}{\sigma_{c,1,max}} = \frac{0.0700}{0.3672} = 0.19$ Punkt 2 $\tau_{N2} = 0.0000 \left[\frac{kN}{mm^2} \right]$ $\tau_{V,2} = \frac{V_p}{A_{V,2}} = \frac{(-60.00)}{1728.00} = -0.0347 \left[\frac{kN}{mm^2}\right]$ $\tau_{Mx,2} = \frac{M_p + Z_2}{J_{1,0}} = \frac{57805.41 + 144.00}{79257764.06} = 0.1050 \left[\frac{kN}{m_{1,0}}\right]^2$ $\tau_{Mix,2} = \frac{M_{p} + x_{2}}{J_{o}} = \frac{57805.41 + 56.24}{79257764.06} = 0.0410 \left[\frac{kN}{mm^{2}}\right]$ $\tau_{k2} = \left| \tau_{k2} \neq \tau_{M\pi,2} \right| = -0.03 \neq 0.04 = 0.0063 \left| \frac{kN}{mm^2} \right|$

$$\sigma_{\perp 2} = \frac{\left(\begin{vmatrix} \tau_{N2} \end{vmatrix} + \begin{vmatrix} \tau_{M\lambda 2} \end{vmatrix} \right)}{\sqrt{2}} = \frac{\left(\begin{vmatrix} 0.00 \end{vmatrix} + \begin{vmatrix} 0.11 \end{vmatrix} \right)}{\sqrt{2}} = 0.0743 \left[\frac{kN}{mm^2} \right]}{\sqrt{mm^2}}$$

$$\tau_{\perp 2} = \frac{\left(\begin{vmatrix} \tau_{N2} \end{vmatrix} + \begin{vmatrix} \tau_{M\lambda 2} \end{vmatrix} \right)}{\sqrt{2}} = \frac{\left(\begin{vmatrix} 0.00 \end{vmatrix} + \begin{vmatrix} 0.11 \end{vmatrix} \right)}{\sqrt{2}} = 0.0743 \left[\frac{kN}{mm^2} \right]}{\sqrt{2}}$$

$$\sigma_{sast 2} = \sqrt{\left(\sigma_{\perp 2}^2 + 3 \cdot \left(\tau_{\perp 2}^2 + \tau_{\& 2}^2 \right) \right)} = \sqrt{\left(0.07^2 + 3 \cdot \left(0.07^2 + 0.01^2 \right) \right)} = 0.1489 \left[\frac{kN}{mm^2} \right]}$$

$$\frac{\sigma_{sast 2}}{\sigma_{sast 2,max}} = \frac{0.1489}{0.4533} = 0.33$$

$$\frac{\sigma_{\perp 2}}{\sigma_{\perp 2,max}} = \frac{0.0743}{0.3672} = 0.20$$

8.1.4.2. Połączenie przykładka-słup (spawane)

Nośność przekroju elementu łączącego

$$\sigma_{max} = \frac{\left| \begin{array}{c} N_{p} \right|}{A_{p}} + \frac{\left| \begin{array}{c} M_{p} \right|}{W_{p}} = \frac{\left| \begin{array}{c} 20.00 \right|}{3600.00} + \frac{\left| \begin{array}{c} 53000.00 \right|}{180000.00} = 0.3000 \left[\frac{kN}{mm^{2}} \right] \right]$$

$$\tau = \frac{\left| \begin{array}{c} V_{p} \right|}{A_{p}} = \frac{\left| \begin{array}{c} (-60.00) \right|}{3600.00} = 0.0167 \left[\frac{kN}{mm^{2}} \right]$$

$$\sigma_{max} = \sqrt{\left(\sigma_{max}^{2} + 3 + \sigma_{g}^{2} \right)} = \sqrt{\left(0.3000^{2} + 3 + 0.0167^{2} \right)} = 0.3014 \left[\frac{kN}{mm^{2}} \right]$$

$$\frac{\sigma_{max} + \gamma_{M0}}{f_{y}} = \frac{0.3014 + 1.00}{\left(355.00 + 10^{-3} \right)} = 0.85$$

 $\sigma_{zast} * \gamma_{M0} / f_y = 0.3014 * 1.00 / (355.00 * 10^{-3}) = 0.85$ Warunek spełniony 9. Podsumowanie wytężeń

Kolejne kolumny w poniższych tabelach wytężeń odpowiadając poszczególnym elementom połączenia:

- 1: Połączenie przykładka-belka (spawane)

- 3: Połączenie przykładka-słup (spawane)

Zestaw sił nr 1

Wartości poszczególnych wytężeń dla połączeń typu spawanego.

wytężenie	1	3
$\sigma_{zast,1} / \sigma_{zast,1,max}$	0.56	-
$\sigma_{\text{prost, 1}}$ / $\sigma_{\text{prost, 1,max}}$	0.19	-
σ _{zast,2} / σ _{zast,2,max}	0.33	-
$\sigma_{\text{prost,2}}$ / $\sigma_{\text{prost,2,max}}$	0.20	-
$\sigma_{zast,I} / \sigma_{zast,I,max}$	-	-
σ _{prost,I} / σ _{prost,I,max}	-	-
nośność przekroju elementu łączącego	-	0.85
Smukłość żebra	-	-

Zestawienie maksymalnych wytężeń Wartości największych wytężeń dla poszczególnych połączeń.				
Siły	1	3		
1	0.56	0.85		

Raport przykładowy: Połączenie EuroZłącza BELKA-BELKA

Nr	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
1.1		50.00	20.00	250.00
1.2		50.00	-20.00	250.00

3. Geometria

Belka prawa

Typ profilu	IPE 550
Wysokość przekroju [mm]	$h_{b(R)} = 550.00$
Szerokość półek przekroju [mm]	$b_{fb(R)} = 210.00$
Grubość środnika przekroju [mm]	$t_{\text{wb}(\text{R})} = 11.00$
Grubość półek przekroju [mm]	$t_{\text{fb}(\text{R})} = 17.00$
Promień wewnętrzny [mm]	$R_{1b(R)} = 24.00$
Pole powierzchni przekroju poprzecznego [mm²]	$A_{b(R)} = 13400.00$
Moment bezwładności względem osi y-y [cm⁴]	$I_{yb(R)} = 67120.00$
Moment bezwładności względem osi z-z [cm ⁴]	$I_{zb(R)} = 2668.00$
Stal	S 235
Granica plastyczności [MPa]	$f_{yb(R)} = 235.00$
Wytrzymałość na rozciąganie [MPa]	$f_{\text{ub}(\text{R})} = 360.00$
3	1.00

Przykładka

	Typ profilu	BL 500 x 400 x 10			
	Wysokość [mm]	h _{si} = 400.00			
	Długość [mm]	I _{si} = 500.00			
	Grubość [mm]	t _{si} = 10.00			
	Stal	S 235			
	Granica plastyczności [MPa]	f _{ysi} = 235.00			
	Wytrzymałość na rozciąganie [MPa]	f _{usi} = 360.00			
	٤	1.00			
 4. Parametry połączenia - połączenie belka prawa-przykładka (b 	lacha): spawane				
1	Rodzai	pachwinowa			
a _b	Grubość spoiny [mm]	a = 7.00			
- połączenie belka lewa-przykładka (blacha): spawane					
	Rodzaj	pachwinowa			
	Grubość spoiny [mm]	a = 7.00			
5. Sprawdzenie warunków normo	wych				

Liczba niespełnionych warunków geometrycznych lub normowych: 0 z 4

5.1. Połączenie belka prawa-przykładka (blacha) (spoiny)

grubość spoiny pachwinowej asip,R

```
a_{sip,R} \ge max \left( 0.2 \cdot t, 3.0mm \right)a_{sip,R} \le min \left( 0.7 \cdot t, 16.0mm \right)
```

$$\begin{split} t_{\min} &= \min \left(-10.0, 11.0 \right) \models 10.0 \ [mm] \\ t_{\max} &= \max \left(-10.0, 11.0 \right) \models 11.0 \ [mm] \\ 7.0 &\geq \max \left(-0.2 + 11.0, 3.0 \ mm \right) \models 3.0 \ [mm] \\ 7.0 &\leq \min \left(-0.7 + 10.0, 16.0 \ mm \right) \models 7.0 \ [mm] \end{split}$$

Warunek spełniony

5.2. Połączenie belka prawa-przykładka (blacha) (spoiny)

długość spoiny pachwinowej $I_{\text{eff},\text{sip},\text{R}}$

$$l_{eff:sip,R} \ge max \left(\begin{array}{c} 6 + a_{,30.0mm} \end{array} \right)$$

$$l_{eff:sip,Rmin} = min \left(\begin{array}{c} 233.5,386.0 \end{array} \right) = 233.5 [mm]$$

$$233.5 \ge max \left(\begin{array}{c} 6 + 7.0,30.0mm \end{array} \right) = 42.0 [mm]$$

Warunek spełniony

5.3. Połączenie belka lewa-przykładka (blacha) (spoiny)

grubość spoiny pachwinowej asip,L

$$\begin{array}{l} a_{sip,L} \geq max \left(0.2 + t, 3.0mm \right) \\ a_{sip,L} \leq min \left(0.7 + t, 16.0mm \right) \\ t_{min} = min \left(10.0, 11.0 \right) = 10.0 [mm] \\ t_{max} = max \left(10.0, 11.0 \right) = 11.0 [mm] \\ 7.0 \geq max \left(0.2 + 11.0, 3.0mm \right) = 3.0 [mm] \\ 7.0 \leq min \left(0.7 + 10.0, 16.0mm \right) = 7.0 [mm] \end{array}$$

Warunek spełniony

5.4. Połączenie belka lewa-przykładka (blacha) (spoiny)

długość spoiny pachwinowej leff,sip,L

 $l_{eff.sip,L} \ge max \left(-6 + a_{,30.0mm}\right)$

 $l_{eff,sip,L,min} = min \left(233.5,386.0 \right) = 233.5[mm]$ 233.5 \ge max $\left(6 \cdot 7.0,30.0mm \right) = 42.0[mm]$

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 8 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.76

Sprawdzany element	War.	Siła
Połączenie przykładka-belka prawa (spawane): Punkt 1, naprężenie zastępcze	0.74	1
Połączenie przykładka-belka prawa (spawane): Punkt 1, naprężenie prost.	0.28	1
Połączenie przykładka-belka prawa (spawane): Punkt 2, naprężenie zastępcze	0.50	1
Połączenie przykładka-belka prawa (spawane): Punkt 2, naprężenie prost.	0.31	1
Połączenie przykładka-belka lewa (spawane): Punkt 1, naprężenie zastępcze	0.76	1
Połączenie przykładka-belka lewa (spawane): Punkt 1, naprężenie prost.	0.29	1
Połączenie przykładka-belka lewa (spawane): Punkt 2, naprężenie zastępcze	0.50	1
Połączenie przykładka-belka lewa (spawane): Punkt 2, naprężenie prost.	0.32	1

7. Obliczenia wstępne

7.1.1. Parametry geometryczne ogólne

7.1.1.1. Połączenie przykładka-belka prawa (spawane)

$$\begin{split} l_{s,N} &= l_{sip,R} - s_{sip,R} - 2 \cdot a_{sip,R} = 250.00 - 2.50 - 2 \cdot 7.00 = 233.50 \ [mm] \\ l_{s,V} &= h_{sip,R} - 2 \cdot a_{sip,R} = 400.00 - 2 \cdot 7.00 = 386.00 \ [mm] \\ A_{s,N} &= 2 \cdot l_{s,N} \cdot a_{sip,R} = 2 \cdot 233.50 \cdot 7.00 = 3269.00 \ [mm^{2}] \\ A_{s,V} &= l_{s,V} \cdot a_{sip,R} = 386.00 \cdot 7.00 = 2702.00 \ [mm^{2}] \\ A_{s} &= A_{s,N} + A_{s,V} = 3269.00 + 2702.00 = 5971.00 \ [mm^{2}] \\ t_{b(L)w} - t_{b(R)w} = 11.00 - 11.00 = 0.00 \le 2.00 \ [mm] \\ \end{bmatrix}$$
Nie zakłada się konieczności użycia podkładki dystansującej.

$$A_{b(R)} = l_{3400.00} \ [mm^{2}] \\ A_{b(R)w} + t_{b(R)w} = 516.00 \cdot 11.00 = 5676.00 \ [mm^{2}] \\ \end{split}$$

Podręcznik użytkownika dla programu EuroZłącza

Załączniki

Podręcznik użytkownika dla programu EuroZłącza

	belka lewa		50.00	-20.00	250.00	
8.1.2. Rozdział sił						
8.1.2.1. Połą	czenie przyk 	ładka-belka	ı prawa (spa	wane)		
$N_0 = N_{Ed} = 50.00$						
$V_0 = V_{Ed} = 20.00$		3				
$M_0 = M_{Ed} - N_{Ed} \cdot \epsilon$	$e_N - V_{Ed} \cdot e_0 = 25$	0.00 · 10 -50.0	0 · 0.00 – 20.00 ·	183.83 = 24632.	3.34 kNmm	
8.1.2.2. Połąc	czenie przyk	ładka-belka	ı lewa (spaw	ane)		
$N_0 = N_{Ed} = 50.00$	$\lfloor kN \rfloor$					
$V_0 = V_{Ed} = -20.00$	$\lfloor kN \rfloor$					
$M_0 = M_{Ed} - N_{Ed} + e$	$e_N - V_{Ed} \cdot e_0 = 25$	0.00 · 10 ³ -50.0	0 · 0.0020.00	· 183.83 = 2536	76.66 [kNmm]	
8.1.3. Rozdzi	ał sił					
8.1.3.1. Połąc	czenie przyk	ładka-belka	ı prawa (spa	wane)		
$N_n = a \cdot N_0 = 0.5$	50.00 = 25.00	kN]				
$V_{p} = a \cdot V_{0} = 0.5 \cdot 20.00 = 10.00 [kN]$						
$M_p = a \cdot M_0 = 0.5 \cdot 246323.34 = 123161.67 [kNmm]$						
8.1.3.2. Połą	czenie przyk	ładka-belka	ı lewa (spaw	ane)		
$N_p = a \cdot N_0 = 0.5$	50.00 = 25.00	kN]				
$V_p = a \cdot V_0 = 0.5$	-20.00 = -10.00	$\left[kN\right]$				
$M_p = a \cdot M_0 = 0.5$	$M_p = a \cdot M_0 = 0.5 \cdot 253676.66 = 126838.33 [kNmm]$					
8.1.4. Warun	8.1.4. Warunki nośności połączenia spawanego					
8.1.4.1. Połą	8.1.4.1. Połaczenie przykładka-belka prawa (spawane)					
Punkt 1	Punkt 1					
$\tau_{NI} = \frac{N_p}{A_{sN}} = \frac{25.00}{3269.00} = 0.0076 \left[\frac{kN}{mm^2}\right]$						
$\tau_{V,I} = 0.0000 \left[\frac{kN}{mm} \right]$	2					

Załączniki

$$\begin{aligned} \bar{\tau}_{MA} = \frac{M_{T} \cdot \bar{\tau}_{1}}{J_{10}} = \frac{123161.67 - 203.50}{207756217.86} = 0.1206 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{MA} = \frac{M_{T} \cdot \bar{\tau}_{1}}{J_{10}} = \frac{123161.67 - -174.33}{207756217.86} = -0.1033 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{LI} = \left[\tau_{NL} \right] + \left[\tau_{ML} \right] = \left[-0.01 + \left[-0.02 - 0.103 \right] \left[\frac{kN}{12072} \right] \\ \bar{\sigma}_{LI} = \frac{\left(-\frac{\tau_{NL} \cdot \tau_{ML}}{\sqrt{2}} \right) = \left(-\frac{0.000 - 0.10}{\sqrt{2}} \right) = 0.0731 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{LI} = \left(-\frac{\tau_{NL} \cdot \tau_{ML}}{\sqrt{2}} \right) = \left(-\frac{0.00 - 0.10}{\sqrt{2}} \right) = 0.0731 \left[\frac{kN}{12072} \right] \\ \bar{\sigma}_{mL} = \sqrt{\left(\frac{\sigma_{LL}}{L} + 3 \cdot \left(\frac{\tau_{LL} \cdot \tau_{TL}}{\tau_{LI}} + \frac{\tau_{RL}}{\tau_{I}} \right) \right)} = \sqrt{\left(0.07^{2} + 3 \cdot \left(0.00^{7} + 0.13^{2} \right) \right)} = 0.2660 \left[\frac{kN}{12072} \right] \\ \bar{\sigma}_{mL} = \frac{0.0731}{0.2600} = 0.74 \\ \bar{\sigma}_{mL} = \frac{0.0731}{0.2502} = 0.268 \\ \hline PunK 2 \\ \bar{\tau}_{NL} = \frac{0.0000}{1202} \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{NL} = \frac{V_{T} \cdot \tau_{2}}{1.000} = \frac{123616.67 - 103.00}{207750217.86}} = 0.0144 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{NL} = \frac{M_{T} \cdot \tau_{2}}{1.00} = \frac{123161.67 - 103.00}{207750217.86}} = 0.0143 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} \cdot \tau_{2}}{1.00} = \frac{123161.67 - 103.00}{207750217.86}} = 0.0413 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} \cdot \tau_{2}}{1.00} = \frac{123161.67 - 103.00}{207750217.86}} = 0.0413 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} \cdot \tau_{2}}{1.00} = \frac{10.000 + 1}{207750217.86}} = 0.0413 \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} + \tau_{NL})}{1.00} = \frac{10.000 + 1}{\sqrt{2}} = \frac{10.000}{\sqrt{2}} \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} + \tau_{NL})}{\sqrt{2}} = \frac{(1 - 0.000 + 1 - 0.121)}{\sqrt{2}} = 0.0000} \left[\frac{kN}{12072} \right] \\ \bar{\tau}_{nL} = \frac{(\tau_{NL} + \tau_{NL})}{\sqrt{2}} = \frac{(1 - 0.000 + 1 - 0.121)}{\sqrt{2}} = 0.0000} \left[\frac{kN}{12072} \right] \\ \bar{\sigma}_{mL} = \frac{(1790}{\sqrt{2}} \left[\frac{kN}{\sqrt{2}} + \frac{\tau_{LL}}{\sqrt{2}} \right] = \sqrt{\left(\frac{0.000}{\sqrt{2}} + 3 \cdot (0.00^{2} + 0.00^{2} \right)} \right)} = 0.1706 \left[\frac{kN}{12072} \right] \\ \bar{\sigma}_{mL} = \frac{0.0700}{0.2502} = 0.31 \\ \frac{\sigma_{mL} = \sigma_{mL}}}{\sigma_{mL} = \frac{0.0700}{0.2502}} = 0.31 \\ \frac{\sigma_{mL} = \sigma_{mL}}}{\sigma_{mL} = \frac{0.0700}{0.2502}} = 0.31 \\ \frac{\sigma_{mL} = 0.0000}{0.2502}} = 0.31 \\ \frac{\sigma_{mL} = 0.0000}{0.2502} = 0.31 \\ \frac$$

Punkt 1

$$\begin{aligned} \tau_{N1} &= \frac{N_{\mu}}{A_{\lambda N}} = \frac{25.00}{3220.00} = 0.0076 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= 0.000 \left[\frac{kN}{km^2} \right] \\ \tau_{\pi_1} &= \frac{M_{\mu} \cdot x_1}{J_{\mu 0}} = \frac{126333.33 \cdot 203.50}{207756217.86} = 0.1242 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \frac{M_{\mu} \cdot x_1}{J_{\mu 0}} = \frac{126333.33 \cdot -174.33}{207756217.86} = -0.1064 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left[\tau_{\pi_1} \right] + \left[\tau_{\pi_{\pi_1}} \right] = \left[-0.01 \right] + \left[-0.02 \right] = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left[\left(\frac{\tau_{\mu_1} \cdot \tau_{\pi_{\pi_1}}}{\sqrt{2}} \right) = \left(\frac{-0.00 - 0.11}{\sqrt{2}} \right) = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left(\frac{\tau_{\mu_1} \cdot \tau_{\pi_{\pi_1}}}{\sqrt{2}} \right) = \left(\frac{-0.00 - 0.11}{\sqrt{2}} \right) = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left(\frac{\tau_{\mu_1} \cdot \tau_{\pi_{\pi_1}}}{\sqrt{2}} \right) = \left(\frac{-0.00 - 0.11}{\sqrt{2}} \right) = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left(\frac{\tau_{\pi_1} \cdot \tau_{\pi_{\pi_1}}}{\sqrt{2}} \right) = \left(\frac{-0.00 - 0.11}{\sqrt{2}} \right) = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_1} &= \left(\frac{\tau_{\pi_1} \cdot \tau_{\pi_{\pi_1}}}{\sqrt{2}} \right) = \left(\frac{-0.00 - 0.11}{\sqrt{2}} \right) = 0.0753 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \frac{0.0753}{0.000} \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \frac{0.0753}{0.2592} = 0.29 \\ Punkt 2 \\ \tau_{\pi_2} &= \frac{M_{\mu} \cdot \tau_{\pi_2}}{1 - 0} = \frac{126330.33 - 0.0037}{207750217.66} = 0.0127 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \frac{M_{\mu} \cdot \tau_{\pi_2}}{1 - 0} = \frac{126330.33 - 0.007}{207750217.66} = 0.0127 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \frac{M_{\mu} \cdot \tau_{\pi_2}}{1 - 0} = \frac{126330.33 - 0.007}{207750217.66} = 0.0127 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \frac{M_{\mu} \cdot \tau_{\pi_2}}{1 - 0} = \frac{126330.33 - 0.007}{207750217.66} = 0.0127 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \left(\frac{\tau_{\pi_2} + \tau_{\pi_{\pi_2}}}{1 - 0} \right) = \left(-0.00 + 0.04 \right) = 0.0033 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \left(\frac{\tau_{\pi_2} + \tau_{\pi_{\pi_2}}}{1 - 0} \right) = \left(-0.00 + 0.04 \right) = 0.0033 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \left(\frac{\tau_{\pi_2} + \tau_{\pi_2}}{1 - 0} \right) = \left(-0.00 + 1 - 0.12 \right) = 0.0033 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \left(\frac{\tau_{\pi_2} + \tau_{\pi_2}}{1 - 0} \right) = \left(\frac{10.00 + 1 - 0.12 }{1 - 0} \right) = 0.0033 \left[\frac{kN}{gm^2} \right] \\ \tau_{\pi_2} &= \left(\frac{\tau_{\pi_2} + \tau_{\pi_2}}{1 - 0} \right) = \left(\frac{10.00 + 1 - 0.12 }{1 - 0} \right) = 0.0797 \left[\frac{kN}{gm^2} \right]$$

$\frac{\sigma_{\perp,2}}{\sigma_{\perp,2}} = \frac{0.0833}{0.2592} = 0.32$				
1, 1, max				
9. Podsumowanie wytężeń				
Kolejne kolumny w poniższych ta elementom połączenia: - 1: Połączenie przykładka-belka - 3: Połączenie przykładka-belka	abelach wytężeń oc a prawa (spawane) a lewa (spawane)	łpowiadając poszczególnym		
Zestaw sił nr 1 Wartości poszczególnych wytęże	eń dla połączeń typ	u spawanego.		
wytężenie	1	3		
σ _{zast,1} / σ _{zast,1,max}	0.74	0.76		
σ _{prost,1} / σ _{prost,1,max}	0.28	0.29		
$\sigma_{zast,2}$ / $\sigma_{zast,2,max}$	0.50	0.50		
$\sigma_{\text{prost,2}}$ / $\sigma_{\text{prost,2,max}}$	0.31	0.32		
Zestawienie maksymalnych wytężeń Wartości największych wytężeń dla poszczególnych połączeń.				
1	0.74	0.76		
I I	0.74	0.70		

Raport przykładowy: połączenie EuroZłącza BELKA-BELKA DOCZOŁOWE

Typ profilu	IPE 360
Wysokość przekroju [mm]	h _b = 360.00
Szerokość półek przekroju [mm]	$b_{fb} = 170.00$
Grubość środnika przekroju [mm]	$t_{wb} = 8.00$
Grubość półek przekroju [mm]	t _{fb} = 12.70
Promień wewnętrzny [mm]	R _{1b} = 18.00
Pole powierzchni przekroju poprzecznego [mm²]	A _b = 7270.00

	Moment bezwładności względem osi y-y [cm4]	l _{yb} = 16270.00			
	Moment bezwładności względem osi z-z [cm ⁴]	I _{zb} = 1043.00			
	Stal	S 275			
	Granica plastyczności [MPa]	f _{yb} = 275.00			
	Wytrzymałość na rozciąganie [MPa]	$f_{ub} = 430.00$			
	3	0.92			
Blacha czołowa		1			
	Typ profilu	BL 240 x 441.4 x 18			
	Wysokość [mm]	h _p = 441.38			
	Długość [mm]	$I_p = 240.00$			
	Grubość [mm]	t _p = 18.00			
	Stal	S 275			
	Granica plastyczności [MPa]	f _{yp} = 275.00			
	Wytrzymałość na rozciąganie [MPa]	$f_{up} = 430.00$			
	ε	0.92			
 Parametry połączenia Konfiguracja ogólna węzła 					
4.2. Spawanego					
Typ połączenia spawanego					
Rodzaj pachwinowa					
Spoiny blacha czołowa - belka					
	Grubość spoiny środnika [mm]	a _{b,w} = 4.00			
⊿ ^a bf	Grubość spoiny półek [mm]	a _{b,f} = 7.00			

5. Sprawdzenie warunków normowych

Liczba niespełnionych warunków geometrycznych lub normowych: 0 z 12

5.1. blacha czołowa (wymiary)

wydłużenie blachy czołowej ponad krawędź górną elementu dochodzącego - e_{pt} [warunek literaturowy]

$$e_{pt} \ge t_{p} + \frac{a_{f}}{\cos(-45^{\circ} - 0.5 + a)}$$

$$40.0 \ge 18.0 + \frac{7.0}{\cos(-45^{\circ} - 0.5 + -5.0)} = 28.4 [mm]$$

Warunek spełniony

5.2. blacha czołowa (wymiary)

wydłużenie blachy czołowej ponad krawędź dolną elementu dochodzącego - e_{pb} [warunek literaturowy]

 $e_{pb} \ge t_{p} + \frac{a_{f}}{\cos(-45^{\circ} - 0.5 + a)}$ $40.0 \ge 18.0 + \frac{7.0}{\cos(-45^{\circ} - 0.5 + 5.0)} = 27.5 [mm]$

Warunek spełniony

5.3. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)

klasa śrub

Dla połączenia kategorii B/C/E należy stosować śruby kategorii 8.8 lub 10.9.

Warunek spełniony

5.4. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)

odległość śrub od krawędzi elementu e11,p (blacha czołowa)

```
e_{II,p} \ge 1.2 + d_0
```

```
90.0≥1.2 · 22 = 26.4 [mm ]
```

Warunek spełniony

5.5. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)

odległość śrub od przeciwnej krawędzi elementu e12,p (blacha czołowa)

 $e_{12,p} \ge 1.2 \cdot d_0$

 $e_{12,p} = 441.4 - (90.0 + 260.0)$ $91.4 \ge 1.2 + 22 = 26.4 [mm]$

Warunek spełniony

5.6. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)

odległość śrub od krawędzi elementu e2,p (blacha czołowa)

```
e_{2,p} \ge 1.2 \cdot d_0
e_{2,p} = 240.0/2 - 90.0/2 = 75.0
```

Podręcznik użytkownika dla programu EuroZłącza

$75.0 > 1.2 \cdot 22 = 26.4 [mm]$
Warunek spełniony
5.7. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)
dopuszczalny rozstaw śrub s _{1,p} (blacha czołowa)
$s_{l,p} \ge 2.4 \cdot d_0$
$s_{l,p} = 90.0$
$90.0 \ge 2.4 \cdot 22 = 52.8 [mm]$
Warunek spełniony
5.8. Połączenie blacha czołowa-blacha czołowa (płaskownik) (śruby)
dopuszczalny rozstaw śrub p _{i,p,max} (blacha czołowa)
$P_{ip,max} \ge 2.4 \cdot d_0$
p _{ip.max} =260.0
$260.0 \ge 2.4 + 22 = 52.8 [mm]$
Warunek spełniony
5.9. Połączenie blacha czołowa-belka (dwuteownik) (spoiny)
grubość spoiny pachwinowej abw [warunek literaturowy]
$a_{bw} \ge max \left(0.48 \cdot t, 3.0mm \right)$
$a_{bw} \leq \min\left(-0.7 + t, 16.0mm\right)$
$t_{\min} = \min\left(-8.0, 18.0\right) = 8.0 \left[mm\right]$
$t_{max} = max \left(\begin{array}{c} 8.0, 18.0 \models 18.0 \ mm \end{array} \right)$ $4.0 > max \left(\begin{array}{c} 0.48 + 8.0, 3.0 \ mm \end{array} \right) = 3.8 \ mm \end{array} \right)$
$4.0 \le \min(-0.7 + 8.0, 16.0mm) = 5.6 [mm]$
Warunek spełniony

5.10. Połączenie blacha czołowa-belka (dwuteownik) (spoiny)

długość spoiny pachwinowej leff,bw

 $l_{eff,bw} \ge max \left(-6 + a_{,30.0mm} \right)$ $l_{eff,bw} = 299.7 - 2 + 4.0 = 291.7 [mm]$ $291.7 \ge max \left(-6 + 4.0, 30.0mm \right) = 30.0 [mm]$

Warunek spełniony

5.11. Połączenie blacha czołowa-belka (dwuteownik) (spoiny)

grubość spoiny pachwinowej abf [warunek literaturowy]

```
a_{bf} \ge max \left( 0.48 + t, 3.0mm \right)

a_{bf} \le min \left( 0.7 + t, 16.0mm \right)

t_{min} = min \left( 12.7, 18.0 \right) = 12.7 [mm]

t_{max} = max \left( 12.7, 18.0 \right) = 18.0 [mm]

7.0 \ge max \left( 0.48 + 12.7, 3.0mm \right) = 6.1 [mm]

7.0 \le min \left( 0.7 + 12.7, 16.0mm \right) = 8.9 [mm]
```

Warunek spełniony

```
5.12. Połączenie blacha czołowa-belka (dwuteownik) (spoiny)
```

długość spoiny pachwinowej leff,bf

```
l_{eff.bf} \geq max \left( -6 + a_{,30.0mm} \right)
```

```
l_{eff.bf.min} = min \left( 170.0 - 2 \cdot 7.0, 63.0 - 2 \cdot 7.0 \right) = 49.0 [mm]
```

```
49.0 \ge max(6 \cdot 7.0, 30.0mm) = 42.0[mm]
```

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 10 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.96

Sprawdzany element	War.	Siła
Warunek nośności przy zginaniu	0.58	1
Warunek nośności na ścinanie: grupy łączników	0.09	1
Warunek interakcji zginania ze ściskaniem (strona prawa)	0.82	1
Warunek nośności spoin do blachy czołowej: ściskany pas górny belki (strona prawa)	0.86	-
Warunek nośności spoin do blachy czołowej: rozciągany pas dolny belki (strona prawa)	0.87	-

Warunek nośności spoin do blachy czołowej: rozciągany środnik belki (strona prawa)	0.96	-
Warunek interakcji zginania ze ściskaniem (strona lewa)	0.81	1
Warunek nośności spoin do blachy czołowej: ściskany pas górny belki (strona lewa)	0.86	-
Warunek nośności spoin do blachy czołowej: rozciągany pas dolny belki (strona lewa)	0.87	-
Warunek nośności spoin do blachy czołowej: rozciągany środnik belki (strona lewa)	0.96	-

7. Obliczenia wstępne

7.1.1. Obliczenia wspólne

7.1.1.1. Spoiny do blachy czołowej

Spoiny dla elementów rozciąganych wymiarowane są na nośność tych elementów. Jeżeli dla różnych zestawów sił dany pas jest rozciągany oraz ściskany - spoina jest obliczana jak dla pasa rozciąganego.

ściskany pas górny belki

Zakłada się dopasowanie dociskowe pomiędzy pasem ściskanym a blachą czołową, co warunkuje zastosowanie spoiny nominalnej.

$$t_{bf} = 12.70 \ge 12 [mm]$$

$$a_{bf} = 7.00 \ge a_{bfmin} = 6.00 [mm]$$

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

rozciągany pas dolny belki

$$a_{b,fmin} = t_{b,f} \cdot \frac{\left(\sqrt{2} + \beta_{w,min} + f_{y,b,f} + \gamma_{M2}\right)}{\left(2 + \gamma_{M0} + f_{u,min}\right)} = 12.70 \cdot \frac{\left(\sqrt{2} + 0.85 + 275.00 + 10^{-3} + 1.25\right)}{\left(2 + 1.00 + 430.00 + 10^{-3}\right)} = 6.10 [kN]$$

$$a_{b,f} = 7.00 \ge a_{b,fmin} = 6.10 [mm]$$

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

rozciągany środnik belki

$$a_{b,w,min} = t_{b,w} \cdot \frac{\left(\sqrt{2} \cdot \beta_{w,min} \cdot f_{y,b,w} \cdot \gamma_{M2}\right)}{\left(2 \cdot \gamma_{M0} \cdot f_{u,min}\right)} = 8.00 \cdot \frac{\left(\sqrt{2} \cdot 0.85 \cdot 275.00 \cdot 10^{-3} \cdot 1.25\right)}{\left(2 \cdot 1.00 \cdot 430.00 \cdot 10^{-3}\right)} = 3.84 [kN]$$

$$a_{b,w} = 4.00 \ge a_{b,w,min} = 3.84 [mm]$$

Warunek minimalnej obliczeniowej grubości spoiny Warunek spełniony

7.1.2. Obliczenia dla M(-) (środek obrotu w pasie górnym belki/skosu)

7.1.2.1. Nośność rozciąganych szeregów śrub - zginana blacha czołowa (szeregi rozpatrywane indywidualnie)

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Ogólne

Szereg	bp	w	ex	mx	m	е	m ₂	λ1	λ2	α	n	nx
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[-]	[-]	[mm]	[mm]
1	-	-	-	-	36.47	75.00	30.71	0.33	0.28	7.82	45.59	-
2	-	-	-	-	-	-	-	-	-	-	-	-

Szereg nr 1

typ: Szereg śrub w pobliżu pasa belki/skosu

Szereg nr 2

typ: Szereg śrub w pobliżu pasa belki/skosu

Szereg śrub nie wskazany jako rozciągany.

7.1.2.2. Nośność rozciąganych szeregów śrub - zginana blacha czołowa (grupy szeregów)

Grupy szeregów śrub dla zginanej blachy czołowej nie występują.

7.1.2.3. Nośność rozciąganych szeregów śrub - środnik belki/skosu rozciągany w kierunku podłużnym (szeregi rozpatrywane indywidualnie)

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Szereg nr 1

$$Szereg min fb_{efft,wb,(1)} = min \left(l_{eff,l,ep,(1)}; l_{eff,2,ep,(1)} \right) = min \left(229.18; 239.65 \right) = 229.18 [mm]$$

$$F_{t,wb,Rd(1)} = \frac{b_{eff,t,wb,(1)} + t_{wb} + f_{y,wb}}{\gamma_{M0}} = \frac{229.18 + 8.00 + 275.00 + 10^{-3}}{1.00} = 504.19 [kN]$$

Szereg nr 2 Szereg śrub nie wskazany jako rozciągany.

7.1.2.4. Nośność rozciąganych szeregów śrub - środnik belki/skosu rozciągany w kierunku podłużnym (grupy szeregów)

Grupy szeregów śrub dla środnika belki/skosu rozciągnego w kierunku poprzecznym nie występują.

7.1.2.5. Ściskany pas belki / skosu

$$F_{c,fb,Rd} = \frac{t_{fb} + b_{fb} + f_{y,fb}}{\gamma_{M0}} = \frac{12.70 + 170.00 + 275.00 + 10^{-3}}{1.00} = 593.72 \left[kN \right]$$

7.1.2.6. Nośność ścinanych szeregów śrub

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Ogólne

$$F_{v,Rd} = \frac{a_v \cdot f_{ub} \cdot A_s}{\gamma_{M2}} = \frac{0.6 \cdot 800.00 \cdot 10^{-3} \cdot 245.00}{1.25} = 94.08 [kN]$$

Szereg nr 1

typ: Szereg śrub nie jest rozpatrywany jako ścinany

Szereg nr 2

typ: Skrajny ścinany szereg śrub oddzielony od krańca blachy czołowej pasem belki/skosu

$$\begin{aligned} k_{12,qr,I} &= \frac{1.4 + s_{1}}{d_{0}} - 1.7 = \frac{1.4 + 90.00}{22.00} - 1.7 = 4.03 \\ k_{12,qr,II} &= \frac{2.8 + e_{2}}{d_{0}} - 1.7 = \frac{2.8 + 75.00}{22.00} - 1.7 = 7.85 \\ k_{12,qr,III} &= 2.50 \\ k_{12,qr,III} &= \frac{e_{1}}{(3 + d_{0})} = \frac{90.00}{(3 + 22.00)} = 1.36 = 1.36 \\ a_{22,qr,II} &= \frac{e_{1}}{(3 + d_{0})} = \frac{90.00}{(3 + 22.00)} - 0.25 = 3.69 = 3.69 \\ a_{22,qr,III} &= \frac{p_{1}}{(3 + d_{0})} - 0.25 = \frac{260.00}{(3 + 22.00)} - 0.25 = 3.69 = 3.69 \\ a_{22,qr,IIII} &= \frac{a_{22,qr,I}}{a_{22,qr,III}} = \frac{1.36}{a_{22,qr,III}} = \frac{1.36}{a_{22,qr,III$$

94.08

309.60

2

2

1 2

7.1.2.7. Nośność grupy łączników na ścinanie

Kolejne szeregi śrub numerowane są od 1, począwszy od szeregu najbardziej oddalonego od ściskanego pasu belki/skosu.

Szer.	ki	$F_{v,Rd}$	F _{b,i,ep,Rd,R}	F _{b,i,ep,Rd,L}	$F_{b,i,Rd}$	F _{v,Rd} ≥ F _{b,i,Rd}	$F_{V,i,Rd}$
[-]	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	2	-	-	-	-	-	-
2	2	94.08	309.60	309.60	309.60	nie	94.08

$F_{b,i,Rd} = \min\left(-F_{b,i,ep,Rd,R}; F_{b,i,ep,Rd,L}\right)$

Występują poprawne szeregi ścinane, dla których śrub NIE jest spełniony warunek $F_{v,M} \ge F_{b,iM}$

$$F_{gr,b,Rd} = n_{v} + min\left(-F_{V,i,Rd}\right) = 2 + 94.08 = 188.16 \left[kN\right]$$

8. Obliczenia dla kolejnych serii sił

8.1. Zestaw sił nr 1

8.1.1. Transformacja zestawu sił do układu globalnego

8.1.1.1. Transformacja dla belki prawej

$$\begin{split} N'_{Ed} &= \cos\left(-5.00^{\circ}\right) \cdot N_{Ed} - \sin\left(-5.00^{\circ}\right) \cdot V_{Ed} = 0.9962 + 65.00 - 0.0872 + -12.00 = 65.80 \left[kN\right] \\ V'_{Ed} &= \cos\left(-5.00^{\circ}\right) \cdot V_{Ed} + \sin\left(-5.00^{\circ}\right) \cdot N_{Ed} = 0.9962 + -12.00 + 0.0872 + 65.00 = -6.29 \left[kN\right] \\ M'_{Ed} &= M_{Ed} = -50.00 \left[kNm\right] \end{split}$$

8.1.1.2. Transformacja dla belki lewej

$$\begin{split} N'_{Bd} &= \cos\left(-5.00^{\circ}\right) \cdot N_{Bd} - \sin\left(-5.00^{\circ}\right) \cdot V_{Bd} = 0.9962 + 65.00 - 0.0872 + 12.00 = 63.71 \left[kN\right] \\ V'_{Bd} &= \cos\left(-5.00^{\circ}\right) \cdot V_{Bd} + \sin\left(-5.00^{\circ}\right) \cdot N_{Bd} = 0.9962 + 12.00 + 0.0872 + 65.00 = 17.62 \left[kN\right] \\ M'_{Bd} &= M_{Bd} = -50.00 \left[kNm\right] \end{split}$$

W dalszych obliczeniach wykorzystywane są siły sprowadzone do układu globalnego: N_{Ed} = N'_{Ed} , V_{Ed} = V'_{Ed} oraz M_{Ed} = M'_{Ed} .

8.1.1.3. Zestawienie

Element	Seria	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
belka prawa	aaa	65.80	-6.29	-50.00
belka lewa	aaa	63.71	17.62	-50.00

- 8.1.2. Obliczenia dla M(-) (środek obrotu w pasie górnym belki/skosu) (strona prawa)
- 8.1.2.1. Interakcja zginania z siłą podłużną

$$\begin{split} N_{plRd} &= \frac{A_b \cdot f_{yb}}{\gamma_{M0}} = \frac{7270.00 \cdot 275.00 \cdot 10^{-3}}{1.00} = 1999.25 [kN] \\ N_{Ed} &= | 65.80 | \le 5\% N_{plRd} = 0.05 \cdot 1999.25 = 99.96 [kN] \end{split}$$

Nie zachodzi konieczność sprawdzenia warunku interakcji zginania z siłą podłużną. $\Sigma F_{tr,Rd} = F_{tl,Rd} = 282.24 = 282.24 [kN]$

$$\begin{split} N_{j,Rd}^{t} &= \min\left(N_{pl,Rd}; \Sigma F_{rr,Rd} \right) = \min\left(1999.25; 282.24 \right) = 282.24 \left[kN \right] \\ N_{j,Rd} &= N_{j,Rd}^{t} = 282.24 \left[kN \right] \end{split}$$

8.1.3. Obliczenia dla M(-) (środek obrotu w pasie górnym belki/skosu) (strona lewa)

8.1.3.1. Interakcja zginania z siłą podłużną

$$N_{pl,Rd} = \frac{A_b + f_{yb}}{\gamma_{M0}} = \frac{7270.00 + 275.00 + 10^{-3}}{1.00} = 1999.25 [kN]$$
$$N_{Ed} = \begin{vmatrix} 63.71 \\ \le 5\% N_{pl,Rd} = 0.05 + 1999.25 = 99.96 [kN] \end{vmatrix}$$

Nie zachodzi konieczność sprawdzenia warunku interakcji zginania z siłą podłużną. $\Sigma F_{r,Rd} = F_{1,Rd} = 282.24 = 282.24 [kN]$ $N_{j,Rd}^{t} = min \left(N_{pl,Rd}; \Sigma F_{r,Rd} \right) = min \left(1999.25; 282.24 \right) = 282.24 [kN]$ $N_{j,Rd} = N_{j,Rd}^{t} = 282.24 [kN]$

8.1.4. Obliczenia dla M(-) (środek obrotu w pasie górnym belki/skosu) (łącznie)

8.1.4.1. Potencjalna nośność na rozciąganie szeregów śrub Ft,Rd(r)

Szereg nr 1

$$F_{\iota Ed(l)} = \min \left(F_{\iota ep, Ed(l), R}; F_{\iota ep, Ed(l), L}; F_{\iota wb, Ed(l), R}; F_{\iota wb, Ed(l), L} \right)$$

 $F_{\iota Ed(l)} = \min \left(282.24; 282.24; 504.19; 504.19 \right) = 282.24 \left[kN \right]$
 $F_{\iota LRd} = \min \left(F_{\iota Rd, (l)}; F_{e, fb, Rd, R}; F_{e, fb, Ed, L} \right)$
 $F_{\iota LRd} = \min \left(282.24; 593.72; 593.72 \right) = 282.24 \left[kN \right]$
Szereg nr 2

Szereg śrub nie wskazany jako rozciągany.

Pods	odsumowanie														
Wart	Nartości poszczególnych sił podane w [kN].														
Sz	Szereg nr F _{t,ep,Rd(r),R} F _{t,ep,Rd(r),L} F _{t,wb,Rd(r),R} F _{t,wb,Rd(r),L} F _{t,Rd(r)}														
	1 282.24 282.24 504.19 504.19 282.24							24							
	2 -				-		-			-			-		
Szer	F _{t,Rd(r}	F _{c,fb,} R	,Rd,	F _{c,fb,Rd,} L	F _{c,hb,Rd,} R	F _{c,hb,Rd,}	F _{tt,hb} R	,Rd,	F _{tt,hb,Rd,}	Σr-1 Ft,Rd(i	Ft,ep/w b, Rd(k- r,q),R	Σk ^{r-1} Fti,R d	Ft,ep/w b, Rd(l- r,q),L	Σı ^{r-1} Fti,R d	F _{tr,Rd}
1	282. 2	593	8.7	593.7	-	-	-		-	-	-	-	-		282. 2
2	-	-		-	-	-	-		-	-	-	-	-	-	-

8.1.4.2. Rozkład plastyczny sił w rozciąganych szeregach śrub

Nie zachodzi konieczność redukcji do rozkładu plastycznego sił w szeregach śrub. Redukcję przeprowadza się dla zginanych połączeń śrubowych kategorii E narażonych na oddziaływania udarowe bądź wibracyjne.

8.1.4.3. Wyznaczanie nośności Mj,Rd

Uwzględniane są te szeregi śrub, które znajdują się po rozciąganej stronie pasa ściskanego belki/skosu (środek obrotu) oraz zostały wskazane przez użytkownika jako rozciągane.

 $M_{j,Rd} = \Sigma F_{tr,Rd} + h_r = F_{tl,Rd} + h_1 = 282.24 + 303.63 = 85695.33 [kNmm]$

Szer.	F _{tr,Rd}	hr	F _{tr,Rd} * h _r	$\Sigma_r\;M_{j,Rd,row}$
[-]	[kN]	[mm]	[kNmm]	[kNmm]
1	282.24	303.63	85695.33	85695.33
2	-	-	-	-

8.1.4.4. Sprawdzanie warunków nośności

Warunek nośności przy zginaniu

 $\left| \begin{array}{c} M_{j,Ed} \\ =_{max} \\ \left(\begin{array}{c} M_{j,Ed,R} \\ \end{bmatrix}; \\ M_{j,Ed,I} \\ \end{array} \right) =_{min} \\ \left(\begin{array}{c} (-50000.00) \\ (-50000.00) \\ \end{bmatrix}; \\ (-50000.00) \\ \end{array} \right) =_{50000.00} \\ \left[kNmm \\ \end{bmatrix} \\ \left| M_{Ed} \\ \end{bmatrix} \\ \left| M_{Bd} \\ = \\ \left| 50000.00 \\ \end{bmatrix} \\ \left| \begin{array}{c} M_{j,Ed,R} \\ \end{array} \right| \\ \left| 85695.33 \\ = \\ 0.58 \\ \le \\ 1.0 \\ Warunek \\ spełniony \\ \end{array} \right|$

Warunki nośności przy ścinaniu siłą pionową

$$|V_{Ed}| = max (|V_{Ed,R}|; |V_{Ed,L}|) = max (|(-6.29)|; |17.62|) = 17.62 [kNmm]$$

 $|V_{Ed}| / F_{gr,b,Rd} = |17.62| / 188.16 = 0.09 \le 1.0$ Warunek spełniony

Warunek interakcji zginania z siłą podłużną (strona prawa)

 $|M_{j,Ed}|$ / $M_{j,Rd}$ + $|N_{j,Ed}|$ / $N_{j,Rd}$ = |50000.00| / 85695.33 + |65.80| / 282.24 = $0.82 \leq 1.0$ Warunek spełniony

Warunek interakcji zginania z siłą podłużną (strona lewa)

 $|M_{j,Ed}|$ / $M_{j,Rd}$ + $|N_{j,Ed}|$ / $N_{j,Rd}$ = |50000.00| / 85695.33 + |63.71| / 282.24 = $0.81 \leq 1.0$ Warunek spełniony

8.1.5. Warunki nośności - podsumowanie

Zestaw sił nr	Model	M _{j,Ed} / M _{Rd}	V _{Ed} / F _{gr,b,Rd}	interakcja M-N (R)	interakcja M-N (L)
1	M ⁽⁻⁾	0.58	0.09	0.82	0.81
	L		1		

Raport przykładowy: połączenie EuroZłącza KRATOWE Z BLACHĄ WĘZŁOWĄ

Raport z obliczania połączenia elementów konstrukcji stalowych wg PN-EN 1993-1-8

Rodzaj połączenia: kratowe z blachą węzłową Tytuł: Projekt złącza Podtytuł: Złącze

Typ raportu: pełny

1. Geometria modelu (rysunek poglądowy)

Szerokość półek przekroju [mm]	b _{f,ch0} = 160.00
Grubość środnika przekroju [mm]	t _{w,ch0} = 7.50
Grubość półek przekroju [mm]	$t_{\text{f,ch0}} = 11.50$
Promień wewnętrzny [mm]	$R_{1,ch0} = 18.00$
Pole powierzchni przekroju poprzecznego [mm²]	$A_{,ch0} = 6260.00$
Moment bezwładności względem osi y-y [cm ⁴]	$I_{y,ch0} = 11770.00$
Moment bezwładności względem osi z-z [cm ⁴]	$I_{z,ch0} = 788.10$
Stal	S 355
Granica plastyczności [MPa]	$f_{y,ch0} = 355.00$
Wytrzymałość na rozciąganie [MPa]	$f_{u,ch0} = 510.00$
3	0.81

Pręt skratowania nr 1

	Odsunięcie od punktu węzłowego [mm]	s = 270.00
s _x / s	Odsunięcie krawędzi od ścianki pasa kratowego [mm]	s _x = 54.45
• +	Kąt nachylenia pręta [°]	φ = 70.00
	Odległość od osi do wewnętrznej krawędzi pręta [mm]	c = 100.20

Typ profilu	2 x L 150 x 100 x 14
dane profilu podstawowego:	
Typ profilu	L 150 x 100 x 14
Długość dłuższego ramienia [mm]	$h_{,b1(single)} = 150.00$
Długość krótszego ramienia [mm]	$b_{,b1(single)} = 100.00$
Grubość ścianki przekroju [mm]	$t_{,b1(single)} = 14.00$
Promień wewnętrzny [mm]	$R_{1,b1(\text{single})} = 12.00$
Promień zewnętrzny [mm]	$R_{2,b1(single)} = 6.00$
Pole powierzchni przekroju poprzecznego [mm²]	A _{,b1(single)} = 3320.00
Moment bezwładności wzdledem	$I_{v, b1(single)} = 744 \ 40$

osi y-y [cm ⁴] Moment bezwładności względem osi z-z [cm ⁴]	$I_{z,b1(single)} = 264.90$
odstęp [mm]	t _p = 14.00
Pole powierzchni przekroju poprzecznego (profil zdwojony) [mm²]	A _{,b1} = 6640.00
Moment bezwładności względem osi y-y (profil zdwojony) [cm4]	$I_{y,b1} = 1488.80$
Moment bezwładności względem osi z-z (profil zdwojony) [cm ⁴]	I _{z,b1} = 1209.74
Stal	S 275
Granica plastyczności [MPa]	$f_{y,b1} = 275.00$
Wytrzymałość na rozciąganie [MPa]	$f_{u,b1} = 430.00$
3	0.92

Blacha węzłowa

Typ profilu	BL 350 x 300 x 14
Wysokość [mm]	$h_{gp} = 300.00$
Długość [mm]	I _{gp} = 350.00
Grubość [mm]	$t_{gp} = 14.00$
Stal	S 355
Granica plastyczności [MPa]	f _{ygp} = 355.00
Wytrzymałość na rozciąganie [MPa]	f _{ugp} = 510.00
3	0.81

 $8.0 \le min(0.7 \cdot 14.0, 16.0mm) = 9.8[mm]$

Warunek spełniony

5.2. Połączenie pręt skratowania nr 1-blacha węzłowa (blacha) (spoiny)

długość spoiny pachwinowej leff,p

 $l_{effp} \geq max \left(-6 + a_{,30.0mm} \right)$

 $l_{eff,p,min} = min (190.7,245.3,134.0) = 134.0[mm]$

 $134.0 \ge max(-6 + 8.0, 30.0mm) \models 48.0[mm]$

Warunek spełniony

6. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 19 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.84

Sprawdzany element	War.	Siła
ścinanie przekroju blachy węzłowej w płaszczyźnie x	0.10	1
ścinanie przekroju blachy węzłowej w płaszczyźnie z	0.33	1
nośność osiowa przekroju blachy węzłowej w płaszczyźnie x	0.16	1
nośność osiowa przekroju blachy węzłowej w płaszczyźnie z	0.07	1
złożony stan naprężeń blachy węzłowej	0.84	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 1, naprężenie zastępcze	0.22	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 1, naprężenie prost.	0.05	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 2, naprężenie zastępcze	0.22	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 2, naprężenie prost.	0.06	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 3, naprężenie zastępcze	0.16	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 3, naprężenie prost.	0.05	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 4, naprężenie zastępcze	0.16	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt 4, naprężenie prost.	0.09	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt A, naprężenie zastępcze	0.05	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt A, naprężenie prost.	0.05	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt B, naprężenie zastępcze	0.05	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): Punkt B, naprężenie prost.	0.04	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): nośność przekroju poprzecznego miarodajnego blachy węzłowej	0.32	1
Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane): nośność przekroju miarodajnego blachy węzłowej na wyboczenie	0.23	1

$$z'_{c} = \frac{S_{s,s'}}{A_{s}} = \frac{376522.04}{4560.24} = 82.57 [mm]$$

$$e_{s'} = s_{b1} + x'_{c} = 270.00 + 89.87 = 359.87 [mm]$$

$$e_{s'} = \left(h_{b1} - c_{b1}\right) - z'_{c} = \left(150.00 - 100.20\right) - 82.57 = -32.77 [mm]$$

7.1.2. Parametry ogólne połączenia spawanego

7.1.2.1. Połączenie blacha węzłowa-pas kratowy (spawane)

Zakłada się nośność spoiny czołowej równą nośności elementu łączącego (blacha węzłowa).

7.1.2.2. Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane)

$$J_{x,x,Ntop} = \frac{l_{x,Ntop} \cdot a_{p}^{3}}{l2} + A_{x,Ntop} \cdot (z'_{e} + 0.5 \cdot a_{p})^{2}$$

$$J_{x,x,Ntop} = \frac{190.72 \cdot 8.00^{3}}{l2} + 1525.74 \cdot (82.57 + 0.5 \cdot 8.00)^{2} = 11441594.56 [mm^{4}]$$

$$J_{x,x,Ntopmon} = \frac{l_{x,Ntonom} \cdot a_{p}^{3}}{l2} + A_{x,Ntonom} \cdot (h_{b1} - z'_{e} + 0.5 \cdot a_{p})^{2}$$

$$J_{x,x,Ntonom} = \frac{245.31 \cdot 8.00^{3}}{l2} + 1962.50 \cdot (150.00 - 82.57 + 0.5 \cdot 8.00)^{2} = 10024642.37 [mm^{4}]$$

$$J_{x,x,Ntonom} = \frac{a_{p} \cdot l_{x,V}^{3}}{l2} + A_{x,V} \cdot (z'_{e} - 0.5 \cdot h_{b1})^{2}$$

$$J_{x,x,Ntop} = \frac{8.00 \cdot 134.00^{3}}{l2} + 1072.00 \cdot (82.57 - 0.5 \cdot 150.00)^{2} = 1665441.11 [mm^{4}]$$

$$J_{x,x,V} = \frac{8.00 \cdot 134.00^{3}}{l2} + 1072.00 \cdot (82.57 - 0.5 \cdot 150.00)^{2} = 1665441.11 [mm^{4}]$$

$$J_{x,x,Ntop} = a_{p} \cdot \frac{l_{x,Ntonom}}{l2} + A_{x,Ntonom} + J_{x,x,V} = 11441594.56 + 10024642.37 + 1665441.11 = 23131678.04 [mm^{4}]$$

$$J_{x,x,Ntop} = a_{p} \cdot \frac{l_{x,Ntonom}}{l2} + A_{x,Ntonom} + (x'_{e} - 0.5 \cdot l_{b,Ntop})^{2}$$

$$J_{x,x,Ntop} = \frac{8.00 \cdot 190.72^{5}}{l2} + 1525.74 \cdot (89.87 - 0.5 \cdot 206.72)^{2} = 4902268.84 [mm^{4}]$$

$$J_{x,x,Ntonom} = a_{p} \cdot \frac{l_{x,Ntonom}}{l2} + A_{x,Ntonom} \cdot (x'_{e} - 0.5 \cdot l_{b,Ntop})^{2}$$

$$J_{x,x,Ntonom} = \frac{8.00 \cdot 245.31^{5}}{l2} + 1962.50 \cdot (89.87 - 0.5 \cdot 261.31)^{2} = 13106501.14 [mm^{4}]$$

$$J_{x,x,Ntonom} = \frac{8.00 \cdot 245.31^{5}}{l2} + 1962.50 \cdot (89.87 - 0.5 \cdot 261.31)^{2} = 13106501.14 [mm^{4}]$$

Punkt 1

 $\begin{aligned} x'_{I} &= -x'_{o} &= -89.87 \ [mm] \\ z'_{I} &= -z'_{o} &= -0.5 \ \cdot \ a_{p} &= -82.57 \ -0.5 \ \cdot \ 8.00 &= -86.57 \ [mm] \end{aligned}$

Punkt 2

 $x'_{2} = l_{bl,Ntop} - x'_{a} = 206.72 - 89.87 = 116.85 [mm]$ $z'_{2} = z'_{1} = -86.57 [mm]$

Punkt 3

 $\begin{aligned} x'_{g} &= x'_{l} = -89.87 \ [mm] \\ z'_{g} &= h_{bl} - z'_{o} + 0.5 + a_{p} = 150.00 - 82.57 + 0.5 + 8.00 = 71.43 \ [mm] \end{aligned}$

Punkt 4

 $x'_{4} = l_{bl,Nbottom} - x'_{c} = 261.31 - 89.87 = 171.44 [mm]$ $z'_{4} = z'_{3} = 71.43 [mm]$

Punkty I-II - obliczenia wspólne

$$\begin{split} & L_{j,I-II} = h_{b1} = 150.00 \left[mm \right] \\ & L_{j,I-II} = 150.00 < 150 \cdot a_{p} = 150 \cdot 8.00 = 1200.00 \left[mm \right] \\ & \beta_{Iw,I-II} = 1.00 \\ & \sigma_{san,I-II,max} = \frac{\left(\beta_{Iw,I-II} \cdot f_{u} \right)}{\left(\beta_{w} \cdot \gamma_{M2} \right)} = \frac{\left(1.00 \cdot 430.00 \cdot 10^{-3} \right)}{\left(0.85 \cdot 1.25 \right)} = 0.4047 \left[\frac{kN}{mm^{2}} \right] \\ & \sigma_{\perp,I-II,max} = \frac{\left(\beta_{Iw,I-II} \cdot 0.9 \cdot f_{u} \right)}{\gamma_{M2}} = \frac{\left(0.40 \cdot 0.9 \cdot 430.00 \cdot 10^{-3} \right)}{1.25} = 0.1253 \left[\frac{kN}{mm^{2}} \right] \end{split}$$

Punkt A $x'_{A} = -x'_{c} - 0.5 \cdot a_{p} = -89.87 - 0.5 \cdot 8.00 = -93.87 [mm]$ $z'_{A} = -z'_{c} = -82.57 [mm]$

Punkt B $x'_{B} = x'_{A} = -93.87 [mm]$ $z'_{B} = h_{b1} - z'_{c} = 150.00 - 82.57 = 67.43 [mm]$

Nośność lokalna blachy w połączeniach z prętami skratowania

$$J_{kx,r} = \frac{t_{r} - b_{k}^{2}}{12} = \frac{14.00 - 323.14^{2}}{12} = 39366130.59 \left[y_{mm}^{-4} \right]$$
polożenie skrajnego włókna przekroju miarodajnego:
 $w_{k} = \frac{(h_{k})}{2} + max \left(-t_{k,r,swr}^{-1} t_{k,r,swr}^{-1} = \frac{150.00}{2} + max \left(-119.35, 119.35 \right) = 194.35 \left[y_{mm} \right]$
Nośność na lokalne wyboczenie
 $J_{ky} = \frac{b_{k} + t_{2}^{2}}{2} = \frac{323.14 - 14.00^{2}}{12} = 73891.56 \left[y_{mm}^{-4} \right]$
wysokość wykrojonego pręta miarodajnego ustala się w osi ś. c. połączenia:
 $h_{k} = 85.24 \left[y_{cm} \right]$
 $N_{w} = \frac{\pi^{2} - 8 - t_{ky}}{\left(4 - \frac{8}{2}\right)^{2}} = \frac{214.22 - 210.00 - 73891.56}{\left(4 - 85.24^{2}\right)} = 5269.64 \left[kN \right]$
 $\lambda^{-} = \sqrt{\left(4_{k} - \frac{17}{2}N\right)} = \sqrt{\left(4523.87 - 355.00 - 10^{5}5269.64\right)} = 0.552$
parametr imperfekcji a wg krzywej wyboczenia c:
 $a = 0.49$
 $d = 0.5 \cdot \left(t + a \cdot \left(x^{-} - 0.2\right) + \lambda^{-2}\right) = 0.5 \cdot \left(t + 0.49 \cdot \left(0.552 - 0.2\right) + 0.552^{2}\right) = 0.739$
 $X^{-} = \frac{t}{\left(w + \sqrt{\left(w^{2} - 4^{-2}\right)}\right)} = \frac{1}{\left(0.739 + \sqrt{\left(0.739^{2} - 0.552^{2}\right)}\right)} = 0.813$
 $N_{kx,kk} = \frac{X - A_{k} - f_{x}}{Y_{kd}} = \frac{0.813 - 4523.97 - 355.00 \cdot 10^{-5}}{1.00} = 1206.37$
7.1.3. Nośność przekroju blachy węzłowej
w płaszczyźnie x:
 $A_{xx} = t_{p} - t_{p} = 14.00 - 300.00 = 4900.00 \left[y_{mn}^{2} \right]$
 $V_{p00,x1644} = \frac{A_{xx} - f_{y}}{\left(\sqrt{3} - Y_{M0}\right)} = \frac{400.00 \cdot 355.00 \cdot 10^{-3}}{\left(\sqrt{3} - 1.00\right)} = 1004.30 \left[kN \right]$
w płaszczyźnie z:
 $A_{xx} = t_{p} - h_{p} = 14.00 - 300.00 = 4200.00 \left[y_{mn}^{2} \right]$
 $V_{p00,x1644} = \frac{A_{xx} - f_{y}}{\left(\sqrt{3} - Y_{M0}\right)} = \frac{400.00 \cdot 355.00 \cdot 10^{-3}}{\left(\sqrt{3} - 1.00\right)} = 360.83 \left[kN \right]$
7.1.3. Nośność osiowa blachy węzłowej

w płaszczyźnie x:

$$A_{nx} = A_{v,x} = 4900.00 \left[mm^2 \right]$$
$$N_{p(t),plRd,x} = \frac{A_{nx} \cdot f_y}{\gamma_{M0}} = \frac{4900.00 \cdot 355.00 \cdot 10^{-3}}{1.00} = 1739.50 \left[kN \right]$$

w płaszczyźnie z:

$$A_{nz} = A_{v,z} = 4200.00 \left[mm^2 \right]$$
$$N_{p(t),pl,Rd,z} = \frac{A_{nz} \cdot f_y}{\gamma_{M0}} = \frac{4200.00 \cdot 355.00 \cdot 10^{-3}}{1.00} = 1491.00 \left[kN \right]$$

7.1.4. Złożony stan naprężeń blachy węzłowej

$$W_{p} = \frac{t_{p} + l_{p}^{2}}{6} = \frac{14.00 + 350.00^{2}}{6} = 285833.33 \left[mm^{3} \right]$$

8. Obliczenia dla kolejnych serii sił

8.1. Zestaw sił nr 1

8.1.1. Rozdział sił

8.1.1.1. Połączenie blacha węzłowa-pas kratowy (spawane)

Transformacja sił do układu współrzędnych blachy węzłowej: pręt skratowania nr 1

$$\begin{split} N_{0pl,xs} &= N_{l,Ed} \cdot \sin\left(-70.00^{\circ}\right) - V_{l,Ed} \cdot \cos\left(-70.00^{\circ}\right) = -281.91 \left[kN\right] \\ V_{0pl,xs} &= N_{l,Ed} \cdot \cos\left(-70.00^{\circ}\right) + V_{l,Ed} \cdot \sin\left(-70.00^{\circ}\right) = -102.61 \left[kN\right] \\ M_{0pl,xs} &= 0.00 \left[kNmm\right] \end{split}$$

Siły działające na środek ciężkości układu spoin

$$\begin{split} N_{0p} &= N_{0p1,xx} = -281.91 \left[kN \right] \\ V_{0p} &= V_{0p1,xx} = -102.61 \left[kN \right] \\ M_{0p} &= M_{0p1,xx} - N_{0p} \cdot e_x + V_{0p} \cdot e_x \\ M_{0p} &= 0.00 - -281.91 \cdot -170.00 + -102.61 \cdot 165.00 = -64854.32 \left[kNmm \right] \end{split}$$

8.1.1.2. Dla przekroju blachy węzłowej

 $V_{Op(s),x} = V_{Opl,xz}$ $V_{0p(s),x} = |(-102.61)| = 102.61 [kN]$ $V_{0p(s),x} = \left| N_{0pl,xx} \right| = \left| (-281.91) \right| = 281.91 \left[kN \right]$ $N_{Op(t),x} = V_{Op(s),x} = 281.91 \left[kN \right]$ $N_{0p(t),x} = |V_{0p1,xx}| = |(-102.61)| = 102.61 [kN]$ 8.1.1.3. Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane) $N_{0bl} = N_{Ed} = -300.00 \left[kN \right]$ $V_{obl} = V_{Rd} = 0.00 \left[kN \right]$ $M_{0b1} = M_{Ed} + N_{Ed} + e_{s'} + V_{Ed} + e_{s'} = 0.00 + 10^{3} + -300.00 + -32.77 + 0.00 + 359.87 = 9829.91 [kNmm]$ 8.1.2. Siły działające na poszczególne elementy połączenia 8.1.2.1. Połączenie blacha węzłowa-pas kratowy (spawane) $N_n = 1.0 \cdot N_{n_n} = 1.0 \cdot -281.91 = -281.91 [kN]$ $V_p = 1.0 + V_{0p} = 1.0 + -102.61 = -102.61 [kN]$ $M_p = 1.0 \cdot M_{0p} = 1.0 \cdot -64854.32 = -64854.32 [kN]$ 8.1.2.2. Dla przekroju blachy węzłowej $V_{p(s),x} = 1.0 + V_{0p(s),x} = 1.0 + 102.61 = 102.61 [kN]$ $V_{p(s),x} = 1.0 + V_{0p(s),x} = 1.0 + 281.91 = 281.91 [kN]$ $N_{p(t),x} = 1.0 \cdot N_{0p(t),x} = 1.0 \cdot 281.91 = 281.91 [kN]$ $N_{p(t),x} = 1.0 \cdot N_{0p(t),x} = 1.0 \cdot 102.61 = 102.61 [kN]$ 8.1.2.3. Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane) $N_{bl} = 0.5 \cdot N_{obl} = 0.5 \cdot -300.00 = -150.00 [kN]$ $V_{bl} = 0.5 \cdot V_{obl} = 0.5 \cdot 0.00 = 0.00 [kN]$ $M_{bl} = 0.5 \cdot M_{0bl} = 0.5 \cdot 9829.91 = 4914.95 [kN]$ $N_p = 1.0 \cdot N_{0b1} = 1.0 \cdot -300.00 = -300.00 [kN]$ $V_{p} = 1.0 \cdot V_{0bl} = 1.0 \cdot 0.00 = 0.00 [kN]$ $M_p = 1.0 \cdot M_{0bl} = 1.0 \cdot 9829.91 = 9829.91 [kN]$ 8.1.3. Warunki nośności połączenia spawanego

8.1.3.1. Połączenie blacha węzłowa-pas kratowy (spawane)

Brak wytężeń przyjmujących swoje maksymalne wartość dla tego zestawu sił.

8.1.3.2. Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane)

Punkt 1

$$\begin{aligned} \tau_{NI} = \frac{N_{b1}}{A_{sN}} &= \frac{(-150.00)}{3488.24} = -0.0430 \left[\frac{kN}{mm^2} \right] \\ \tau_{VI} &= 0.0000 \left[\frac{kN}{mm^2} \right] \\ \tau_{MC,I} &= \frac{M_{b1} \cdot z'_{I}}{J_{s0}} = \frac{4914.95 \cdot -86.57}{50591919.60} = -0.0084 \left[\frac{kN}{mm^2} \right] \\ \tau_{MC,I} &= \frac{M_{b1} \cdot z'_{I}}{J_{s0}} = \frac{4914.95 \cdot -86.57}{50591919.60} = -0.0087 \left[\frac{kN}{mm^2} \right] \\ \tau_{MC,I} &= \frac{J_{b1} \cdot z'_{I}}{J_{s0}} = \frac{(-4914.95) \cdot -89.87}{50591919.60} = 0.0087 \left[\frac{kN}{mm^2} \right] \\ \sigma_{LI} &= \left[-\tau_{NI} + \tau_{MC,I} \right] = -0.04 + -0.01 = 0.0514 \left[\frac{kN}{mm^2} \right] \\ \tau_{LI} &= \frac{\left(-\frac{\tau_{VI} + \tau_{MC,I}}{\sqrt{2}} \right) = \left(-\frac{0.00 + -0.01}{\sqrt{2}} \right) = 0.0062 \left[\frac{kN}{mm^2} \right] \\ \sigma_{maxII} &= \frac{\sqrt{\left(\sigma_{LI}^2 + 3 \cdot \left(\tau_{LI}^2 + \tau_{RI}^2 \right) \right)} - \sqrt{\left(0.01^2 + 3 \cdot \left(0.01^2 + 0.05^2 \right) \right)} = 0.0899 \left[\frac{kN}{mm^2} \right] \\ \frac{\sigma_{maxII}}{\sigma_{maxII,max}} = \frac{0.0099}{0.1253} = 0.05 \end{aligned}$$

$$x_{V,2} = 0.0000 \left[\frac{kN}{mm^2} \right]$$

$$x_{Mx,2} = \frac{M_{b1} \cdot z'_2}{J_{s0}} = \frac{4914.95 \cdot -86.57}{50591919.60} = -0.0084 \left[\frac{kN}{mm^2} \right]$$

$$x_{Mx,2} = \frac{-M_{b1} \cdot z'_2}{J_{s0}} = \frac{(-4914.95) \cdot 116.85}{50591919.60} = -0.0114 \left[\frac{kN}{mm^2} \right]$$

$$x_{k2} = \left| \tau_{N2} + \tau_{Mx,2} \right| = -0.04 + -0.01 = 0.0514 \left[\frac{kN}{mm^2} \right]$$

$$\sigma_{\perp 2} = \frac{\left(\begin{vmatrix} \tau_{\nu 2} + \tau_{M m', 2} \\ \sqrt{2} \end{vmatrix} - \left(\begin{vmatrix} 0.00 + -0.01 \\ \sqrt{2} \end{vmatrix} - \left(0.00 + -0.01 \right) \right) = 0.0080 \begin{bmatrix} kN \\ mm^2 \end{bmatrix}}{mm^2} \right)$$

$$\tau_{\perp 2} = \frac{\left(\begin{vmatrix} \tau_{\nu 2} + \tau_{M m', 2} \\ \sqrt{2} \end{vmatrix} - \left(\begin{vmatrix} 0.00 + -0.01 \\ \sqrt{2} \end{vmatrix} - \left(0.00 + -0.01 \right) \right) = 0.0080 \begin{bmatrix} kN \\ mm^2 \end{bmatrix}}{mm^2} \right)$$

$$\sigma_{sast, 2} = \sqrt{\left(\sigma_{\perp 2}^2 + 3 \cdot \left(\tau_{\perp 2}^2 + \tau_{k 2}^2 \right) \right)} = \sqrt{\left(0.01^2 + 3 \cdot \left(0.01^2 + 0.05^2 \right) \right)} = 0.0905 \begin{bmatrix} kN \\ mm^2 \end{bmatrix}}{mm^2} \right)$$

$$\frac{\sigma_{sast, 2}}{\sigma_{sast, 2,max}} = \frac{0.0905}{0.4047} = 0.22$$

$$\frac{\sigma_{\perp 2}}{\sigma_{\perp 2,max}} = \frac{0.0080}{0.1253} = 0.06$$

Punkt 3

$$\begin{aligned} \tau_{NS} = \frac{N_{b1}}{A_{a,N}} = \frac{(-150.00)}{3488.24} = -0.0430 \left[\frac{kN}{mm^2} \right] \\ \tau_{NS} = 0.0000 \left[\frac{kN}{mm^2} \right] \\ \tau_{MS,S} = \frac{M_{b1} \cdot s'_{S}}{J_{s0}} = \frac{4914.95 \cdot 71.43}{50591919.60} = 0.0009 \left[\frac{kN}{mm^2} \right] \\ \tau_{MS,S} = \frac{J_{b1} \cdot s'_{S}}{J_{s0}} = \frac{(-4914.95) \cdot -89.87}{50591919.60} = 0.0087 \left[\frac{kN}{mm^2} \right] \\ \tau_{\delta S} = \int_{-\infty} -M_{b1} \cdot s'_{S} = \frac{(-4914.95) \cdot -89.87}{50591919.60} = 0.0087 \left[\frac{kN}{mm^2} \right] \\ \tau_{\delta S} = \left[-\pi_{NS} + \tau_{MS,S} \right] = -0.04 + 0.01 = 0.0361 \left[\frac{kN}{mm^2} \right] \\ \sigma_{\Delta S} = \frac{\left(-\frac{\tau_{VS} + \tau_{MS,S}}{\sqrt{2}} \right) = \left(-\frac{0.004 + 0.01}{\sqrt{2}} \right) = 0.0062 \left[\frac{kN}{mm^2} \right] \\ \tau_{\Delta S} = \frac{\left(-\frac{\tau_{VS} + \tau_{MS,S}}{\sqrt{2}} \right) = \left(-\frac{0.004 + 0.01}{\sqrt{2}} \right) = 0.0062 \left[\frac{kN}{mm^2} \right] \\ \sigma_{ant,S} = \sqrt{\left(\sigma_{\Delta S}^2 + 3 \cdot \left(\tau_{\Delta S}^2 + \tau_{\delta S}^2 \right) \right)} = \sqrt{\left(0.01^2 + 3 \cdot \left(0.01^2 + 0.004^2 \right) \right)} = 0.0637 \left[\frac{kN}{mm^2} \right] \\ \frac{\sigma_{ant,S}}{\sigma_{ans,Smax}} = \frac{0.0637}{0.4047} = 0.16 \\ \frac{\sigma_{\Delta S}}{\sigma_{\Delta S,max}}} = \frac{0.0062}{0.1253} = 0.05 \\ \mathbf{Punkt 4} \\ \tau_{NA} = \frac{N_{b1}}{A_{sN}} = \frac{(-150.00)}{3488.24} = -0.0430 \left[\frac{kN}{mm^2} \right] \\ \tau_{MS} = \frac{M_{b1} \cdot s'_{A}}{J_{s0}}} = \frac{4914.95 \cdot 71.43}{50591919.60} = 0.0069 \left[\frac{kN}{mm^2} \right] \\ \tau_{MS} = \frac{M_{b1} \cdot s'_{A}}{J_{s0}}} = \frac{4914.95 \cdot 71.43}{50591919.60} = 0.0069 \left[\frac{kN}{mm^2} \right] \\ \end{array}$$

$$\tau_{NB} = \frac{V_{s1}}{A_{s1}} = \frac{a.00}{1072.00} = a.0000 \left[\frac{kN}{lgm^2}\right]$$

$$\tau_{MC,B} = \frac{M_{s1} \cdot x'_B}{J_{s0}} = \frac{4914.95 \cdot 67.43}{50591919.60} = a.0066 \left[\frac{kN}{lgm^2}\right]$$

$$\tau_{MC,B} = \frac{J_{s1} \cdot x'_B}{J_{s0}} = \frac{4914.95 \cdot 67.43}{50591919.60} = a.0006 \left[\frac{kN}{lgm^2}\right]$$

$$\tau_{dE,B} = \frac{J_{s1} - M_{b1} \cdot x'_B}{\sqrt{2}} = \frac{(-4914.95) \cdot -93.87}{50591919.60} = a.0091 \left[\frac{kN}{lgm^2}\right]$$

$$\sigma_{dB} = \frac{(-\pi_{NB} + \pi_{MC,B})}{\sqrt{2}} = \left(\frac{-a.00 + a.01}{\sqrt{2}}\right) = a.0046 \left[\frac{kN}{lgm^2}\right]$$

$$\sigma_{dB} = \sqrt{\left(\frac{\pi_{NB} + \pi_{MC,B}}{\sqrt{2}}\right)} = \left(\frac{-a.00 + a.01}{\sqrt{2}}\right) = a.0046 \left[\frac{kN}{lgm^2}\right]}$$

$$\sigma_{ann,B} = \sqrt{\left(\frac{\sigma_{dB}^2 + 3 \cdot (\tau_{dB}^2 + \tau_{dB}^2)\right)} = \sqrt{\left(a.00^2 + 3 \cdot (a.00^2 + a.01^2)\right)} = a.0183 \left[\frac{kN}{lgm^2}\right]}$$

$$\frac{\sigma_{ann,B}}{\sigma_{ann,B}} = \frac{a.0183}{0.4047} = a.05$$

$$\frac{\sigma_{dB}}{a.1253} = \frac{a.004}{0.4047} = a.05$$

$$\frac{\sigma_{dB}}{a.1253} = \frac{a.004}{0.1253} = a.04$$

Nośność lokalna blachy w połączeniach z prętami skratowania
Przekrój poprzeczny miarodajny

$$\sigma_{b,s'} = \frac{1}{A_b} + \frac{M_{p} \cdot v_{b}}{J_{b,s'}} = \frac{(-300.00)}{45237} + \frac{9829.91 \cdot 194.35}{39366130.59} = a.1148 \left[\frac{kN}{lgm^2}\right]$$

$$\frac{\sigma_{b,s'} \cdot y_{M0}}{f_{p}} = \frac{a.1149 \cdot 1.00}{(355.00 \cdot 10^{-3})} = 0.32$$

Or,x' * YMO / fy = 0.1148 * 1.00 / (355.00 * 10^{-3}) = 0.32 Warunek spełniony
Nośność na lokalne wyboczenie

$$\frac{|M_{p}|}{N_{b,a,Rd}} = \frac{|-300.00|}{1306.37} = 0.23$$
 Warunek spełniony

8.1.4. Nośność przekroju blachy węzłowej

8.1.4.1. Ścinanie blachy węzłowej

w płaszczyźnie x:

 $\frac{V_{p(s),x}}{V_{p(s),pl,Rd,x}} = \frac{102.61}{1004.30} = 0.10$ V_{p(s),x} / V_{p(s),pl,Rd,x} = 102.61 / 1004.30 = 0.10 Warunek spełniony w płaszczyźnie z: $\frac{V_{p(s),x}}{V_{n(s),nl,Rd,x}} = \frac{281.91}{860.83} = 0.33$ V_{p(s),z} / V_{p(s),pl,Rd,z} = 281.91 / 860.83 = 0.33 Warunek spełniony 8.1.4.2. Nośność osiowa blachy węzłowej w płaszczyźnie x: $\frac{N_{p(t),x}}{N_{n(t),n!}Rdx} = \frac{281.91}{1739.50} = 0.16$ N_{p(t),x} / N_{p(t),pl,Rd,x} = 281.91 / 1739.50 = 0.16 Warunek spełniony w płaszczyźnie z: $\frac{N_{p(t),z}}{N_{p(t),z}} = \frac{102.61}{1491.00} = 0.07$ $N_{p(t),z} / N_{p(t),pl,Rd,z} = 102.61 / 1491.00 = 0.07$ Warunek spełniony 8.1.5. Złożony stan naprężeń blachy węzłowej $\sigma_{max} = \frac{\left| \begin{array}{c} N_{p} \right|}{A_{y}} + \frac{\left| \begin{array}{c} M_{p} \right|}{W_{y}} = \frac{\left| \begin{array}{c} (-281.91) \right|}{4200.00} + \frac{\left| \begin{array}{c} (-64854.32) \right|}{285833.33} = 0.2940 \left[\frac{kN}{mm^{2}} \right]$ $\tau = \frac{\left| V_{p} \right|}{A_{p}} = \frac{\left| (-102.61) \right|}{4200.00} = 0.0244 \left[\frac{kN}{mm^{2}} \right]$ $\sigma_{\text{sast}} = \sqrt{\left(\sigma_{\max}^2 + 3 + \tau_g^2\right)} = \sqrt{\left(0.2940^2 + 3 + 0.0244^2\right)} = 0.2970 \left[\frac{kN}{mm^2}\right]$ $\frac{\sigma_{zast} \cdot \gamma_{M0}}{f_{y}} = \frac{0.2970 \cdot 1.00}{\left(355.00 \cdot 10^{-3}\right)} = 0.84$ $\sigma_{zast} * \gamma_{M0} / f_y = 0.2970 * 1.00 / (355.00 * 10^{-3}) = 0.84$ Warunek spełniony 9. Podsumowanie wytężeń Kolejne kolumny w poniższych tabelach wytężeń odpowiadając poszczególnym elementom połączenia:

- 1: Połączenie blacha węzłowa-pas kratowy (spawane)
- 2: Połączenie blacha węzłowa-pręt skratowania nr 1 (spawane)

wyteżenie	1	2
Ωzast 1 / Ωzast 1 may		0.22
Grant 1 Grant 1 max		0.05
Grand Constant		0.00
Gzast,2 / Ozast,2,max	-	0.22
Gprost,27 Oprost,2,max	-	0.00
Ozast,3 / Ozast,3,max	-	0.16
σprost,3 / σprost,3,max	-	0.05
σ _{zast,4} / σ _{zast,4,max}	-	0.16
σ _{prost,4} / σ _{prost,4,max}	-	0.09
σzast,Α / σzast,Α,max	-	0.05
$\sigma_{\text{prost,A}}$ / $\sigma_{\text{prost,A,max}}$	-	0.05
$\sigma_{zast,B}$ / $\sigma_{zast,B,max}$	-	0.05
$\sigma_{\text{prost,B}}$ / $\sigma_{\text{prost,B,max}}$	-	0.04
$\sigma_{zast,I} / \sigma_{zast,I,max}$	-	-
σ _{prost} ,ι / σ _{prost} ,ι,max	-	-
przekrój poprzeczny miarodajny	-	0.32
wyboczenie pręta wykrojonego blad	chy -	0.23
V _{p(s),x} / V _{p(s),pl,Rd,x}	0.10	-
V _{p(s),z} / V _{p(s),pl,Rd,z}	0.33	-
Np(t),x / Np(t),pl,Rd,x	0.16	-
N _{p(t),z} / N _{p(t),pl,Rd,z}	0.07	-
złożony stan naprężeń blachy węzłowej	0.84	-
N _{p(t),z} / N _{p(t),pl,Rd,z} złożony stan naprężeń blachy węzłowej	0.07	-
estawienie maksymalnych w √artości największych wytęże	ytężeń m dla poszczególnych po	ołączeń.
Siły	1	2
1	0.84	0.22

Raport przykładowy: połączenie EuroZłącza KRATOWO-RUROWE SPAWANE

Γ

		Mi.op.01 Ni.01,Ed Mi.ip.01,Ed Mi.ip.1,Ed	,Ed M	i.op.02,Ed		
	Nr	Seria	N _{Ed} [kN]	M _{Ed} [kNm]	M _{op,Ed} [kNm]
	1.01	seria 1	-1500.00	-20.00	2.00	
	1.02	seria 1	-1500.00	20.00	2.00	
	1.1	seria 1	-650.00	40.00	2.00	
3. Geometr Konfiguracja	ia ogólna węzł	а	Í	R	odzai wezła ⁽)	Y
	,		Przesu	nięcie punktu (w p	węzłowego ionie) [mm]	e = 0.00
			zapo zni	zastosowano obiegającą dys szczeniu pasa	torsyjnemu t kratowego	ak
			Oblicz z uwzę	enia statyczne ględnieniem m	e wykonano imośrodu e	nie
			Długo	ość pręta pasa	kratowego [mm]	L ₀₁ = 1010.00
	,		Długo	ość pręta pasa	kratowego [mm]	L ₀₂ = 940.00
Pas kratowy						
			₩y	Ty sokość przekr	yp profilu RK oju [mm] a,cr	180x180x12,5 00 = 180.00

Szerokość przekroju [mm]	b,ch0 = 180.00
Grubość ścianki przekroju [mm]	t, _{ch0} = 12.50
Promień wewnętrzny [mm]	$R_{1,ch0} = 18.80$
Promień zewnętrzny [mm]	$R_{2,ch0} = 12.50$
Pole powierzchni przekroju poprzecznego [mm²]	A _{,ch0} = 8210.00
Moment bezwładności względem osi y-y [cm ⁴]	$I_{y,ch0} = 3790.00$
Moment bezwładności względem osi z-z [cm ⁴]	$I_{z,ch0} = 3790.00$
Stal	S 355
Granica plastyczności [MPa]	$f_{y,ch0} = 355.00$
Wytrzymałość na rozciąganie [MPa]	$f_{u,ch0} = 510.00$
3	0.81

Pręt skratowania nr 1

Odległość krawędzi od punktu węzłowego [w osi pręta] [mm]	
Kąt nachylenia pręta [°] φ = 130.00	
Odległość od osi do wewnętrznej krawędzi pręta [mm]	
Grubość spoiny dołączeniowej pręta w wężle [mm] a = 8.00	
Długość pręta skratowania liczona w osiach węzłów [mm]	

Typ profilu	RK 150x150x8
Wysokość przekroju [mm]	a, _{b1} = 150.00
Szerokość przekroju [mm]	b, _{b1} = 150.00
Grubość ścianki przekroju [mm]	t, _{b1} = 8.00
Promień wewnętrzny [mm]	R _{1,b1} = 12.00
Promień zewnętrzny [mm]	R _{2,b1} = 8.00
Pole powierzchni przekroju poprzecznego [mm²]	A _{,b1} = 4480.00
Moment bezwładności względem osi y-y [cm ⁴]	I _{y,b1} = 1491.00
Moment bezwładności względem osi z-z [cm ⁴]	I _{z,b1} = 1491.00
Stal	S 235

	Granica plastyczności [MPa]	f _{y,b1} = 235.00
	Wytrzymałość na rozciąganie [MPa]	f _{u,b1} = 360.00
	3	1.00
4. Sprawdzenie warunków normo	wych	
Liczba niespełnionych warunków geom	netrycznych lub normowych: 0	z 5
4.1. Połączenie pas kratowy-pręt skrato	owania nr 1 (RHS) (wymiary)	
wzajemne właściwości mechaniczne pa	asa i skratowania [warunek lite	eraturowy]
Zalecenie CIDECT ze względów ekono	omicznych:	
$\frac{t_{0} \cdot f_{y0}}{\left(t_{1} \cdot f_{y1}\right)} \ge 2$ $\frac{12.50 \cdot 355.00}{\left(8.00 \cdot 235.00\right)} \ge 2$ $2.36 \ge 2.0$ $f_{y0} \ge f_{y1}$ $355.00 \ge 235.00 \left[MPa\right]$ $t_{0} \ge t_{1}$ $12.50 \ge 8.00 \left[mm\right]$		
Warunek spełniony		
4.2. Zakres ważności metody - węzeł Y	′ (wymiary)	
Parametr b _i / b ₀		
$\frac{b_{I}}{b_{0}} \ge 0.25$ $\frac{150.00}{180.00} = 0.83 \ge 0.25$		
$\frac{b_{l}}{b_{o}} \leq l.0$		
$\frac{150.00}{180.00} = 0.83 \le 1.0$		

Warunek spełniony

```
4.3. Zakres ważności metody - węzeł Y (wymiary)
```

```
Parametr bi / ti | hi / ti
```

```
\frac{\frac{b_{1}}{t_{1}} \le 35}{\frac{150.00}{8.00}} = 18.75 \le 35\frac{\frac{a_{1}}{t_{1}} \le 35}{\frac{150.00}{8.00}} = 18.75 \le 35
```

Klasa przekroju pręta (pręt 1) nie powinna być wyższy niż klasa 2: przekrój klasy 1 ≤ klasa 2

Warunek spełniony

4.4. Zakres ważności metody - węzeł Y (wymiary)

Parametr h₀ / b₀ | h_i / b_i

```
\frac{a}{b}_{0} \ge 0.5
\frac{180.00}{180.00} = 1.00 \ge 0.5
\frac{a}{b}_{0} \le 2.0
\frac{180.00}{180.00} = 1.00 \le 2.0
\frac{a}{150.00} = 1.00 \ge 0.5
\frac{a}{150.00} = 1.00 \ge 0.5
\frac{a}{1}_{1} \le 2.0
\frac{150.00}{150.00} = 1.00 \le 2.0
Warunek spełniony
```

4.5. Zakres ważności metody - węzeł Y (wymiary)

Parametr b₀ / t₀ | h₀ / t₀

 $\frac{b}{t_0} \le 35$ $\frac{180.00}{12.50} = 14.40 \le 35$ $\frac{a}{t_0} \le 35$ $\frac{180.00}{12.50} = 14.40 \le 35$

Klasa przekroju pręta (pas 01) nie powinna być wyższy niż klasa 2: przekrój klasy 1 ≤ klasa 2

Warunek spełniony

5. Lista maksymalnych wytężeń

Liczba przekroczonych warunków nośności: 0 z 5 Maksymalne wytężenie główne w obliczanej konstrukcji wynosi: 0.95

Sprawdzany element	War.	Siła
węzeł Y - pręt 1: zniszczenie przystykowe pasa M _{ip,cff}	0.47	1
węzeł Y - pręt 1: zniszczenie przystykowe pasa M _{op,cff}	0.02	1
węzeł Y - pręt 1: zniszczenie przystykowe pasa N _{cff}	0.40	1
węzeł Y - pręt 1: warunek interakcji		1
pręt 1: minimalna grubość spoiny	0.95	-

6. Obliczenia wstępne

6.1. Ogólne dla węzła

Nośności na działanie momentów M_{ip} oraz M_{op} są obliczane oddzielnie dla każdego pręta skratowania jak dla węzła typu T.

Dobór istotnych nośności na działanie sił osiowych dokonywany jest przy założeniu braku spełnienia kryteriów wyszczególnionych w tab. 7.9 normy PN-EN 1993-1-8 (nominalnie wykorzystywane są formuł z tablic innych niż tablica 7.10).

6.1.1. Dodatkowa transformacja sił

 $e_{\min} = -0.55 \cdot a_{0} = -0.55 \cdot 180.00 = -99.00 [mm]$ $e_{\max} = 0.25 \cdot a_{0} = 0.25 \cdot 180.00 = 45.00 [mm]$ $e_{\min} = -99.00 \le e = 0.00 \le e_{\max} = 45.00 [mm]$

Wartość mimośrodu mieści się w dozwolonym zakresie - nie przeprowadza się dodatkowej modyfikacji sił ze względu na występowanie mimośród.

6.1.2. Parametry ogólne

Klasyfikacja przekroju pasa kratowego: $c_0 = a_0 - 2 \cdot R_{2,0} = 180.00 - 2 \cdot 12.50 = 155.00 [mm]$ $\frac{c_0}{t_0} = \frac{155.00}{12.50} = 12.40$ $\frac{c}{t_0} \leq 33 + \varepsilon$ 12.40≤33 · 0.814 = 26.85 Przekrój należy do klasy 1. $y = \frac{b_0}{(2 + t_0)} = \frac{180.00}{(2 + 12.50)} = 7.200$ Parametr imperfekcji α_{ch0} dla stali S355 wg krzywej wyboczenia a: $a_{ch0} = 0.21$ Wytrzymałość na zgniecenie bocznej ścianki pasa kratowego: $f_{yk} = f_{y0} = 355.00 = 355.00 \left[MPa \right]$ 6.1.2.1. Pręt skratowania nr 1 - obliczenia bazowe $c_1 = a_1 - 2 + R_{2,1} = 150.00 - 2 + 8.00 = 134.00 [mm]$ $\frac{c_1}{t_1} = \frac{134.00}{8.00} = 16.75$ $\frac{c}{t_1} \leq 33 + \varepsilon$ 16.75≤33 + 1.000 = 33.00 Przekrój należy do klasy 1. $\eta_1 = \frac{a_1}{b_2} = \frac{150.00}{180.00} = 0.833$ $b_{\text{eff},l,l} = \frac{10 + t_0}{b_0} + b_1 + \frac{f_{y,0} + t_0}{(f_{y,1} + t_1)} = \frac{10 + 12.50}{180.00} + 150.00 + \frac{355.00 + 10^{-3} + 12.50}{(235.00 + 10^{-3} + 8.00)} = 245.87 [mm]$ $b_{eff, I, II} = b_{I} = 150.00 [mm]$

Podręcznik użytkownika dla programu EuroZłącza Załączniki

$$b_{ap,l} = \min\{\left(b_{at,l}, b_{at,l}, b_{at,l},$$

 $a_{1,min} / a_1 = 7.64 / 8.00 = 0.95 \le 1.0$ Warunek spełniony

Dopuszczalny rodzaj spoiny

Jeżeli kąt nachylenia pręta skratowania względem spawanej powierzchni nie spełnia zależności $\varphi_i \ge 60^\circ$ wtedy spoina łącząca jego ściankę poprzeczną do osi powierzchni spawanej [po stronie kąta rozwartego] powinna być spoiną czołową. $\varphi_1 = 130.00 \ge 60.0$ [°]

6.1.3. Typ węzła: węzeł Y

6.1.3.1. Obliczenia ogólne dla typu węzła

$$\beta = \frac{b_1}{b_0} = \frac{150.00}{180.00} = 0.833$$

6.1.3.2. Pręt skratowania nr 1

Wyboczenie boków pasa N1,cswb,Rd

 $\beta = 0.833 < 0.85$

Nośność N_{1,cswb,Rd} nie jest znacząca.

Zniszczenie pręta skratowania N_{1,bf,Rd} $\beta = 0.833 < 0.85$

Nośność N_{1,bf,Rd} nie jest znacząca.

Przebicie pasa N1,ps,Rd

 $\beta = 0.833 < 0.85$

$$\beta \le l - \frac{l}{\gamma}$$

0.833 \le l - $\frac{l}{7.200} = 0.86.$

Nośność N_{1,ps,Rd} nie jest znacząca.

Zgniecenie boków pasa $M_{ip,1,cswc,Rd}$ $\beta = 0.833 \le 0.85$

Nośność M_{ip,1,cswc,Rd} nie jest znacząca.

Zgniecenie boków pasa $M_{op,1,cswc,Rd}$ $\beta = 0.833 \le 0.85$

Nośność M_{op,1,cswc,Rd} nie jest znacząca.

Zniszczenie pręta skratowania $M_{ip,1,bf,Rd}$ $\beta = 0.833 \le 0.85$

Nośność M_{ip,1,bf,Rd} nie jest znacząca.

Zniszczenie pręta skratowania Mop,1,bf,Rd

$\beta = 0.833 \le 0.85$

Nośność Mop, 1, bf, Rd nie jest znacząca.

Dystorsyjne zniszczenie pasa Mop,1,cdf,Rd

Kryterium można pominąć, gdy dystorsji zapobiega się innymi środkami, którymi mogą być: stosowanie żeber, stężeń bocznych i przeciwskrętnych, połączeń z tarczą sztywną dachu / płytą stropową itp.

Nośność M_{op,1,cdf,Rd} nie jest znacząca.

7. Obliczenia dla kolejnych serii sił

- 7.1. Zestaw sił nr 1
- 7.1.1. Dodatkowa transformacja sił

Dodatkowa transformacja sił ze względu na mimośród nie jest wymagana.

Zestawienie

Element	Seria	N _{Ed} [kN]	M _{Ed} [kNm]	M _{op,Ed} [kNm]
pas kratowy 01	seria 1	- 1500.00	-20.00	2.00
pas kratowy 02	seria 1	- 1500.00	20.00	2.00
pręt skratowania nr 1	seria 1	-650.00	40.00	2.00

7.1.2. Parametry ogólne

$$\begin{split} N_{0,Ed} &= \begin{pmatrix} N_{01,Ed}, N_{02,Ed} \end{pmatrix} = \left((-1500.00); -1500.00 \right) = -1500.00 \left[kN \right] \\ \sigma_{01,Ed} &= \frac{N_{.01,Ed}}{A_0} + \frac{M_{ip,01,Ed}}{W_{elip,0}} + \frac{M_{op,01,Ed}}{W_{elop,0}} = \frac{(-1500.00)}{8210.00} + \frac{(-20000.00)}{421000.00} + \frac{2000.00}{421000.00} = 0.2350 \left[\frac{kN}{12m^2} \right] \\ \sigma_{02,Ed} &= \frac{N_{.02,Ed}}{A_0} + \frac{M_{ip,02,Ed}}{W_{elip,0}} + \frac{M_{op,02,Ed}}{W_{elop,0}} = \frac{(-1500.00)}{8210.00} + \frac{20000.00}{421000.00} + \frac{2000.00}{421000.00} = 0.2350 \left[\frac{kN}{12m^2} \right] \\ \sigma_{0,max,Ed} &= max \left(-\sigma_{01,Ed}, \sigma_{02,Ed} \right) = max \left(-0.2350; 0.2350 \right) = 0.2350 \left[\frac{kN}{12m^2} \right] \\ n &= \frac{\sigma_{0,max,Ed}}{\left(f_{y0} + \gamma_{M5} \right)} = \frac{0.2350}{\left(355.00 + 10^{-5} + 1.00 \right)} = 0.662 \\ N_{p,01,Ed} &= N_{01,Ed} - \left[-N_{1,Ed} + \cos\left(-130.00^{\circ} \right] \\ N_{p,01,Ed} &= N_{02,Ed} - \left[-N_{1,Ed} + \cos\left(-130.00^{\circ} \right] \right] \\ N_{p,02,Ed} &= N_{02,Ed} - \left[-N_{1,Ed} + \cos\left(-130.00^{\circ} \right] \right] \end{split}$$

 $N_{p,02,Ed} = -1500.00 - (-650.00) - -0.6428 = -1082.19 [kN]$ $N_{p,Ed} = \left(N_{p,01,Ed}, N_{p,02,Ed}\right) = \left((-1082.19), -1082.19\right) = -1082.19 \left[kN\right]$ 7.1.2.1. Pręt skratowania nr 1 - obliczenia bazowe 7.1.3. Typ węzła: węzeł Y 7.1.3.1. Obliczenia ogólne dla typu węzła $k_{n,I} = 1.3 - \frac{0.4 + n}{\beta} = 1.3 - \frac{0.4 + 0.662}{0.833} = 0.982$ $k_{n,m} = 1.0$ $k_n = \min(k_{n,I}; k_{n,II}) = \min(0.982; 1.0) = 0.982$ 7.1.3.2. Pręt skratowania nr 1 Zniszczenie przystykowe pasa N_{1,cff,Rd} $\beta = 0.833 \le 0.85$ Nośność N_{1,cff,Rd} jest znacząca. $N_{l,eff:Rd} = k_n + f_{y0} + t_0^2 + \left(\frac{2 + \eta_1}{\sin(-130.00^\circ)} \neq 4 + \sqrt{(1-\beta_1)}\right) = \left(\left(1-\beta_1\right) + \sin(-130.00^\circ) + \eta_{MS}\right)^{-1}$ $N_{left:Rd} = 0.982 + 355.00 + 10^{-3} + 12.50^{2} + \left(\frac{2 + 0.833}{0.7660} \neq 4 + \sqrt{(1 - 0.833)}\right) + \left(\left(1 - 0.833\right) + 0.7660 + 1.00\right)^{-1} = 0.982 + 355.00 + 10^{-3} + 12.50^{2} + \left(\frac{2 + 0.833}{0.7660} \neq 4 + \sqrt{(1 - 0.833)}\right) + 0.7660 + 1.00^{-1} = 0.982 + 12.50^{2}$ 1625.42 kN $\frac{\left| \begin{array}{c} N_{1,Bd} \\ \end{array} \right|}{N} = \frac{\left| \begin{array}{c} (-650.00) \\ 1625.42 \end{array} \right|} = 0.40 \le 1.0$ |N_{1,Ed}| / N_{1,cff,Rd} = |-650.00| / 1625.42 = 0.40 ≤ 1.0 Warunek spełniony Zniszczenie przystykowe pasa Mip,1,cff,Rd $\beta = 0.833 \le 0.85$ Nośność Mip, 1, cff, Rd jest znacząca. $M_{ip,Left^{Rd}} = \frac{k_n \cdot f_{y0} \cdot t_0^2 \cdot a_1}{\gamma_{MS}} \cdot \left(\frac{l}{(2 \cdot \eta_1)} + \frac{2}{\sqrt{(1-\beta)}} + \frac{\eta_1}{(1-\beta)}\right)$ $M_{ip, Leff Rd} = \frac{0.982 + 355.00 + 10^{-3} + 12.50^{2} + 150.00}{1.00} \cdot \left(\frac{1}{(2 + 0.833)} + \frac{2}{\sqrt{(1 - 0.833)}} + \frac{0.833}{(1 - 0.833)}\right) = 85809.21 \left[kNmm\right]$ $\frac{\left| \begin{array}{c} M_{ip,l,Ed} \\ \end{array} \right|}{M_{ip,l,Ed}} = \frac{\left| \begin{array}{c} 40000.00 \\ 85809.21 \end{array} \right|} = 0.47 \le 1.0$ |M_{ip,1,Ed}| / M_{ip,1,cff,Rd} = |40000.00| / 85809.21 = 0.47 ≤ 1.0 Warunek spełniony

